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Abstract

Recent researches show that pre-trained mod-
els (PTMs) are beneficial to Chinese Word
Segmentation (CWS). However, PTMs used in
previous works usually adopt language model-
ing as pre-training tasks, lacking task-specific
prior segmentation knowledge and ignoring
the discrepancy between pre-training tasks and
downstream CWS tasks. In this paper, we
propose a CWS-specific pre-trained model
METASEG, which employs a unified architec-
ture and incorporates meta learning algorithm
into a multi-criteria pre-training task. Empiri-
cal results show that METASEG could utilize
common prior segmentation knowledge from
different existing criteria and alleviate the
discrepancy between pre-trained models and
downstream CWS tasks. Besides, METASEG
can achieve new state-of-the-art performance
on twelve widely-used CWS datasets and sig-
nificantly improve model performance in low-
resource settings.

1 Introduction

Chinese Word Segmentation (CWS) is a fundamen-
tal task for Chinese natural language processing
(NLP), which aims at identifying word boundaries
in a sentence composed of continuous Chinese char-
acters. It provides a basic component for other NLP
tasks like named entity recognition (Li et al., 2020),
dependency parsing (Yan et al., 2020), and seman-
tic role labeling (Xia et al., 2019), etc.

Generally, most previous studies model the CWS
task as a character-based sequence labeling task
(Xue, 2003; Zheng et al., 2013; Chen et al., 2015;
Ma et al., 2018; Qiu et al., 2020). Recently, pre-
trained models (PTMs) such as BERT (Devlin et al.,
2019) have been introduced into CWS tasks, which
could provide prior semantic knowledge and boost
the performance of CWS systems. Yang (2019) di-
rectly fine-tunes BERT on several CWS benchmark
datasets. Huang et al. (2020) fine-tunes BERT in a

Criteria Li Na entered the semi-final
CTB6 李娜 进入 半决赛

PKU 李 娜 进入 半 决赛

MSRA 李娜 进入 半 决赛

Table 1: An example of CWS on different criteria.

multi-criteria learning framework, where each cri-
terion shares a common BERT-based feature extrac-
tion layer and has separate projection layer. Meng
et al. (2019) combines Chinese character glyph fea-
tures with pre-trained BERT representations. Tian
et al. (2020) proposes a neural CWS framework
WMSEG, which utilizes memory networks to incor-
porate wordhood information into the pre-trained
model ZEN (Diao et al., 2019).

PTMs have been proved quite effective by fine-
tuning on downstream CWS tasks. However, PTMs
used in previous works usually adopt language
modeling as pre-training tasks. Thus, they usu-
ally lack task-specific prior knowledge for CWS
and ignore the discrepancy between pre-training
tasks and downstream CWS tasks.

To deal with aforementioned problems of PTMs,
we consider introducing a CWS-specific pre-
trained model based on existing CWS corpora, to
leverage the prior segmentation knowledge. How-
ever, there are multiple inconsistent segmentation
criteria for CWS, where each criterion represents a
unique style of segmenting Chinese sentence into
words, as shown in Table 1. Meanwhile, we can
easily observe that different segmentation criteria
could share a large proportion of word boundaries
between them, such as the boundaries between
word units “李娜(Li Na)”, “进入(entered)” and
“半决赛(the semi-final)”, which are the same for
all segmentation criteria. It shows that the com-
mon prior segmentation knowledge is shared by
different criteria.

In this paper, we propose a CWS-specific pre-
trained model METASEG. To leverage shared
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segmentation knowledge of different criteria,
METASEG utilizes a unified architecture and in-
troduces a multi-criteria pre-training task. More-
over, to alleviate the discrepancy between pre-
trained models and downstream unseen criteria,
meta learning algorithm (Finn et al., 2017) is incor-
porated into the multi-criteria pre-training task of
METASEG.

