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Abstract

Unsupervised pre-training has led to much re-
cent progress in natural language understand-
ing. In this paper, we study self-training as an-
other way to leverage unlabeled data through
semi-supervised learning. To obtain addi-
tional data for a specific task, we introduce
SentAugment, a data augmentation method
which computes task-specific query embed-
dings from labeled data to retrieve sentences
from a bank of billions of unlabeled sentences
crawled from the web. Unlike previous semi-
supervised methods, our approach does not re-
quire in-domain unlabeled data and is there-
fore more generally applicable. Experiments
show that self-training is complementary to
strong RoBERTa baselines on a variety of
tasks. Our augmentation approach leads to
scalable and effective self-training with im-
provements of up to 2.6% on standard text
classification benchmarks. Finally, we also
show strong gains on knowledge-distillation
and few-shot learning.

1 Introduction

Self-training is a semi-supervised method which
uses a teacher model, trained using labeled data,
to create synthetic labels for unlabeled exam-
ples (Scudder, 1965; Yarowsky, 1995). These syn-
thetic labels are then used to train a student model.
This approach is called self-training when the stu-
dent model has a similar or higher capacity than the
teacher, and knowledge distillation (Hinton et al.,
2015) when the student model is smaller than the
teacher. Self-training has been successfully ap-
plied to a variety of tasks, including image recog-
nition (Yalniz et al., 2019; Xie et al., 2020; Zoph
et al., 2020), automatic speech recognition (Syn-
naeve et al., 2019; Kahn et al., 2020; Park et al.,
2020), sequence generation (He et al., 2019), and
parsing (McClosky et al., 2006).

∗Equal contribution.

An alternative semi-supervised technique is pre-
training (Dai and Le, 2015; Radford et al., 2018;
Howard and Ruder, 2018; Devlin et al., 2018),
which has led to large improvements for natural
language understanding compared to purely super-
vised learning. In that case, models are first trained
on an auxiliary task, such as language modeling,
followed by fine-tuning on the task of interest.

A natural question is the following: do pre-
training and self-training capture the same infor-
mation, or are they complementary? Recently,
Zoph et al. (2020) studied this question in the
context of image recognition, showing that self-
training was helpful, even in addition to pre-
training. However, their study mostly considers su-
pervised pre-training, in which models were trained
on ImageNet classification. Moreover, in cases
where large amounts of supervised data were avail-
able for the downstream task, pre-training was not
helpful, even without self-training. This is in con-
trast to natural language understanding for which
language modeling pre-training is a very strong
baseline that leads to large improvements for all
the tasks we consider.

An important ingredient for self-training, and
semi-supervised learning in general, is the unan-
notated data and the fact that it comes from the
same domain as the downstream task. Exist-
ing work, such as UDA (Xie et al., 2019), self-
training (He et al., 2019; Xie et al., 2020) and
back-translation for machine translation (Bojar and
Tamchyna, 2011; Sennrich et al., 2015; Edunov
et al., 2018), assumes the existence of unannotated
data in the same domain as the downstream task.
This assumption limits the broad application of
such semi-supervised methods, in particular in the
case of low-resource downstream tasks. A sec-
ond important question is thus: how can we obtain
large amounts of unannotated data from specific
domains?

In this paper, we propose a data augmentation
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method, SentAugment, to build datasets of “in-
domain” data for a given task from data crawled
on the web. Web data covers many domains, and
is available in large quantities. We use a large
bank of web documents and construct sentence em-
beddings (Kiros et al., 2015; Wieting et al., 2016;
Conneau et al., 2017; Artetxe and Schwenk, 2019;
Cer et al., 2018; Arora et al., 2017) that allow us
to retrieve domain-specific unannotated sentences,
which are similar to the existing training set of the
downstream tasks. Our sentence embedding model
is optimized for similarity search, trained with a
triplet loss on ground-truth paraphrases, parallel
sentences as well as as hard negatives (Wieting
et al., 2016; Wieting and Gimpel, 2017). We train a
teacher model using the labeled task data and then
further use it to synthetically label the retrieved
sentences, and train the final model based on this
synthetic dataset. Experiments show that SentAug-
ment is effective for self-training, knowledge dis-
tillation and few-shot learning. The approach is
generally applicable to new problems, leading to
improvements on a variety of domains and tasks
such as hate-speech and movie review classification
over a strong RoBERTa (Devlin et al., 2018; Liu
et al., 2019) baseline. To the best of our knowledge,
this is the first study showing that self-training is
complementary to a strong pre-training baseline for
natural language understanding. Specifically, we
make the following contributions:

• We introduce SentAugment, a data augmen-
tation approach for semi-supervised learn-
ing that retrieves task-specific in-domain data
from a large bank of web sentences.

