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Abstract

Recent advances in open-domain QA have led
to strong models based on dense retrieval, but
only focused on retrieving textual passages. In
this work, we tackle open-domain QA over ta-
bles for the first time, and show that retrieval
can be improved by a retriever designed to
handle tabular context. We present an effec-
tive pre-training procedure for our retriever
and improve retrieval quality with mined hard
negatives. As relevant datasets are missing,
we extract a subset of NATURAL QUESTIONS
(Kwiatkowski et al., 2019) into a Table QA
dataset. We find that our retriever improves re-
trieval results from 72.0 to 81.1 recall@10 and
end-to-end QA results from 33.8 to 37.7 exact
match, over a BERT based retriever.

1 Introduction

Models for question answering (QA) over tables
usually assume that the relevant table is given dur-
ing test time. This applies for semantic parsing
(e.g., for models trained on SPIDER (Yu et al.,
2018)) and for end-to-end QA (Neelakantan et al.,
2016; Herzig et al., 2020). While this assumption
simplifies the QA model, it is not realistic for many
use-cases where the question is asked through some
open-domain natural language interface, such as
web search or a virtual assistant.

In these open-domain settings, the user has some
information need, and the corresponding answer re-
sides in some table in a large corpus of tables. The
QA model then needs to utilize the corpus as an in-
formation source, efficiently search for the relevant
table within, parse it, and extract the answer.

Recently, much work has explored open-domain
QA over a corpus of textual passages (Chen et al.,
2017; Sun et al., 2018; Yang et al., 2019; Lee et al.,
2019, inter alia). These approaches usually follow
a two-stage framework: (1) a retriever first selects
a small subset of candidate passages relevant to the

∗Work completed while interning at Google.

Sread(“Chlorine”)

Sread(...)

Sread(“Latin”)

which element is named for the greek word for green?

TAPASq(q)

List of chemical element name 
etymologies

Element Origin Meaning ...
Fluorine Latin a flowing ...
Chlorine Greek pale green ...

... ... ... ...

TAPAST(h2,T2)

Sret(q,T1)

...

Flame test

TAPAST(h1,T1)

Symbol Name Color ...
Cu Copper green ...
Ra Radium crimson ...
... ... ... ...

List of chemical element name 
etymologies

Element Origin Meaning ...
Fluorine Latin a flowing ...
Chlorine Greek pale green ...

... ... ... ...

TAPASr(q,h1,T1)

Sret(q,T2)

Top K

Which element 
is named for the 
greek word for 
green?

Sret(q,...)

Figure 1: An overview of our approach. A dense table
retriever scores the question against all tables and out-
puts the top K tables (K = 1 in this example), and a
reader selects the answer out of the top K tables.

question, and then (2) a machine reader examines
the retrieved passages and selects the correct an-
swer. While these approaches work well on free
text, it is not clear whether they can be directly
applied to tables, as tables are semi-structured, and
thus different than free text.

In this paper we describe the first study to tackle
open-domain QA over tables, and focus on modify-
ing the retriever. We follow the two-step approach
of a retriever model that retrieves a small set of
candidate tables from a corpus, followed by a QA
model (Figure 1). Specifically, we utilize dense re-
trieval approaches targeted for retrieving passages
(Lee et al., 2019; Guu et al., 2020; Karpukhin et al.,
2020), and modify the retriever to better handle
tabular contexts. We present a simple and effective
pre-training procedure for our retriever, and further
improve its performance by mining hard negatives
using the retriever model. Finally, as relevant open
domain datasets are missing, we process NATU-
RAL QUESTIONS (Kwiatkowski et al., 2019) and
extract 11K examples where the answer resides in
some table. Our model and data generation code
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as well as the pre-trained model are publicly avail-
able at https://github.com/google-research/
tapas.

2 Setup

We formally define open domain extractive QA
over tables as follows. We are given a training set
of N examples Dtrain = {(qi, Ti, ai)}Ni=1, where
qi is a question, Ti is a table where the answer ai
resides, and a corpus of M tables C = {Ti}Mi=1.
The answer ai is comprised of one or more spans
of tokens in Ti. Our goal is to learn a model that
given a new question q and the corpus C returns the
correct answer a.

