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Abstract

In this paper, we tackle the task of Definition

Generation (DG) in Chinese, which aims at au-

tomatically generating a definition for a word.

Most existing methods take the source word as

an indecomposable semantic unit. However, in

parataxis languages like Chinese, word mean-

ings can be composed using the word forma-

tion process, where a word ("桃花", peach-
blossom) is formed by formation components

("桃", peach; "花", flower) using a formation

rule (Modifier-Head). Inspired by this process,

we propose to enhance DG with word forma-

tion features. We build a formation-informed

dataset and propose a model DeFT, which

Decomposes words into formation features,

dynamically Fuses different features through

a gating mechanism, and generaTes word def-

initions. Experimental results show that our

method is both effective and robust. 1

1 Introduction

Definition Generation (DG) aims at automatically

generating an explanatory text for a word. This

task is of practical importance to assist dictionary

construction, especially in highly productive lan-

guages like Chinese (Yang et al., 2020). Most ex-

isting methods take the source word as an indecom-

posable lexico-semantic unit, using features like

word embedding (Noraset et al., 2017) and con-

text (Gadetsky et al., 2018; Ishiwatari et al., 2019).

Recently, Yang et al. (2020) and Li et al. (2020)

achieve improvement by decomposing the word

meaning into different semantic components.

In decomposing the word meaning, the word

formation process is an intuitive and informative

way that has not been explored in DG by far. For

parataxis languages like Chinese, a word is formed

by formation components, i.e., morphemes, and

∗Equal contribution.
†Corresponding author.

1The code is available at https://github.com/
Hunter-DDM/DeFT-naacl2021.

2: (spend)
2: (vainly)
1: (flower)
1: (white)Modifier-Head

Adverb-Verb

(White flower.)

(Vainly spend.)

Formation
RuleWord Definition Morphemes:

DefinitionsWord

Figure 1: Word formation process for the polysemous

"白花". With morphemes and a formation rule spec-

ified, the process can construct and distinguish each

meaning. Definitions are simplified for ease of reading.

a formation rule. As shown in Figure 1, the poly-

semous word "白花" holds two meanings "白花1"

and "白花2", which can be distinguished by dif-

ferent morphemes ("白1;花1" vs. "白2;花2") and

different rules (Modifier-Head vs. Adverb-Verb).

Such intuitive formation process can clearly and

unambiguously construct the word meaning.

Inspired by the word formation process in Chi-

nese, we propose to enhance DG with formation

features. First, we build a formation-informed

dataset under expert annotations. Next, we design

a DG model DeFT, which Decomposes words into

formation features, Fuses different features through

a gating mechanism, and generaTes definitions.

Our contributions are as follows: (1) We first

propose to use word formation features to enhance

DG and design a formation-informed model DeFT.

(2) We build a new formation-informed DG dataset

under expert annotations. (3) Experimental results

show that our method brings a substantial perfor-

mance improvement, and maintains a robust per-

formance even with only word formation features.

2 Related Work

Definition Generation: Noraset et al. (2017) first

propose the DG task and use word embeddings

as the main input. The following methods add

contexts for disambiguation (Gadetsky et al., 2018;

Ishiwatari et al., 2019) or word-pair embeddings

to capture lexical relations (Washio et al., 2019).
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Recent methods attempt to decompose the word

meaning by using HowNet sememes (Yang et al.,

2020) or modeling latent variables (Li et al., 2020).

Semantic Components: To systematically define

words, linguists decompose the word meaning into

semantic components (Wierzbicka, 1996). Follow-

ing this idea, HowNet (Dong and Dong, 2006) uses

manually-created sememes to describe the seman-

tic aspects of words. Recent studies also show that

leveraging subword information produces better

embeddings (Park et al., 2018; Lin and Liu, 2019;

Zhu et al., 2019), but these methods lack a clear

distinction among different formation rules.

3 Word Formation Process in Chinese

It is linguistically motivated to explore the word for-

mation process to better understand words. Instead

of combining roots and affixes, Chinese words are

formed by characters in a parataxis way (Li et al.,

2018). Here, we introduce two formation features

and construct a formation-informed dataset.