Experiments show that METASEG could outper-
form previous works significantly, and achieve new
state-of-the-art results on twelve CWS datasets.
Further experiments show that METASEG has bet-
ter generalization performance on downstream un-
seen CWS tasks in low-resource settings, and im-
prove recalls for Out-Of-Vocabulary (OOV) words.
To the best of our knowledge, METASEG is the first
task-specific pre-trained model especially designed
for CWS.

2 Related Work

Recently, PTMs have been used for CWS and
achieve good performance (Devlin et al., 2019).
These PTMs usually exploit fine-tuning as the
main way of transferring prior knowledge to down-
stream CWS tasks. Specifically, some methods di-
rectly fine-tune PTMs on CWS tasks (Yang, 2019),
while others fine-tune them in a multi-task frame-
work (Huang et al., 2020). Besides, other features
are also incorporated into PTMs and fine-tuned
jointly, including Chinese glyph features (Meng
et al., 2019), wordhood features (Tian et al., 2020),
and so on. Although PTMs improve CWS systems
significantly, their pre-training tasks like language
modeling still have a wide discrepancy with down-
stream CWS tasks and lack CWS-specific prior
knowledge.

Task-specific pre-trained models are lately stud-
ied to introduce task-specific prior knowledge into
multiple NLP tasks. Specifically designed pre-
training tasks are introduced to obtain the task-
specific pre-trained models, and then these models
are fine-tuned on corresponding downstream NLP
tasks, such as named entity recognition (Xue et al.,
2020), sentiment analysis (Ke et al., 2020) and text
summarization (Zhang et al., 2020). In this pa-
per, we propose a CWS-specific pre-trained model
METASEG.

3 Approach

As other task-specific pre-trained models (Ke et al.,
2020), the pipeline of METASEG is divided into

two phases: pre-training phase and fine-tuning
phase. In pre-training phase, we design a unified ar-
chitecture and incorporate meta learning algorithm
into a multi-criteria pre-training task, to obtain the
CWS-specific pre-trained model which has less
discrepancy with downstream CWS tasks. In fine-
tuning phase, we fine-tune the pre-trained model
on downstream CWS tasks, to leverage the prior
knowledge learned in pre-training phase.

In this section, we will describe METASEG in
three parts. First, we introduce the Transformer-
based unified architecture. Second, we elaborate on
the multi-criteria pre-training task with meta learn-
ing algorithm. Finally, we give a brief description
of the downstream fine-tuning phase.

3.1 The Unified Architecture

In traditional CWS systems (Chen et al., 2015; Ma
et al., 2018), CWS model usually adopts a sepa-
rate architecture for each segmentation criterion.
An instance of the CWS model is created for each
criterion and trained on the corresponding dataset
independently. Thus, a model instance can only
serve one criterion, without sharing any segmenta-
tion knowledge with other different criteria.

To better leverage the common segmentation
knowledge shared by multiple criteria, METASEG

employs a unified architecture based on the widely-
used Transformer network (Vaswani et al., 2017)
with shared encoder and decoder for all different
criteria, as illustrated in Figure 1.

The input for the unified architecture is an aug-
mented sentence, which is composed of a specific
criterion token plus the original sentence to repre-
sent both criterion and text information. In embed-
ding layer, the augmented sentence is transformed
into input representations by summing the token,
segment and position embeddings. The Trans-
former network is used as the shared encoder layer,
encoding the input representations into hidden rep-
resentations through blocks of multi-head attention
and position-wise feed-forward modules (Vaswani
et al., 2017). Then a shared linear decoder with
softmax is followed to map hidden representations
to the probability distribution of segmentation la-
bels. The segmentation labels consist of four CWS
labels {B,M,E, S}, denoting the word beginning,
middle, ending and single word respectively.