• We show that self-training improves upon
unsupervised pretraining: we improve
RoBERTa-Large by 1.2% accuracy on average
on six standard classification benchmarks.

• We show that self-training improves accuracy
by 3.5% on average for few-shot learning.

• For knowledge-distillation, our approach im-
proves the distilled RoBERTa-Large by 2.9%
accuracy on average, reducing the gap be-
tween the teacher and the student model.

• We release code and models for researchers
to build on top of our work.1

1https://github.com/facebookresearch/SentAugment

2 Approach

Our SentAugment approach retrieves task-specific
in-domain unsupervised data from a large bank of
sentences which is used for self-training, where the
teacher model - a RoBERTa-Large model finetuned
on the downstream task - synthetically labels it.
The synthetic labeled data is finally used to train
the output student model (see Figure 1). We give
more details on our approach in what follows.

2.1 SentAugment: data augmentation for
semi-supervised learning

Whereas most semi-supervised approaches rely on
in-domain unlabeled data, we are constructing sim-
ilar datasets on the fly from the large bank of unan-
notated text. In what follows, we describe our data
retrieval strategy for augmentation.

Large-scale sentence bank. Our approach relies
on a large-scale corpus of unsupervised sentences,
derived from data crawled on the web (Wenzek
et al., 2019). Because of its scale and diversity,
our sentence bank contains data from various do-
mains and with different styles, allowing to re-
trieve relevant data for many downstream tasks.
We embed each sentence using a universal para-
phrastic sentence encoder (Wieting et al., 2016;
Arora et al., 2017; Ethayarajh, 2018a), a model
which was trained to output similar representations
for sentences of similar meaning. This sentence
embedding space does not depend on the down-
stream tasks, and will be used to retrieve subsets
of the sentence bank which are relevant to partic-
ular tasks. For sentence encoders, we consider
word2vec embeddings (Mikolov et al., 2013, 2018)
and uSIF (Ethayarajh, 2018b). We also train our
own English sentence encoder, a Transformer pre-
trained with masked language modeling and fine-
tuned to maximize cosine similarity between simi-
lar sentences. Specifically, we use a triplet loss
L(x, y) = max(0, α − cos(x, y) + cos(x, yc))
where positive pairs (x, y) are either paraphrases
or parallel sentences (Wieting et al., 2019a) and yc
are in-batch hard negatives (Wieting et al., 2016).

Downstream task embeddings. For each down-
stream task, we build embeddings that are repre-
sentative of the task, using the same paraphrastic
model. Then, we use these task embeddings as
queries for retrieving similar sentences from the
sentence bank, using cosine similarity in the embed-
ding space. Specifically, we consider three ways

https://github.com/facebookresearch/SentAugment
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Figure 1: The SentAugment approach. The self-training procedure follows multiple steps; Step 1: A RoBERTa-
Large model - the teacher - is finetuned on a downstream task using a cross-entropy loss, Step 2: Task-specific
unannotated data is extracted from a large bank of sentences; This step uses task-specific query embeddings (pro-
duced by a paraphrastic sentence encoder) to select nearest neighbors from the bank. Step 3: This data is synthet-
ically annotated using the teacher model; top K samples from each class are selected to form the final synthetic
dataset; Step 4: A RoBERTa-Large model - the student - is finetuned on this dataset using KL-divergence. Our
approach differs from previous work at Step 2, which we show is crucial for open-domain self-training.

for computing the task embeddings: all-average,
where we obtain one embedding by averaging the
sentence embeddings of all the samples from the
training set of the downstream task ; label-average,
where we construct one embedding per label, cor-
responding to the average of the sentence embed-
dings in the train set for each label ; per-sentence,
where we keep one embedding for each sentence
on the training set of the downstream task.

Unsupervised data retrieval. Using task-
representative embeddings as queries, we retrieve
a subset of our large sentence bank, corresponding
to a few million sentences which we use as
in-domain candidates for semi-supervised learning.
Reducing the amount of unannotated data is an
important step as synthetically annotating billions
of sentences using a large Transformer does not
scale. We perform additional filtering based on
the confidence of our teacher model keeping only
high-confident samples while maintaining the ratio
of labels of the training set of the downstream task.
For relatively small tasks, we use a threshold such
that our augmented training set is approximately a
hundred times bigger, and for datasets of medium
size, only ten times bigger.