3.1 Formation components and rules

Chinese formation components are morphemes,

defined as the smallest meaning-bearing units (Zhu,

1982). Morphemes are unambiguous in represent-

ing word meanings, since they can distinguish dif-

ferent meanings and uses of each character in a

word, like "白1" and "白2" in Figure 1. Morphemes

are also productive in constructing words, since

over 99.48% Chinese words are formed using a

small set of nearly 20,000 morphemes (Fu, 1988).

These properties make morphemes highly effective

as formation components.

Formation rules specify how morphemes are

combined to form words in a parataxis way. For

example, the Modifier-Head rule uses the first mor-

pheme to modify the second morpheme. Following

the study of Liu et al. (2018), we adopt 16 Chinese

formation rules and show the top 5 in instance per-

centage in Table 1. Complete descriptions of 16

formation rules are provided in Appendix A.

3.2 Formation-informed dataset

We construct a DG dataset under expert annota-

tions, which contains morphemes and formation

rules. Each entry consists of (1) source word, (2)

morphemes and morpheme definitions, (3) forma-

tion rule, (4) context (a sentence containing the

source word), (5) source word definition.

To ensure full coverage and fine granularity, we

Formation Rule Use Case %

Modifier-Head 红花 (red-flower) 38.62

Parallel 昏花 (dizzy-dim) 22.87

Verb-Object 花钱 (spend-money) 16.44

Adverb-Verb 白花 (vainly-spend) 8.45
Single Morpheme 花生 (peanut) 3.51

Table 1: Examples of word formation rules and use

cases. % denotes the instance percentage.

Morpheme (ID) Morpheme Definition

花1 (07361-01) 花朵 (flower)

花2 (07361-06) 模糊；迷乱 (dim; blurred)

花3 (07361-09) 用；耗费 (use; spend)

Table 2: Three example morphemes and definitions for

the character "花". We give each morpheme a unique

ID, C-M (C is character rank, M is morpheme rank).

extract data from the 5th edition of the Contem-

porary Chinese Dictionary published by the Com-

mercial Press2, one of the most influential Chinese

dictionaries. We collect 45,311 Chinese disyllabic

word entries with contexts and definitions. To an-

notate them, we also collect 10,527 Chinese char-

acters and 20,855 morphemes with definitions.

Our annotators include two professors and six

graduates major in Chinese linguistics. Given the

definition, they annotate each word with its for-

mation rule (as shown in Table 1) and morpheme

IDs (as shown in Table 2). Each entry is cross-

validated by three independent annotators and re-

viewed by one. The detailed annotation process

includes the following three steps:

(1) Equipped with the definition, annotators anno-

tate each entry with two morpheme IDs (select

from the morphemes of each character) and

a formation rule (select from 16 formation

rules). Each entry is independently annotated

by three annotators, who also note down a

confidence score. If three annotations are the

same, turn to (3); otherwise, turn to (2).

(2) Another annotator reviews the conflicting an-

notations and confidence scores, and decides

the final annotation. Turn to (3).

(3) The annotation is collected as an entry into

the final dataset.

It takes one minute on average for each annotator

to annotate an entry. Only 8,193 out of 45,311

entries enter Phase (2) in the whole process.

2https://www.cp.com.cn
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Figure 2: An illustration of DeFT. The definition gen-

erator uses the seed vector as input, and dynamically

fuses different features using a gating mechanism.

4 Approach

4.1 Task formulation

We extend the DG setting in Ishiwatari et al. (2019)

to incorporate the word formation features, F =
{morph1,morph2, rule}, where morphi is the

ith morpheme definition sentence and rule is the

formation rule. The training goal is to maximize the

likelihood of the ground-truth definition D = d1:T
given the source word w∗, the context sentence

C = c1:n, and the word formation features F :

p(D|w∗, C, F ) =

T∏

t=1

p(dt|di<t, w∗, C, F ).