Formally, the unified architecture can be con-
cluded as a probabilistic model Pθ(Y |X), which
represents the probability of the segmentation label
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Figure 1: The unified framework of our proposed model, with shared encoder and decoder for different criteria.
The input is composed of criterion and sentence, where the criterion can vary with the same sentence. The output
is a corresponding sequence of segmentation labels of given criterion.

sequence Y given the augmented input sentence
X . The model parameters θ are invariant of any
criterion c, and would capture the common segmen-
tation knowledge shared by different criteria.

3.2 Multi-Criteria Pre-training with Meta
Learning

In this part, we describe multi-criteria pre-training
with meta learning for METASEG. We construct
a multi-criteria pre-training task, to fully mine the
shared prior segmentation knowledge of different
criteria. Meanwhile, to alleviate the discrepancy
between pre-trained models and downstream CWS
tasks, meta learning algorithm (Finn et al., 2017)
is used for pre-training optimization of METASEG.

Multi-Criteria Pre-training Task As men-
tioned in Section 1, there are already a variety of ex-
isting CWS corpora (Emerson, 2005; Jin and Chen,
2008). These CWS corpora usually have inconsis-
tent segmentation criteria, where human-annotated
data is insufficient for each criterion. Each cri-
terion is usually used to fine-tune a CWS model
separately on a relatively small dataset and ignores
the shared knowledge of different criteria. But in
our multi-criteria pre-training task, multiple criteria
are jointly used for pre-training to capture the com-
mon segmentation knowledge shared by different
existing criteria.

First, nine public CWS corpora (see Section 4.1)
of diverse segmentation criteria are merged as a

joint multi-criteria pre-training corpus DT . Every
sentence under each criterion is augmented with
the corresponding criterion, and then incorporated
into the joint multi-criteria pre-training corpus. To
represent criterion information, we add a specific
criterion token in front of the input sentence, such
as [pku] for PKU criterion (Emerson, 2005). We
also add [CLS] and [SEP] token to sentence be-
ginning and ending respectively like Devlin et al.
(2019). This augmented input sentence represents
both criterion and text information, as shown in
Figure 1.

Then, we randomly pick 10% sentences from
the joint multi-criteria pre-training corpus DT and
replace their criterion tokens with a special token
[unc], which means undefined criterion. With
this design, the undefined criterion token [unc]
would learn criterion-independent segmentation
knowledge and help to transfer such knowledge
to downstream CWS tasks.

Finally, given a pair of augmented sentence X
and segmentation labels Y from the joint multi-
criteria pre-training corpus DT , our unified archi-
tecture (Section 3.1) predicts the the probability
of segmentation labels Pθ(Y |X). We use the nor-
mal negative log-likelihood (NLL) loss as objective
function for this multi-criteria pre-training task:

L(θ;DT ) = −
∑

X,Y ∈DT

logPθ(Y |X) (1)
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Meta Learning Algorithm The objective of
most PTMs is to maximize its performance on pre-
training tasks (Devlin et al., 2019), which would
lead to the discrepancy between pre-trained models
and downstream tasks. Besides, pre-trained CWS
model from multi-criteria pre-training task could
still have discrepancy with downstream unseen cri-
teria, because downstream criteria may not exist
in pre-training. To alleviate the above discrepancy,
we utilize meta learning algorithm (Lv et al., 2020)
for pre-training optimization of METASEG. The
main objective of meta learning is to maximize gen-
eralization performance on potential downstream
tasks, which prevents pre-trained models from over-
fitting on pre-training tasks. As shown in Fig-
ure 2, by introducing meta learning algorithm, pre-
trained models would have less discrepancy with
downstream tasks instead of inclining towards pre-
training tasks.

PT DT1

DT3DT2

𝜃𝜃

PT DT1

DT3DT2

𝜃𝜃

(a) Pre-training without
meta learning

PT DT1

DT3DT2

𝜃𝜃

PT DT1

DT3DT2

𝜃𝜃

(b) Pre-training with meta
learning

Figure 2: Pre-training with and without meta learning.
PT represents the multi-criteria pre-training task, while
solid line represents the pre-training phase. DT repre-
sents the downstream CWS task, while dashed line rep-
resents the fine-tuning phase. θ represents pre-trained
model parameters.