Our task shares similarities with open domain
QA over documents (Chen et al., 2017; Yang et al.,
2019; Lee et al., 2019), where the corpus C con-
sists of textual passages extracted from documents
instead of tables, and the answer is a span that ap-
pears in some passage in the corpus. As in these
works, dealing with a large corpus (of tables in our
setting), requires relevant context retrieval. Naively
applying a QA model, for example TAPAS (Herzig
et al., 2020), over each table in the large corpus is
not practical because inference is too expensive.

To this end we break our system into two in-
dependent steps. First, an efficient table retriever
component selects a small set of candidate tables
CR from a large corpus of tables C. Second, we
apply a QA model to extract the answer a given the
question q and the candidate tables CR.

3 Dense Table Retrieval

In this section we describe our dense table retriever
(DTR), which retrieves a small set of K candidate
tables CR given a question q and a corpus C. In this
work we set K = 10 and take C to be the set of all
tables in the dataset we experiment with (see §6).

As in recent work for open domain QA on pas-
sages (Lee et al., 2019; Guu et al., 2020; Karpukhin
et al., 2020; Chen et al., 2021; Oguz et al., 2020),
we also follow a dense retrieval architecture. As ta-
bles that contain the answer to q do not necessarily
include tokens from q, a dense encoding can better
capture similarities between table contents and a
question.

For training DTR, we leverage both in-domain
training data Dtrain, and automatically constructed
pre-training dataDpt of text-table pairs (see below).

Retrieval Model In this work we focus on learn-
ing a retriever that can represent tables in a mean-

ingful way, by capturing their specific structure.
Traditional information retrieval methods such as
BM25 are targeted to capture token overlaps be-
tween a query and a textual document, and other
dense encoders are pre-trained language models
(such as BERT) targeted for text representations.

Recently, Herzig et al. (2020) proposed TAPAS,
an encoder based on BERT, designed to contex-
tually represent text and a table jointly. TAPAS
includes table specific embeddings that capture its
structure, such as row and column ids. In DTR, we
use TAPAS to represent both the query q and the
table T . For efficient retrieval during inference we
use two different TAPAS instances (for q and for
T ), and learn a similarity metric between them as
Lee et al. (2019); Karpukhin et al. (2020).

More concretely, the TAPAS encoder
TAPAS(x1, [x2]) takes one or two inputs as
arguments, where x1 is a string and x2 is a
flattened table. We then define the retrieval score
as the inner product of dense vector representations
of the question q and the table T :

hq = WqTAPASq(q)[CLS]

hT = WTTAPAST(title(T ), T )[CLS]

Sret(q, T ) = hTq hT ,

where TAPAS(·)[CLS] returns the hidden state
for the CLS token, Wq and WT are matrices that
project the TAPAS output into d = 256 dimen-
sional vectors, and title(T ) is the page title for
table T . We found the table’s page title to assist in
retrieving relevant tables, which is also useful for
Wikipedia passage retrieval (Lee et al., 2019).

Training The goal of the retriever is to create a
vector space such that relevant pairs of questions
and tables will have smaller distance (which results
in a large dot product) than the irrelevant pairs,
by learning an embedding. To increase the like-
lihood of gold (q, T ) pairs, we train the retriever
with in-batch negatives (Gillick et al., 2019; Hen-
derson et al., 2017; Karpukhin et al., 2020). Let
{(qi, Ti)}Bi=1 be a batch of B examples from Dtrain,
where for each qi, Ti is the gold table to retrieve,
and for each j 6= i we treat Tj as a negative. We
now define the likelihood of the gold table Ti as:

p(Ti|qi) =
exp[Sret(qi, Ti)]∑B
j=1 exp[Sret(qi, Tj)]

.

To train the model efficiently, we define Q and T
to be a B×d matrix that hold the representations for

https://github.com/google-research/tapas
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questions and tables respectively. Then, S = QTT

gives an B × B matrix where the logits from the
gold table are on the diagonal. We then train using
a row-wise cross entropy loss where the labels are
a B ×B identity matrix.