Our optimization objective is to minimize the

cross-entropy loss L:

L = −
T∑

t=1

log
(
p(dt|di<t, w∗, C, F )

)
,

where d1:T is the ground-truth definition, w∗ is the

pretrained embedding of the source word, C is the

context sentence, F is the formation information.

4.2 Proposed model: DeFT

As shown in Figure 2, DeFT first produces a seed

vector in a rule-specific manner as global supervi-

sion. Then we feed it into the definition generator,

which uses a gating mechanism to dynamically fuse

different features and generate definitions.

4.2.1 Seed vector
We first employ a Bi-LSTM (Graves and Schmidhu-

ber, 2005) to encode morphi. Then, we combine

morphi into a comprehensive morpheme embed-

ding rm with a rule-specific linear layer, which

captures different semantic relations:

mi = Bi-LSTM([morphi]),

rm = W(rule)
m [m1;m2] + b(rule)

m .

We then use a linear layer to combine rm and the

pretrained source word embedding w∗ to obtain

the seed vector r∗ as the initial generator input:

r∗ = Wr[rm;w∗] + br.

4.2.2 Definition generator
We employ an LSTM followed by a GRU-like (Cho

et al., 2014) gate GRU-GATE(·), which dynami-

cally fuses different features, as the generator:

ht = LSTM(dt−1,h
′
t−1),

h′
t = GRU-GATE(ht, featt),

featt = [rm;w∗;a∗;gt; ct],

where ht is the LSTM hidden state at the tth step,

h′
t is the gated hidden state, dt−1 is the embedding

of the previous definition word, specially, d0 � r∗,

and featt denotes the features that dynamically

control the generation process. We explain a∗, gt,
and ct as follows.

a∗ is the character-level embedding, obtained by

combining the embedding chi of each character in

w∗ with a rule-specific linear layer:

a∗ = W(rule)
a [ch1; ch2] + b(rule)

a .

gt is the gated attended morpheme vector that

dynamically focuses on the most relevant parts in

morphemes during generation. We first calculate

attended morpheme vectors g′
t,i by the attention

mechanism (Bahdanau et al., 2015):

g′
t,i = Attention(ht,morphi),

where Attention(h, seq) denotes the function that

uses h to attend over the Bi-LSTM encoded seq.

We then design a MorphGATE to compute gt by

assigning different weights to two morphemes:

zt = σ(Wz[g
′
t,1;g

′
t,2;ht] + bz),

gt = (1− zt)� g′
t,1 + zt � g′

t,2,
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Split #Words #Entries Context
Length

Morph1

Length
Morph2

Length
Definition
Length

Train 29,169 36,248 7.22 7.69 7.29 12.02
Valid 3,673 4,531 7.32 7.45 7.30 11.91
Test 3,666 4,532 7.26 7.51 7.01 12.03

Table 3: Statistics of our formation-informed dataset.

Morphi denotes the definition of the ith morpheme. The

length is calculated as the average number of Chinese

characters.

where σ(·) is Sigmoid and � is Hadamard product.

ct is the attended context vector. Following Ishi-

watari et al. (2019), we take ct = Attention(ht, C)
as a feature since it may assist disambiguation.

Finally, GRU-GATE(ht, featt) takes the LSTM

hidden state ht and the dynamically controlled fea-

tures featt as input, and updates ht to h′
t by fusing

different features:

ut = σ(Wu[ht; featt] + bu),

vt = σ(Wr[ht; featt] + br),

ĥt = tanh(Wh[(vt � featt);ht] + bh),

h′
t = ut � ht + (1− ut)� ĥt,

where σ denotes the Sigmoid and � denotes the

Hadamard product. The gate ut controls how much

the original state ht is remained, and the gate vt

controls the contribution from features featt.

5 Experiments

5.1 Experimental settings

Dataset: We split the dataset described in Section 3

into training, validation and test sets by 8:1:1, as

shown in Table 3. Note that we treat polysemous

words as different entries, and the words are mutu-

ally exclusive across three sets.