The meta learning algorithm treats pre-training
task T as one of the downstream tasks. It tries
to optimize meta parameters θ0, from which we
can get the task-specific model parameters θk by k
gradient descent steps over the training data Dtrain

T

on task T ,

θ1 = θ0 − α∇θ0LT (θ0;Dtrain
T,1 ),

...,

θk = θk−1 − α∇θk−1
LT (θk−1;D

train
T,k ),

(2)

where α is learning rate, Dtrain
T,i is the i-th batch of

training data. Formally, task-specific parameters
θk can be denoted as a function of meta parameters
θ0 as follows: θk = fk(θ0).

To maximize the generalization performance on
task T , we should optimize meta parameters θ0 on
the batch of test data Dtest

T ,

θ∗0 = argmin
θ0

LT (θk;D
test
T )

= argmin
θ0

LT (fk(θ0);D
test
T ).

(3)

The above meta optimization could be achieved
by gradient descent, so the update rule for meta
parameters θ0 is as follows:

θ′0 = θ0 − β∇θ0LT (θk;Dtest
T ), (4)

where β is the meta learning rate. The gradient in
Equation 4 can be rewritten as:

∇θ0LT (θk;D
test
T )

= ∇θkLT (θk;D
test
T )×∇θk−1θk × · · ·∇θ0θ1

= ∇θkLT (θk;D
test
T )

k∏
j=1

(I − α∇2
θj−1

LT (θj−1;D
train
T,j ))

≈ ∇θkLT (θk;D
test
T ),

(5)

where the last step in Equation 5 adopts first-
order approximation for computational simplifica-
tion (Finn et al., 2017).

Specifically, the meta learning algorithm for pre-
training optimization is described in Algorithm 1.
It can be divided into two stages: i) meta train stage,
which updates task-specific parameters by k gradi-
ent descent steps over training data; ii) meta test
stage, which updates meta parameters by one gra-
dient descent step over test data. Hyper-parameter
k is the number of gradient descent steps in meta
train stage. The meta learning algorithm degrades
to normal gradient descent algorithm when k = 0.
The returned meta parameters θ0 are used as the
pre-trained model parameters for METASEG.

3.3 Downstream Fine-tuning
After pre-training phase mentioned in Section 3.2,
we obtain the pre-trained model parameters θ0,
which capture prior segmentation knowledge and
have less discrepancy with downstream CWS tasks.
We fine-tune these pre-trained parameters θ0 on
downstream CWS corpus, to transfer the prior seg-
mentation knowledge.

For format consistency, we process the sentence
from the given downstream corpus in the same
way as Section 3.2, by adding the criterion token
[unc], beginning token [CLS] and ending to-
ken beginning token [SEP]. The undefined cri-
terion token [unc] is used in fine-tuning phase
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Algorithm 1 Meta Learning for Pre-training Opti-
mization
Require: Distribution over pre-training task p(T ),

initial meta parameters θ0, objective function
L

Require: Learning rate α, meta learning rate β,
meta train steps k

1: for epoch = 1, 2, ... do
2: Sample k training data batches Dtrain

T from
p(T )

3: for j = 1, 2, ..., k do
4: θj ← θj−1 − α∇θj−1

LT (θj−1;D
train
T,j )

5: end for
6: Sample test data batch Dtest

T from p(T )
7: θ0 ← θ0 − β∇θkLT (θk;Dtest

T )
8: end for
9: return Meta parameters θ0

instead of the downstream criterion itself, because
the downstream criterion usually doesn’t exist in
pre-training phase and the pre-trained model has
no information about it.