2.2 Semi-supervised learning for natural
language understanding

We combine our data augmentation technique with
self-training and knowledge distillation, two semi-
supervised learning techniques that benefit from
having relevant unannotated sentences.

Self-training. Following the steps in Figure 1,
we first train a teacher model by fine-tuning a pre-
trained RoBERTa-Large model on the target down-
stream task. We then use it to annotate the retrieved
in-domain sentences. For each class, we select the
sentences with the highest scores and prune the rest.
We make sure the label ratio is maintained between
the original downstream task training set and the
augmented set by considering the probability of the
classifier. As our student model, we then finetune
a new RoBERTa-Large using KL-divergence on
the synthetic data by considering the post-softmax
class probabilities as labels.

Knowledge-distillation. We follow the same ap-
proach for knowledge-distillation, except we con-
sider a student model that has an order of mag-
nitude less parameters than the RoBERTa-Large
teacher model. As for self-training, we pretrain
the student and use continuous probabilities as syn-
thetic labels. We exploit data augmentation by
using in-domain unannotated sentences.

Few-shot learning. Semi-supervised learning
techniques are adapted to settings where little su-
pervised data is available. We simulate a few-shot
learning environment by only considering a few
samples per class, for several downstream tasks.
We apply data augmentation and self-training in
that context by augmenting the training set by two
to three orders of magnitude more data and use a
teacher model trained on only a few training sam-
ples to synthetically annotate data.
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Dataset task domain #train #classes

SST-2 sentiment analysis movie reviews 67349 2
SST-5 sentiment analysis movie reviews 8544 5
CR product classification product reviews 2500 2
IMP hate-speech classification forum conversations 3947 2
TREC question-type classification short questions 5001 6
CoNLL named entity recognition news stories 11663 5

Table 1: Downstream tasks used for evaluation.

3 Experimental setup

Next, we give details on how we build the bank
of sentences, what downstream tasks we use for
evaluation and we describe our training procedure
for semi-supervised learning.

3.1 Large-scale bank of sentences

As a large-scale external bank of unannotated sen-
tences, we extract and filter text from Common-
Crawl 2 (Wenzek et al., 2019). In particular, we ap-
ply a simple sentence segmenter to turn documents
into sentences and perform deduplication. We refer
to samples in this dataset as sentences although is
also contains shorts spans of text that can be seen as
short documents. We use three corpora, CC-100M
with one hundred million sentences (2B words),
CC-1B with one billion sentences (20B words) and
CC-5B with five billion sentences (100B words),
the first two being random subsets of the biggest
one. When retrieving sentences, we remove those
that overlap with sentences from the test set of the
downstream task. CommonCrawl data contains
a wide variety of domains and text styles which
makes it a good general-purpose corpus. We re-
lease pointers to obtain a similar corpus.

3.2 Evaluation datasets

We evaluate our approach on the Stanford Sen-
timent Treebank (Socher et al., 2013) binary and
fine-grained sentiment analysis datasets (SST-2 and
SST-5), on product classification (CR) from (Hu
and Liu, 2004), hate-speech comment classifica-
tion3 (IMP), question classification (TREC) from
(Voorhees and Tice, 2000) and named entity recog-
nition (CoNLL 2002) from (Sang and De Meulder,
2003). We provide details of each task including
task, domain, size and number of classes in Table 1.

2www.github.com/facebookresearch/cc net
3www.kaggle.com/c/detecting-insults-in-social-commentary/overview

3.3 Training details

Our sentence embeddings. We train our own
SentAugment Sentence Encoder (SASE) by
leveraging paraphrases from NLI entailment
pairs (Williams et al., 2017), MRPC (Dolan and
Brockett, 2005), Quora Question Pairs (QQP),
round-trip translation (Wieting and Gimpel, 2017)
and web paraphrases (Creutz et al., 2018), together
with OpenSubtitles (Lison et al., 2019) and Eu-
roparl (Koehn, 2005) parallel data from English to
French, Italian and Indonesian - language pairs that
were shown to provide good paraphrastic sentence
embeddings (Wieting et al., 2019a). We pretrain
the model with a multilingual masked language
modeling objective (Devlin et al., 2018; Conneau
and Lample, 2019) in these 4 languages, with a
sentence piece segmentation trained on a corpus
with 3/4 of English data to give more importance
to English, and the rest in other languages. We use
a triplet loss to learn cosine sentence embedding
similarity where the negative is selected to be the
hardest in the batch. We evaluate our model on STS
benchmarks (Agirre et al., 2012) and report results
in Section 5 where we show our model outper-
forms previous approaches. We found that due to
pretraining and being trained on longer sentences,
our model is also more adapted to raw and long
sentences from CommonCrawl. We also consider
word2vec embeddings (Mikolov et al., 2013) and
the uSIF approach (Ethayarajh, 2018b; Arora et al.,
2017) as baselines in our experimental results.