Hyper-parameters: We tune hyper-parameters to

achieve the best BLEU score on the validation set.

We use Adam (Kingma and Ba, 2015) with an ini-

tial learning rate of 10−3 as the optimizer. We set

hidden size to 300, batch size to 64 and dropout

rate to 0.2. Word embeddings are 300-dimensional,

pretrained by fastText (Bojanowski et al., 2017).

We train for up to 50 epochs, and early stop the

training process once the performance does not

improve for 10 consecutive epochs. We run our

experiments on a single NVIDIA GeForce GTX

2080Ti GPU with 11 GB memory.

Baselines: We compare with two reproducible

baselines that have a similar model framework with

Automatic Human
BLEU ROUGE-L Coverage Overall

W (SG*) 23.63 34.77 2.04 2.11
W+C (LOG-CaD*) 24.06 34.93 2.52 2.45

F 25.55 37.27 2.61 2.58
F+W 25.93 37.94 2.78 2.71
F+C 25.69 37.29 2.89 2.78
F+W+C (DeFT) 26.42 38.58 3.29 3.19

Table 4: Automatic and human evaluation results. Best

results are in Bold. W, C and F are word, context and

formation features, respectively. * denotes baselines.

us but using different features, including SG (No-

raset et al., 2017) that uses only the word feature,

and LOG-CaD (Ishiwatari et al., 2019) that uses

both the word and context features.

5.2 Evaluation results

We conduct both automatic and human evaluations

to validate our method, and show results in Table 4.

For automatic evaluation, we select BLEU-4

(Bahdanau et al., 2015) and ROUGE-L (Lin, 2004)

as metrics. We find that (1) our formation-informed

DeFT (F+W+C) significantly outperforms base-

lines and other simplified versions (F, F+W, F+C);

(2) based on W or W+C, adding formation features

introduces significant improvement; (3) formation

features are robust, since using only F can outper-

form LOG-CaD by 9.8% and 10.45% in BLEU and

ROUGE-L, respectively. These findings validate

that formation features can effectively enhance DG

by assisting word meaning construction.

For human evaluation, we measure semantic cov-
erage and overall quality. The coverage metric

measures how much ground-truth information is

mentioned in the predicted definition. To be spe-

cific, the scores are given based on how many se-

mantic aspects in the ground truth definition are

covered by the predicted definition. The overall
metric measures the overall quality of the predicted

definition, referencing the ground-truth definition.

We randomly select 100 entries from the test set,

and hire three raters to rate the predicted definitions

on a scale of 1 to 5, where each entry includes (1)

the source word, (2) the ground-truth definition,

and (3) the predicted definition to the raters. We

show in Table 5 the detailed guideline for raters on

each point.

The inter-rater kappa (Fleiss and Cohen, 1973) is

0.65 for coverage and 0.66 for overall. We average

scores of raters and obtain consistent results with
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Point Coverage Overall

1 Nothing is covered. Completely wrong or not related to the ground-truth.
2 Some semantic aspects are similar, but not the same. Almost wrong but has some correct information.
3 Some semantic aspects are covered. Basically correct with some minor errors.
4 Almost all semantic aspects are covered. Correct but redundant or missing details.
5 Everything is covered. Exactly correct.

Table 5: Human evaluation guideline for raters. Note that the evaluation results on these two metrics may show

different trends. For example, a predicted definition with an opposite meaning to the ground-truth definition may

receive a high coverage score but a low overall score.

BLEU (Δ) ROUGE-L (Δ)

DeFT 26.42 38.58
w/o MorphGATE 25.81 (0.61↓) 38.01 (0.57↓)
w/o Formation Rules 25.52 (0.90↓) 37.40 (1.18↓)

Table 6: Ablation study of DeFT.

Word 1 2

Morph1 1: piecemeal 1: piecemeal
Morph2 1: use 2: expense
Rule Adverb-Verb Modifier-Head
Context [ ]1

(You can [ ]1 50 yuan.)
[ ]2

(Get more [ ]2.)