4 Experiment

4.1 Experimental Settings
Datasets We collect twelve publicly available
CWS datasets, with each dataset representing
a unique segmentation criterion. Among all
datasets, we have PKU, MSRA, CITYU, AS
from SIGHAN2005 (Emerson, 2005), CKIP, NCC,
SXU from SIGHAN2008 (Jin and Chen, 2008),
CTB6 from Xue et al. (2005), WTB from Wang
et al. (2014), UD from Zeman et al. (2017), ZX
from Zhang et al. (2014) and CNC 1.

WTB, UD, ZX datasets are kept for downstream
fine-tuning phase, while the other nine datasets are
combined into the joint multi-criteria pre-training
corpus (Section 3.2), which amounts to nearly 18M
words.

For CTB6, WTB, UD, ZX and CNC datasets, we
use the official data split of training, development,
and test sets. For the rest, we use the official test set
and randomly pick 10% samples from the training
data as the development set. We pre-process all
these datasets following four procedures:

1. Convert traditional Chinese datasets into sim-
plified, such as CITYU, AS and CKIP;

2. Convert full-width tokens into half-width;
1http://corpus.zhonghuayuwen.org/

3. Replace continuous English letters and digits
with unique tokens;

4. Split sentences into shorter clauses by punctu-
ation.

Table 2 presents the statistics of processed datasets.

Hyper-Parameters We employ METASEG with
the same architecture as BERT-Base (Devlin et al.,
2019), which has 12 transformer layers, 768 hidden
sizes and 12 attention heads.

In pre-training phase, METASEG is initialized
with released parameters of Chinese BERT-Base
model 2 and then pre-trained with the multi-criteria
pre-training task. Maximum input length is 64,
with batch size 64, and dropout rate 0.1. We adopt
AdamW optimizer (Loshchilov and Hutter, 2019)
with β1 = 0.9, β2 = 0.999 and weight decay rate
of 0.01. The optimizer is implemented by meta
learning algorithm, where both learning rate α and
meta learning rate β are set to 2e-5 with a linear
warm-up proportion of 0.1. The meta train steps
are selected to k = 1 according to downstream
performance. Pre-training process runs for nearly
127,000 meta test steps, amounting to (k + 1) ∗
127, 000 gradient descent steps, which takes about
21 hours on one NVIDIA Tesla V100 32GB GPU
card.

In fine-tuning phase, we set maximum input
length to 64 for all criteria but 128 for WTB,
with batch size 64. We fine-tune METASEG with
AdamW optimizer of the same settings as pre-
training phase without meta learning. METASEG

is fine-tuned for 5 epochs on each downstream
dataset.

In low-resource settings, experiments are per-
formed on WTB dataset, with maximum input
length 128. We evaluate METASEG at sampling
rates of 1%, 5%, 10%, 20%, 50%, 80%. Batch
size is 1 for 1% sampling and 8 for the rest. We
keep other hyper-parameters the same as those of
fine-tuning phase.

The standard F1 score is used to evaluate the
performance of all models. We report F1 score
of each model on the test set according to its best
checkpoint on the development set as Qiu et al.
(2020).

2https://github.com/google-research/
bert

http://corpus.zhonghuayuwen.org/
https://github.com/google-research/bert
https://github.com/google-research/bert
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Corpus #Train Words #Dev Words #Test Words OOV Rate Avg. Length
PKU 999,823 110,124 104,372 3.30% 10.6
MSRA 2,133,674 234,717 106,873 2.11% 11.3
CITYU 1,308,774 146,856 40,936 6.36% 11.0
AS 4,902,887 546,694 122,610 3.75% 9.7
CKIP 649,215 72,334 90,678 7.12% 10.5
NCC 823,948 89,898 152,367 4.82% 10.0
SXU 475,489 52,749 113,527 4.81% 11.1
CTB6 678,811 51,229 52,861 5.17% 12.5
CNC 5,841,239 727,765 726,029 0.75% 9.8

WTB 14,774 1,843 1,860 15.05% 28.2
UD 98,607 12,663 12,012 11.04% 11.4
ZX 67,648 20,393 67,648 6.48% 8.2

Table 2: Statistics of datasets. The first block corresponds to the pre-training criteria. The second block corresponds
to downstream criteria, which are unseen in pre-training phase.