Fine-tuning the student model. We use
fairseq (Ott et al., 2019) and the open-source
RoBERTa-Large model (Liu et al., 2019) as our
pretrained Transformer baseline and perform
finetuning on each downstream task. We use
Adam, with learning-rate schedule 1e-5. We
use batch-sizes of 16 and dropout rate 0.1. We
fine-tune on synthetically annotated data using

www.github.com/facebookresearch/cc_net
www.kaggle.com/c/detecting-insults-in-social-commentary/overview
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Model SST-2 SST-5 CR IMP TREC NER Avg

RoBERTaLarge 96.5 57.8 94.8 84.6 97.8 92.7 87.4
RoBERTaLarge + ICP 93.9 55.1 93.7 84.4 97.8 92.1 86.2
RoBERTaLarge + ST 96.7 60.4 95.7 87.7 97.8 93.3 88.6

Table 2: Results of self-training on natural language understanding benchmarks. We report a strong RoBERTa-
Large baseline, as well as in-domain continued pretraining of this model (ICP) and our self-training approach (ST).

Model SST-2 SST-5 CR IMP TREC NER Avg

Num samples 40 100 40 40 120 200 -

RoBERTaLarge 83.6±2.7 42.3±1.6 88.9±1.7 77.3±2.8 90.9±2.5 49.0±1.7 72.0±2.2
RoBERTaLarge + ST 86.7±2.3 44.4±1.0 89.7±2.0 81.9±1.4 92.1±2.4 58.4±1.4 75.5±1.8

Table 3: Results of self-training for few-shot learning, using only 20 samples per class.

KL divergence. We found that fine-tuning again
on the training set of the downstream task with
ground-truth labels was not necessary, neither was
adding ground-truth sentences from the training
set to the self-training data.

Few-shot learning experiments. We sample 5
training sets that each consist of 20 examples from
each label from the original training set of the task.
We sample 200 examples from the original vali-
dation set of the task, taking the label distribution
into account. We use the original test set of the
task as our test set. For all experiments, we run
10 seeds for each train set and consider the mean
test accuracy of top 3 models (based on their vali-
dation accuracy) as the performance on that train
set. Based on this, we calculate the mean and stan-
dard deviation across 5 training sets, to report our
final results. We synthetically annotate both re-
trieved and ground-truth data, and train each model
for 50 epochs. Different from our experiments in
the full-shot setting, we (1) use discrete labels, (2)
include ground truth data in the training set, and
(3) augment the reduced training set by one order
of magnitude data samples sampled from the top
1000*(total supervised examples). These choices
were made for few-shot learning experiments as the
teacher model is not as strong, leading to noisier
annotations compared to the full dataset setup.

4 Analysis and Results

In this section, we first report results on self-
training, knowledge-distillation and few-shot learn-
ing with our best approach. We then provide an

analysis of the key factors that makes self-training
with SentAugment work in the context of natural
language understanding.

4.1 Self-training experiments
In Table 2, we report results using self-training on
six different downstream tasks. To understand the
contribution of domain-adaptation and the actual
contribution of self-training (ST), we compare ST
to in-domain continued pretraining (ICP) where
we continue masked language model pretraining
of a RoBERTa-Large model on the retrieved in-
domain augmented data. The goal of this com-
parison is to understand whether self-training only
does domain adaptation to the target domain of the
downstream task, which ICP also does. Indeed,
RoBERTa-Large has been trained on a very large
generic dataset of web data but not particularly
specific to each downstream task.