(Use in a piecemeal way.) (Piecemeal expense.)
Definition

W
(Money uses money.) (Money uses money.)

F
(Piecemeal use.) (Piecemeal money.)

F+W+C
(DeFT) (Use in a piecemeal way.) (Piecemeal expense.)

IN
PU

T
O

UT
PU

T

( )

Figure 3: Generation examples for a polysemous word

"零用" using different features.

the automatic evaluation: formation features are

effective and DeFT performs the best.

5.3 Analysis
Ablation study: Based on DeFT, we perform ab-

lation study regarding MorphGATE and the for-

mation rule in Table 6. (1) For MorphGATE, we

replace it with a simple average function, which

leads to a drop in performance. This reveals that

different morphemes take effect in different gen-

eration phases. (2) For formation rule, we replace

the rule-specific layers with a rule-shared layer,

leading to a more serious performance drop. This

verifies that distinguishing the specific formation

rule can assist word meaning construction.

Formation features can assist disambiguation:
We present the generated definitions for a polyse-

mous word in Figure 3. The example shows that

using only the word feature (W) cannot distinguish

different meanings. By contrast, using only the

formation features (F) can capture the meaning dif-

ference and disambiguate the word (use vs. money).

Further, DeFT (F+W+C) generates the exactly cor-

rect definition by fusing different features. Due

to space limits, we put two additional interesting

analyses on formation rules in Appendix B.

Formation features are more feasible and ef-
fective compared with sememes: Sememes are

expert-crafted words to describe the semantic as-

pects of words. For annotation cost, annotating

sememes is as expensive as writing definitions (Li

et al., 2020), whereas annotating formation features

is a simple multiple-choice task with 1.98 choices

on average. For effectiveness, we conduct experi-

ments using sememe embeddings from Yang et al.

(2020) as additional features. Results show that,

based on W, adding sememes brings a BLEU im-

provement of 0.52, lower than that of 2.30 from

F+W. Further, based on DeFT, adding sememes

even brings noises and decreases BLEU by 0.35.

This indicates that, compared with sememes, for-

mation features are more feasible and effective.

6 Conclusion

In this paper, we propose to use formation features

to enhance DG. We build a formation-informed

dataset and design a model DeFT, which decom-

poses words into formation features and fuses fea-

tures via a gating mechanism. Experimental results

show that our method is both effective and robust.
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A Formation-Informed Dataset Details

We show the complete descriptions of 16 formation

rules in Table 7.

B Additional Analysis on Formation
Rules

Here we provide some additional interesting analy-

ses that reveal the specific properties and influences

of word formation rules.

B.1 The similarity among different formation
rules

In Section 4.2.1, we produce a comprehensive

morpheme embedding using a rule-specific linear

layer. We study the relations of the weight matrices

W
(rule)
m in these layers by resizing them into vec-

tors and calculating their pairwise cosine similarity,

as shown in Figure 4.

Figure 4 (a) shows that Overlapping is most sim-

ilar to Suffixation, Prefixation, and Single Mor-

pheme. Interestingly, word meanings constructed
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Word Formation Rule Explanation Use Case %

定中 dìng·zhōng (Modifier-Head) morph1 modifies morph2 (noun). 红花 hóng·huā (red-flower) 38.62

联合 lián·hé (Parallel)
morph1 and morph2 are similar,
contrasting or complementary.

昏花 hūn·huā (dizzy-dim) 22.87

述宾 shù·bı̄n (Verb-Object) morph1 operates on morph2. 花钱 huā·qián (spend-money) 16.44

状中 zhuàng·zhōng (Adverb-Verb) morph1 modifies morph2 (verb). 白花 bái·huā (vainly-spend) 8.45

单纯 dān·chún (Single Morpheme) The word is a single morpheme. 花生 huā·shēng (peanut) 3.51

连谓 lián·wèi (Verb-Consequence) morph2 is the consequence of morph1. 休息 xiū·xi (stop-rest) 3.43