Pre-training One could train our retriever from
scratch, solely relying on a sufficiently large in-
domain training dataset Dtrain. However, we find
performance to improve after using a simple pre-
training method for our retriever. Lee et al. (2019)
suggest to pre-train a textual dense retriever using
an Inverse Cloze Task (ICT). In ICT, the goal is to
predict a context given a sentence s. The context
is a passage that originally contains s, but with s
masked. The motivation is that the relevant context
should be semantically similar to s, and should
contain information missing from s.

Similarly, we posit that a table T that appears
in close proximity to some text span s is more
relevant to s than a random table. To construct
a set Dpt = {(si, Ti)}Mi=1 that consists of M pre-
training pairs (s, T ), we use the pre-training data
from Herzig et al. (2020). They extracted text-
table pairs from 6.2M Wikipedia tables, where text
spans were sampled from the table caption, page
title, page description, segment title and text of the
segment the table occurs in. This resulted in a total
of 21.3M text-table (s, T ) pairs. While Herzig
et al. (2020) uses extracted (s, T ) pairs for pre-
training TAPAS with a masked language modeling
objective, we pre-train DTR from these pairs, with
the same objective used for in-domain data.

Hard Negatives Following similar work (Gillick
et al., 2019; Karpukhin et al., 2020; Xiong et al.,
2021), we use an initial retrieval model to extract
the most similar tables from C for each question
in the training set. From this list we discard each
table that does contain the reference answer to re-
move false negatives. We use the highest scoring
remaining table as a particular hard negative.

Given the new triplets of question, reference ta-
ble and mined negative table, we train a new model
using a modified version of the in-batch negative
training discussed above. Given Q and S as defined
above and a new matrix N (B × d) that holds the
representations of the negative tables, S′ = QNT

gives another B × B matrix that we want to be
small in value (possibly negative). If we concate-
nate S and S′ row-wise we get a new matrix for
which we can perform the same cross entropy train-

ing as before. The label matrix is now obtained by
concatenating an identity matrix row-wise with a
zero matrix.

Inference During inference time, we apply the
table encoder TAPAST to all the tables T ∈ C
offline. Given a test question q, we derive its rep-
resentation hq and retrieve the top K tables with
representations closest to hq.

In our experiments, we use exhaustive search to
find the top K tables, but to scale to large corpora,
fast maximum inner product search using existing
tools such as FAISS (Johnson et al., 2019) and
SCANN (Guo et al., 2020) could be used, instead.

4 Question Answering over Tables

A reader model is used to extract the answer a given
the question q and K candidate tables. The model
scores each candidate and at the same time extracts
a suitable answer span from the table. Each table
and question are jointly encoded using a TAPAS
model. The score is a simple logistic loss based on
the CLS token, as in Eisenschlos et al. (2020).

The answer span extraction is modeled as a soft-
max over all possible spans up to a certain length.
Spans that are located outside of a table cell or that
cross a cell are masked. Following Lee et al. (2017,
2019), the span representation is the concatenation
of the contextual representation of the first and last
token in the span s:

hstart = TAPASr(q,title(T ), T )[START(s)]

hend = TAPASr(q,title(T ), T )[END(s)]

Sread(q, T ) = MLP([hstart, hend]).

The training and test data are created by running
a retrieval model. We extract the K = 10 highest
scoring candidate tables for each question. At train-
ing time we add the reference table if it is missing
from the candidates.

At inference time all table candidates are pro-
cessed and the answer of the candidate with the
highest score is returned as the predicted answer.

5 Dataset

We create a new English dataset called
NQ-TABLES from NATURAL QUESTIONS

(Kwiatkowski et al., 2019) (NQ). Concurrently
with this work, Zayats et al. (2021) study a similar
subset of NQ but without the retrieval aspect.