4.2 Overall Results
4.2.1 Results on Pre-training Criteria
After pre-training, we fine-tune METASEG on each
pre-training criterion. Table 3 shows F1 scores on
test sets of nine pre-training criteria in two blocks.
The first block displays the performance of previ-
ous works. The second block displays three models
implemented by us: BERT-Base is the fine-tuned
model initialized with official BERT-Base param-
eters. METASEG (w/o fine-tune) is our proposed
pre-trained model directly used for inference with-
out fine-tuning. METASEG is the fine-tuned model
initialized with pre-trained METASEG parameters.

From the second block, we observe that fine-
tuned METASEG could outperform fine-tuned
BERT-Base on each criterion, with 0.26% improve-
ment on average. It shows that METASEG is more
effective when fine-tuned for CWS. Even without
fine-tuning, METASEG (w/o fine-tune) still behaves
better than fine-tuned BERT-Base model, indicat-
ing that our proposed pre-training approach is the
key factor for the effectiveness of METASEG. Fine-
tuned METASEG performs better than that of no
fine-tuning, showing that downstream fine-tuning
is still necessary for the specific criterion. Fur-
thermore, METASEG can achieve state-of-the-art
results on eight of nine pre-training criteria, demon-
strating the effectiveness of our proposed methods.

4.2.2 Results on Downstream Criteria
To evaluate the knowledge transfer ability of
METASEG, we perform experiments on three un-
seen downstream criteria which are absent in pre-
training phase. Table 4 shows F1 scores on test
sets of three downstream criteria. The first block
displays previous works on these downstream cri-
teria, while the second block displays three models

implemented by us (see Section 4.2.1 for details).

Results show that METASEG outperforms the
previous best model by 0.56% on average, achiev-
ing new state-of-the-art performance on three
downstream criteria. Moreover, METASEG (w/o
fine-tune) actually preforms zero-shot inference on
downstream criteria and still achieves 87.28% av-
erage F1 score. This shows that METASEG does
learn some common prior segmentation knowledge
in pre-training phase, even if it doesn’t see these
downstream criteria before.

Compared with BERT-Base, METASEG has the
same architecture but different pre-training tasks.
It can be easily observed that METASEG with fine-
tuning outperforms BERT-Base by 0.46% on aver-
age. This indicates that METASEG could indeed
alleviate the discrepancy between pre-trained mod-
els and downstream CWS tasks than BERT-Base.

4.2.3 Ablation Studies

We perform further ablation studies on the ef-
fects of meta learning (ML) and multi-criteria pre-
training (MP), by removing them consecutively
from the complete METASEG model. After re-
moving both of them, METASEG degrades into the
normal BERT-Base model. F1 scores for ablation
studies on three downstream criteria are illustrated
in Table 5.

We observe that the average F1 score drops by
0.12% when removing the meta learning algorithm
(-ML), and continues to drop by 0.34% when re-
moving the multi-criteria pre-training task (-ML-
MP). It demonstrates that meta learning and multi-
criteria pre-training are both significant for the ef-
fectiveness of METASEG.
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Models PKU MSRA CITYU AS CKIP NCC SXU CTB6 CNC Avg.
Chen et al. (2017) 94.32 96.04 95.55 94.64 94.26 92.83 96.04 - - -
Ma et al. (2018) 96.10 97.40 97.20 96.20 - - - 96.70 - -
He et al. (2019) 95.78 97.35 95.60 95.47 95.73 94.34 96.49 - - -
Gong et al. (2019) 96.15 97.78 96.22 95.22 94.99 94.12 97.25 - - -
Yang et al. (2019) 95.80 97.80 - - - - - 96.10 - -
Meng et al. (2019) 96.70 98.30 97.90 96.70 - - - - - -
Yang (2019) 96.50 98.40 - - - - - - - -
Duan and Zhao (2020) 95.50 97.70 96.40 95.70 - - - - - -
Huang et al. (2020) 97.30 98.50 97.80 97.00 - - 97.50 97.80 97.30 -
Qiu et al. (2020) 96.41 98.05 96.91 96.44 96.51 96.04 97.61 - - -
Tian et al. (2020) 96.53 98.40 97.93 96.62 - - - 97.25 - -