后缀 hòu·zhuì (Suffixation) morph2 is the suffix of morph1. 花头 huā·tóu (trick-∅) 2.70

述补 shù·bǔ (Verb-Complement) morph2 is the action follows morph1. 压低 yā·dı̄ (press-down) 1.28

主谓 zhǔ·wèi (Subject-Predicate) morph1 is the subject of morph2. 眼花 yǎn·huā (eyesight-dim) 1.06

重叠 chóng·dié (Overlapping) morph1 and morph2 are the same. 白白 bái·bái (vainly-vainly) 0.59

方位 fāng·wèi (Entity-Position) morph1 is an entity, morph2 is a position. 期中 qı̄·zhōng (semester-mid) 0.37

介宾 jiè·bı̄n (Preposition-Object)
morph1 is a preposition, morph2 is an
object.

凭空 píng·kōng (from-nowhere) 0.31

名量 míng·liàng (Noun-Quantifier) morph2 is the quantifier of morph1. 花朵 huā·duǒ (flower-bud) 0.13

数量 shù·liàng (Number-Quantifier)
morph1 is a number, morph2 is a
quantifier.

一点 yì·diǎn (one-dot) 0.10

前缀 qián·zhuì (Prefixation) morph1 is the prefix of morph2. 老师 lǎo·shı̄ (∅-teacher) 0.10

复量 fù·liàng (Quantifier-Quantifier) Both morph1 and morph2 are quantifiers. 千米 qiān·mı̌ (kilo-meter) 0.03

Table 7: Descriptions of the total 16 formation rules. ∅ denotes the affix and % denotes the instance percentage.

The first and the third columns are in the format of “Chinese characters - Chinese phonetic notation - (English

translation)”. To help understand these rules, we give a simple explanation to describe the relation between two

morphemes in the second column.

by these four formation rules share a similar pat-

tern of using only one morpheme. For example,

in Suffixation, only the first morpheme carries the

meaning, like “花头” (trick-∅).

Figure 4 (b) shows that Noun-Quantifier is

most similar to Quantifier-Quantifier and Number-

Quantifier. Word meanings constructed by these

three formation rules all have a quantifier mor-

pheme. For example, in Number-Quantifier, the

first morpheme is a number, and the second mor-

pheme is a quantifier, like “一点” (one-dot).
Figure 4 (c) shows that Verb-Object is most

similar to Modifier-Head, Parallel and Adverb-

Verb. Word meanings constructed by Verb-Object,

Modifier-Head and Adverb-Verb share a similar

pattern of using the first morpheme to operate on

the second morpheme. For example, in Adverb-

Verb, the first morpheme modifies the second verb

morpheme, like “白花” (vainly-spend).

B.2 The specific impact of formation rules

In Table 8, we generate definitions using differ-

ent formation rules for the same word. Results

show that each predicted definition indicates a clear

pattern of the used formation rule. The Modifier-

Head rule uses touched to modify sad, and out-

puts a noun; the Adverb-Verb rule outputs an ad-

jective in a similar modifying way; the Parallel

rule outputs a single meaning of sad with differ-

感伤
Morph1: 感触 (touched) Morph2: 伤心 (sad)

Verb-Consequence (�) 因有所感触而悲伤。
(Sad due to being

touched.)

Modifier-Head 感触的悲伤。
(Sadness of being

touched.)

Parallel 伤心。
(Sad.)

Adverb-verb 难过的伤心。
(Woefully sad.)

Table 8: A case study of 4 predicted definitions of “感
伤” using 1 correct formation rule (�) and 3 others.
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Figure 4: We take Verb-Object, Overlapping and Noun-Quantifier weight matrices as three examples and display

their similarity with all the other 15 formation rules in the heatmap. The color goes deeper for more similar

formation rules. The top 3 most similar formation rules are shown in Bold.

ent parts-of-speech. However, only the correct rule

(Verb-Consequence) captures the cause-and-effect
semantic aspect and outputs the correct definition.

This reveals the impact of formation rules in the

word formation process.