NQ was designed for question answering over
Wikipedia articles. The 320K questions are mined
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Model R@1 R@10 R@50

BM25 16.77 40.06 58.39
DTR-Text 32.90 72.00 86.86
DTR-Schema 34.36 74.24 88.37

DTR 36.24 76.02 90.25
DTR +hnbm25 42.17 80.51 92.31
DTR +hn 42.42 81.13 92.56

DTR -pt 16.64 47.80 68.68

Table 1: Table retrieval results on NQ-TABLES test set.
hn: hard negatives from DTR, hnbm25: hard negatives
from BM25 baseline, pt: pre-training. DTR numbers
are means over 5 random runs.

from real Google search queries and the answers
are spans in Wikipedia articles identified by anno-
tators. Although the answers for most questions
appear in textual passages, we identified 12K exam-
ples where the answer resides in a table, and can be
used as a QA over tables example. To this end, we
form NQ-TABLES that consists of (q, T, a) triplets
from these examples. Tables are extracted from the
article’s HTML, and are normalized by transposing
infobox tables.

We randomly split the original NQ train set into
train and dev (based on a hash of the page title) and
use all questions from the original NQ dev set as
our test set. To construct the corpus C, we extract
all tables that appear in articles in all NQ sets.

NQ can contain the same Wikipedia page in dif-
ferent versions which leads to many almost iden-
tical tables. We merge close duplicates using the
following procedure. For all tables that occur on
the same Wikipedia page we flatten the entire table
content, tokenize it and compute l2 normalized uni-
gram vectors of the token counts of each table. We
then compute the pair-wise cosine similarity of all
tables. We iterate over the table pairs in decreasing
order of similarity and attempt to merge them into
clusters. This is essentially a version of single link
clustering. In particular, we will merge two tables
if the similarity is > 0.91, they do not occur on
the same version of the page, their difference is
rows is at most 2 and they have the same number
of columns.

Dataset sizes are given in the following table:

train dev test corpus C
9,594 1,068 966 169,898

Retriever Reader EM F1 Oracle EM Oracle F1

BM25 TAPAS 21.46 28.24 29.51 40.79
DTR-Text BERT 29.58 37.38 39.39 51.48
DTR-Text TAPAS 33.78 43.49 42.83 56.46
DTR-Schema TAPAS 32.75 42.19 42.63 55.05

DTR TAPAS 35.50 45.44 46.09 59.01
DTR +hnbm25 TAPAS 36.61 46.74 47.46 60.72
DTR +hn TAPAS 37.69 47.70 48.20 61.50

Table 2: QA results on NQ-TABLES test set. Numbers
are means over 5 random runs.

6 Experiments

Details about the experimental setup are given Ap-
pendix A.

Retrieval Baselines We consider the following
baselines as alternatives to DTR. We use the BM25
(Robertson and Zaragoza, 2009) implementation of
Gensim (Řehůřek and Sojka, 2010)1. To measure if
a table-specific encoder is necessary, we implement
DTR-TEXT, where the retriever is initialized from
BERT (Devlin et al., 2019) instead of TAPAS. To
test whether the content of the table is relevant, we
experiment with DTR-SCHEMA, where only the
headers and title are used to represent tables.

Retrieval Results Table 1 shows the test results
for table retrieval (dev results are in Appendix B).
We report recall at K (R@K) metrics as the fraction
of questions for which the highest scoring K tables
contain the reference table.

We find that all dense models that have been pre-
trained out-peform the BM25 baseline by a large
margin. The model that uses the TAPAS table em-
beddings (DTR) out-performs the dense baselines
by more than 1 point in R@10. The addition of
mined negatives (DTR +hn) yields an additional
improvement of more than 5 points. Mining nega-
tives from DTR works better than mining negatives
from BM25 (DTR +hnbm25, +0.6 R@10).

End-to-End QA Results for end-to-end QA ex-
periments are shown in Table 2 (dev results are in
Appendix B). We use the exact match (EM) and
token F1 metrics as implemented in SQUAD (Ra-
jpurkar et al., 2016).2 We additionally report oracle

1We find that recall improves if the document title and table
header tokens are counted multiple times. In all experiments
we use a count of 15.