BERT-Base (ours) 96.72 98.25 98.19 96.93 96.49 96.13 97.61 97.85 97.45 97.29
METASEG (w/o fine-tune) 96.76 98.02 98.12 97.04 96.81 97.21 97.51 97.87 97.25 97.40
METASEG 96.92 98.50 98.20 97.01 96.72 97.24 97.88 97.89 97.55 97.55

Table 3: F1 scores on test sets of pre-training criteria. The first block displays results from previous works. The
second block displays three models implemented by us.

Models WTB UD ZX Avg.
Ma et al. (2018) - 96.90 - -
Huang et al. (2020) 93.20 97.80 97.10 96.03

BERT-Base (ours) 93.00 98.32 97.06 96.13
METASEG
(w/o fine-tune) 89.53 83.84 88.48 87.28

METASEG 93.97 98.57 97.22 96.59

Table 4: F1 scores on test sets of downstream criteria.

Models WTB UD ZX Avg.
METASEG 93.97 98.57 97.22 96.59
-ML 93.71 98.49 97.22 96.47
-ML-MP 93.00 98.32 97.06 96.13

Table 5: F1 scores for ablation studies on downstream
criteria. -ML indicates METASEG without meta learn-
ing. -ML-MP indicates METASEG without meta learn-
ing and multi-criteria pre-training.

4.3 Discussion

4.3.1 Low-Resource Settings

To better explore the downstream generalization
ability of METASEG, we perform experiments on
the downstream WTB criterion in low-resource
settings. Specifically, we randomly sample a given
rate of instances from the training set and fine-
tune the pre-trained METASEG model on down-
sampling training sets. These settings imitate the
realistic low-resource circumstance where human-
annotated data is insufficient.

The performance at different sampling rates is
evaluated on the same WTB test set and reported in
Table 6. Results show that METASEG outperforms
BERT-Base at every sampling rate. The margin is
larger when the sampling rate is lower, and reaches

6.20% at 1% sampling rate. This demonstrates that
METASEG could generalize better on the down-
stream criterion in low-resource settings.

When the sampling rate drops from 100% to 1%,
F1 score of BERT-Base decreases by 7.60% while
that of METASEG only decreases by 2.37%. The
performance of METASEG at 1% sampling rate still
reaches 91.60% with only 8 instances, comparable
with performance of BERT-Base at 20% sampling
rate. This indicates that METASEG can make bet-
ter use of prior segmentation knowledge and learn
from less amount of data. It shows that METASEG

would reduce the need of human annotation signifi-
cantly.

4.3.2 Out-of-Vocabulary Words
Out-of-Vocabulary (OOV) words denote the words
which exist in inference phase but don’t exist in
training phase. OOV words are a critical cause of
errors on CWS tasks. We evaluate recalls for OOV
words on test sets of all twelve criteria in Table 7.

Results show that METASEG outperforms BERT-
Base on ten of twelve criteria and improves re-
calls for OOV words by 0.99% on average. This
indicates that METASEG could benefit from our
proposed pre-training methodology and recognize
more OOV words in inference phase.