First, we observe that self-training alone im-
proves performance over a strong RoBERTa-Large
baseline, leading to an 1.2% improvement on aver-
age. Improvements are largest on SST-5 and IMP,
with 2.6% and 3.1% improvements respectively.
On the other hand, when continuing pretraining
on the self-training data with ICP, we observe a
decrease in performance from 87.4% to 86.2%. It
is interesting to note that this is not only the use
of the in-domain data that is useful but the combi-
nation with the self-training algorithm. While ICP
performs domain adaptation at pretraining time
of the RoBERTa-Large model, it does not outper-
form the baseline. Self-training is thus a nontrivial
way of improving generalization and doing domain-
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Model KD-data SST-2 SST-5 CR IMP TREC Avg

Models trained directly on the training set of each downstream task

RoBERTaLarge - 96.5 57.8 94.8 84.6 97.8 86.3
RoBERTaSmall - 92.0 49.0 88.7 83.8 96.4 82.0

Models distilled using the same number of sentences as in the train set (cf. Table 1)

RoBERTaSmall(Large) GT 92.4 49.7 89.6 84.4 96.6 82.5
RoBERTaSmall(Large) RD 90.7 47.5 87.4 69.1 90.8 77.1
RoBERTaSmall(Large) SA 91.8 50.7 88.2 84.6 94.4 81.9

Models distilled using more unsupervised sentences (100k sentences)

RoBERTaSmall(Large) RD 92.5 51.2 92.4 78.1 96.2 82.1
RoBERTaSmall(Large) SA 94.2 57.6 92.6 85.5 97.0 85.4

Table 4: Results of knowledge-distillation using ground-truth (GT), random (RD), or data-selected data (SA) as
unnanotated sentences. We distill a RoBERTa-Large model of 24 layers into a RoBERTa-Small model with 100×
less parameters.

adaptation at fine-tuning time. (Xie et al., 2019)
however show gains using ICP. We attribute that
difference in our conclusion to (i) RoBERTa be-
ing trained on much more data than their BERT
model trained on Wikipedia, (ii) our ICP using only
approximately in-domain data rather than ground-
truth.

4.2 Few-shot learning experiments

We investigate the effectiveness of our approach
in the context of few-shot learning. In Table 3,
we fine-tune a RoBERTa-Large model on between
40-200 samples of training data in each task and
use it as a teacher model. Self-training leads to
3.5% average gains on all tasks, going from 72.0%
to 75.5% while also reducing the variance. Gains
are particularly strong on sequence labeling, where
the student model obtains 58.4 F1 over 49.0 F1 for
the teacher model.

4.3 Knowledge distillation experiments

Knowledge distillation (KD) also strongly benefits
from large-scale augmentation. Table 4 shows
baseline results from the RoBERTa-Large and
RoBERTa-Small directly fine-tuned on the training
set of each downstream task. Comparing distilled
models that use different kinds of unannotated data,
we observe that using the ground-truth (GT) leads
to significantly better performance compared to ran-
dom (RD) sentences, going from 77.1% to 82.5%.
This shows that assuming the existence of data in
the exact same domain is a strong assumption. Us-

ing the same amount of data, our data augmentation
(SA) method bridges the gap with 81.9% average
accuracy.

When leveraging more unannotated sentences,
we push the random baseline to 82.1% which cor-
responds to a 5% improvement, getting closer to
the GT baseline. Finally, using SentAugment leads
to strong improvements, up to 85.4% average accu-
racy, only 0.9% average accuracy below the teacher
model with almost ten times less parameters, show-
ing the importance of data augmentation for KD.

4.4 Ablation study of data augmentation

Our approach leverages several key components
that make data augmentation work and that enable
self-training for natural language understanding.
We examine these components in this section.

Task-specific retrieval. We compare different
methods for building task-specific embeddings
used as queries for retrieving in-domain sentences
from the large bank of sentences. In Table 5, we
observe that using one query for each label (label-
average) leads to better performance than having
a single query embedding for the entire task (all-
average), leading to a 83.1% accuracy on average.
For tasks with unbalanced classes, this avoids an
over-representation of the majority class, and also
provides more diversity in the retrieved sentences.
Interestingly, having one query embedding per sen-
tence in the training set does not improve perfor-
mance, except for named entity recognition where



5414

the per-sentence approach leads to the best perfor-
mance.

Model Selection C SST-5 CR NER Avg

RoBERTaLarge + ST all-avg O(Md2) 60.0 94.7 92.8 82.5
RoBERTaLarge + ST label-avg O(KMd2) 60.4 95.7 93.1 83.1
RoBERTaLarge + ST per-sent O(NMd2) 60.1 95.4 93.3 82.9

Table 5: Impact of data augmentation technique. C is
the complexity, M the size of the bank of sentences,
K the number of labels (or clusters), N the size of the
downstream training set and d the embedding size.