2https://worksheets.
codalab.org/rest/bundles/
0x6b567e1cf2e041ec80d7098f031c5c9e/
contents/blob/

https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/
https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/
https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/
https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/
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metrics which are computed on the best answer
returned for any of the candidates.

We again find that all dense models out-perform
the BM25 baseline. A TAPAS-based reader out-
performs a BERT reader by more than 3 points
in EM. The simple DTR model out-performs the
baselines by more than 1 point in EM. Hard nega-
tives from BM25 (+hnbm25) improve DTR’s per-
formance by 1 point, while hard negatives from
DTR (+hn) improve performance by 2 points. We
additionally perform a McNemar’s significance test
for our proposed model, DTR+hn, and find that it
performs significantly better (p<0.05) than all base-
lines.

Analysis Analyzing the best model in Table 2
(DTR +hn) on the dev set, we find that 29% of the
questions are answered correctly, 14% require a list
answer (which is out of scope for this paper), 12%
do not have any table candidate that contains the
answer, for 11% the model does not select a table
that contains the answer, and for 34% the reader
fails to extract the correct span.

We further analyzed the last category by man-
ually annotating 100 random examples. We find
that for 23 examples the answer is partially correct
(usually caused by inconsistent span annotations
in NQ). For 11 examples the answer is ambigu-
ous (e.g., the release date of a movie released in
different regions). For 22 examples the table is
missing context or does only contain the answer ac-
cidentally. Finally, 44 examples are wrong, usually
because they require some kind of table reasoning,
like computing the maximum over a column, or
using common sense knowledge.

7 Conclusion

In this paper we demonstrated that a retriever de-
signed to handle tabular context can outperform
other textual retrievers for open-domain QA on ta-
bles. We additionally showed that our retriever can
be effectively pre-trained and improved by hard
negatives. In future work we aim to tackle multi-
modal open-domain QA, combining passages and
tables as context.
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A Experimental Setup

The DTR model uses a batch size of 256. We
pre-trained the question and table encoders for
1M steps, and fine-tuned them for a maximum of
200,000 steps, with a learning rate of 1.25e-5 us-
ing Adam and linear scheduling with warm-up and
dropout rate 0.2. The hyper-parameter values were
selected based on the values used by Herzig et al.
(2020) on the SQA dataset. We evaluate DTR per-
formance using recall@k, and do early stopping
according to recall@10 on the dev set. We use only
the tables that appear in the dev set as the corpus
for the early stopping for efficiency.

For the QA reader, we initialize the model from
the public TAPAS checkpoint. We use a batch
size of 512, train for 50,000 steps with a learning
rate of 1e-6, and dropout rate 0.2. In this setup
we do not use early stopping but always train the
model for the full number of steps. We limit the
maximal answer length to 10 word pieces. The
hyper-parameters of the QA model were optimized
using a black box Bayesian optimizer similar to
Google Vizier (Golovin et al., 2017). We used the
hyper-parameter bounds given in Table 3.

parameter min max

learning rate 1e−6 1e−2
warm up ratio 0.0 0.2

dropout 0.0 0.2

Table 3: Hyper-parameter ranges for tuning the QA
model.

We trained all models on 32 Cloud TPU v3.
Pre-Training a retrieval model takes approx. 6
days. Training a retrieval model takes approx. 4-5h.
Training a QA model takes approx. 10h.

The number of parameters is the same as for a
BERT large model: 340M.

B Results

Dev and test results for the retrieval experiments
are given in Table 4. Dev and test results for end-
to-end QA are given in the appendix in Table 5.