4.3.3 Non-Pretraining Setup
To investigate the contribution of multi-criteria pre-
training towards performance of METASEG, we
perform experiments on a non-pretraining baseline
Transformer. Transformer has the same architec-
ture and is directly trained from scratch on the same
nine datasets (Section 4.2.1), but doesn’t have any
pre-training phase as METASEG. Comparison of
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Sampling Rates 1% 5% 10% 20% 50% 80% 100%

#Instances 8 40 81 162 406 650 813

BERT-Base (ours) 85.40 87.83 90.46 91.15 92.80 93.14 93.00
METASEG 91.60 92.29 92.54 92.63 93.45 94.11 93.97

Table 6: F1 scores on WTB test set in low-resource settings.

Models PKU MSRA CITYU AS CKIP NCC SXU CTB6 CNC WTB UD ZX Avg.
BERT-Base 80.15 81.03 90.62 79.60 84.48 79.64 84.75 89.10 61.18 83.57 93.36 87.69 82.93
METASEG 80.90 83.03 90.66 80.89 84.42 84.14 85.98 89.21 61.90 85.00 93.59 87.33 83.92

Table 7: Recalls for OOV words on test sets of all twelve criteria.

F1 scores between Transformer and METASEG is
displayed in Table 8.

Results show that METASEG outperforms the
non-pretraining Transformer on each criterion and
achieves a 2.40% gain on average, even with the
same datasets and architecture. It demonstrates that
multi-criteria pre-training is vital for the effective-
ness of METASEG and the performance gain is not
merely from the large dataset size.

Moreover, METASEG has the generalization abil-
ity to transfer prior knowledge to downstream un-
seen criteria, which could not be achieved by the
non-pretraining counterpart Transformer.

4.3.4 Visualization

To visualize the discrepancy between pre-trained
models and downstream criteria, we plot similari-
ties of three downstream criteria with METASEG

and BERT.
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BERT
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Figure 3: Cosine similarities between three down-
stream criteria and two pre-trained models. The dashed
line indicates the positions where one criterion has
equal similarities with two pre-trained models.

Specifically, we extract the criterion token em-
beddings of three downstream criteria WTB, UD
and ZX. We also extract the undefined criterion

token embeddings of METASEG and BERT as rep-
resentations of these two pre-trained models. We
compute cosine similarities between three crite-
ria embeddings and two pre-trained model embed-
dings, and illustrate them in Figure 3.

We can observe that similarities of all three
downstream criteria lie above the dashed line, indi-
cating that all three downstream criteria are more
similar to METASEG than BERT. The closer one
criterion is to the upper left corner, the more similar
it is to METASEG. Therefore, we can conclude that
WTB is the most similar criterion to METASEG

among all these criteria, which qualitatively cor-
responds to the phenomenon that WTB criterion
has the largest performance gain in Table 4. The
above visualization results show that our proposed
approach could solidly alleviate the discrepancy
between pre-trained models and downstream CWS
tasks. Thus METASEG is more similar to down-
stream criteria.

5 Conclusion

In this paper, we propose a CWS-specific pre-
trained model METASEG, which employs a unified
architecture and incorporates meta learning algo-
rithm into a multi-criteria pre-training task. Experi-
ments show that METASEG could make good use
of common prior segmentation knowledge from
different existing criteria, and alleviate the discrep-
ancy between pre-trained models and downstream
CWS tasks. METASEG also gives better generaliza-
tion ability in low-resource settings, and achieves
new state-of-the-art performance on twelve CWS
datasets.

Since the discrepancy between pre-training tasks
and downstream tasks also exists in other NLP
tasks and other languages, in the future we will
explore whether the approach of pre-training with
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Models PKU MSRA CITYU AS CKIP NCC SXU CTB6 CNC Avg.
Transformer 95.33 94.79 95.36 95.22 95.17 93.90 95.66 96.45 94.51 95.15
METASEG 96.92 98.50 98.20 97.01 96.72 97.24 97.88 97.89 97.55 97.55

Table 8: Comparison of F1 scores on test sets of nine criteria between non-pretraining baseline Transformer and
METASEG.

meta-learning in this paper could be applied to
other tasks and languages apart from Chinese word
segmentation.
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