519

Dev Test
Model R@1 R@10 R@50 R@1 R@10 R@50

BM25 17.13 42.13 57.21 16.77 40.06 58.39
DTR-Text 28.68 ± 0.37 67.76 ± 0.56 85.75 ± 0.84 32.90 ± 0.57 72.00 ± 2.14 86.86 ± 1.25
DTR-Schema 29.38 ± 2.11 67.67 ± 0.28 85.29 ± 0.19 34.36 ± 1.09 74.24 ± 1.46 88.37 ± 0.47
DTR-Text +hnbm25 35.30 ± 2.05 74.10 ± 1.50 87.85 ± 0.23 40.88 ± 0.66 78.10 ± 0.74 91.48 ± 0.21

DTR 31.58 ± 0.09 71.79 ± 0.00 88.38 ± 0.37 36.24 ± 0.57 76.02 ± 0.10 90.25 ± 0.89
DTR +hnbm25 37.86 ± 1.77 75.65 ± 0.72 89.58 ± 0.39 42.17 ± 2.91 80.51 ± 0.66 92.31 ± 0.70
DTR +hn 39.14 ± 0.98 76.13 ± 1.30 89.91 ± 0.35 42.42 ± 2.94 81.13 ± 1.61 92.56 ± 0.96

DTR -pt 9.05 ± 1.08 35.73 ± 2.21 60.34 ± 3.20 16.64 ± 1.49 47.80 ± 1.42 68.68 ± 0.91

Table 4: Table retrieval results on NQ-TABLES dev and test sets. hn: hard negatives, hnbm25: hard negatives
from BM25 baseline, pt: pre-training.

Dev Test
Retriever Reader EM F1 Oracle EM Oracle F1 EM F1 Oracle EM Oracle F1

BM25 TAPAS 18.76 ± 0.80 26.32 ± 1.23 25.57 ± 0.77 37.45 ± 0.81 21.46 ± 0.71 28.24 ± 0.78 29.51 ± 0.49 40.79 ± 0.43
DTR-Text Bert 21.11 ± 1.09 29.17 ± 1.11 30.74 ± 1.07 42.82 ± 0.80 29.58 ± 0.85 37.38 ± 0.87 39.39 ± 0.31 51.48 ± 0.30
DTR-Text TAPAS 27.67 ± 1.30 37.13 ± 1.74 36.44 ± 1.35 49.17 ± 1.66 33.78 ± 1.12 43.49 ± 1.23 42.83 ± 0.74 56.46 ± 0.55
DTR-Text +hnbm25 TAPAS 27.84 ± 0.95 38.00 ± 1.14 38.97 ± 0.81 52.38 ± 0.97 36.89 ± 0.77 46.67 ± 0.98 46.30 ± 0.65 59.22 ± 0.84
DTR-Schema TAPAS 27.12 ± 1.04 36.14 ± 1.17 36.19 ± 0.93 48.81 ± 1.29 32.75 ± 0.36 42.19 ± 0.21 42.63 ± 0.68 55.05 ± 0.59

DTR TAPAS 27.84 ± 1.62 37.77 ± 1.86 38.43 ± 0.75 51.26 ± 0.69 35.50 ± 0.45 45.44 ± 0.53 46.09 ± 0.47 59.01 ± 0.30
DTR +hn TAPAS 28.67 ± 0.57 39.14 ± 0.46 39.38 ± 0.69 53.08 ± 0.43 37.69 ± 0.87 47.70 ± 1.05 48.20 ± 0.53 61.50 ± 0.34
DTR +hn c=1 TAPAS 23.50 ± 0.12 33.44 ± 0.30 23.50 ± 0.12 33.44 ± 0.30 31.12 ± 0.31 39.44 ± 0.20 31.12 ± 0.31 39.44 ± 0.20
DTR +hn c=50 TAPAS 23.97 ± 2.22 33.72 ± 2.81 42.11 ± 1.95 58.02 ± 2.08 30.73 ± 2.79 40.77 ± 3.26 47.26 ± 1.33 63.04 ± 1.51
DTR +hnbm25 TAPAS 27.67 ± 0.63 37.77 ± 0.93 40.26 ± 0.94 53.77 ± 0.80 36.61 ± 0.76 46.74 ± 0.82 47.46 ± 0.83 60.72 ± 0.91

Table 5: QA results on NQ-TABLES dev and test set. c: Number of candidates (default is 10), hn: With hard
negatives, hnbm25: with hard negatives from BM25.