Sentence embedding space. Our data augmen-
tation method is based on structuring a large ex-
ternal bank of text with a sentence embedding
space. The sentence embedding method plays
an essential role as shown in Table 6. We com-
pare three embedding methods, the average of
fastText (Mikolov et al., 2018) word embeddings
(average-word2vec), the uSIF-ParaNMT embed-
dings (Ethayarajh, 2018b) and our own sentence
encoder. We observe that uSIF-ParaNMT and para-
embeddings - two sentence embedding methods
that obtain state-of-the-art results on semantic tex-
tual similarity benchmarks - lead to stronger perfor-
mance than the average-word2vec approach. Para-
embeddings leads to the best performance and im-
proves performance over uSIF by 0.4% on average.

Model Embedding dim SST-5 CR NER Avg

RoBERTaLarge + ST avg-w2v 300 59.4 95.2 92.9 82.5
RoBERTaLarge + ST uSIF 300 59.9 95.0 93.1 82.7
RoBERTaLarge + ST SASE 256 60.4 95.7 93.1 83.1

Table 6: Impact of sentence embedding method:
average-word2vec, uSIF with ParaNMT and SASE.

Scaling bank size. To demonstrate the impor-
tance of large-scale retrieval, we evaluate our
method using an increasing amount of data for our
bank, from fifty million sentences to five billion
sentences (one hundred billion words). We observe
a significant increase in performance from 50m
to 1B in Table 7, but the improvement seems to
saturate when going from 1B to 5B. However, the
5B external bank may however provide additional
gains for tasks that are in rare domains and that can
leverage the additional 4B sentences, which cor-
respond to 342M additional CommonCrawl docu-
ments. Another effect of increasing the corpus size
may be reducing diversity in the retrieved sentences.
We leave experimenting with diversity-inducing en-
hancements to the retrieval for future work.

Model #lines #words SST-5 CR NER Avg

RoBERTaLarge + ST 50m 1B 59.5 95.4 92.8 82.6
RoBERTaLarge + ST 250m 5B 59.5 95.7 92.9 82.7
RoBERTaLarge + ST 1B 20B 60.4 95.7 93.1 83.1
RoBERTaLarge + ST 5B 100B 60.0 95.3 93.1 82.8

Table 7: Impact of sentence bank size (number of lines
and words) on self-training results.

Continuous labels. In Table 8, we show that us-
ing class probabilities as synthetic labels leads to
significantly better performance, outperforming
discrete synthetic labels by 0.9% on average. We
found very little gain when using self-training with
discrete labels, contrary to previously published
results in computer vision (Yalniz et al., 2019; Xie
et al., 2020). A difference with previous work in
computer vision is the number of classes of the
supervised data. In that context, discrete labels
provide even less information to the student model
than continuous class probabilities.

Model label type SST-5 CR NER Avg

RoBERTaLarge + ST discrete 59.1 94.7 92.8 82.2
RoBERTaLarge + ST logits 60.4 95.7 93.1 83.1

Table 8: Impact of label type on self-training results.

Computational cost of self-training. SentAug-
ment data prefiltering reduces the amount of data to
be annotated by the teacher model and also filters
based on the target domain. Filtering based solely
on classifier confidence is significantly more ex-
pensive computationally, as annotating 10000 sen-
tences with RoBERTa-Large takes approximately
3 seconds on a Volta-32GB GPU. This means that
annotating 1B sentences takes 83 hours on a single
GPU and much longer for models of larger size
such as T5 (Raffel et al., 2019) or GPT-3 (Brown
et al., 2020). On the other hand, using SentAug-
ment based on a few task-specific query embedding
(label-average) takes one minute for scoring 1B sen-
tences. By only selecting the first few million top
sentences, or less, to synthetically annotate, this
greatly reduces computational cost and allows to
scale to a larger bank of sentences, which in turn
allows for more domains to be considered. Note
that similarity search can be further sped up signifi-
cantly by using fast nearest neighbor search such as
product quantization with inverted files (Johnson
et al., 2019).
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BioNLP query: A single gene on chromosome 7 makes a protein called the cystic fibrosis transmembrane conductance regulator (CFTR).
Nearest neighbor: Cystic Fibrosis A mutation in the gene cystic fibrosis transmembrane conductance regulator (CFTR) in chromosome 7.

Financial Query: Google has entered into an agreement to buy Nest Labs for $3.2 billion.
Nearest neighbor: In January Google (NASDAQ:GOOG) reached an agreement to buy Nest Labs for $3.2 billion in cash.

Hate-speech Query: Average sentence embeddings of the ”hateful” class of IMP
Nearest neighbor: fuzzy you are such a d* f* piece of s* just s* your g* d* mouth. – All you n* and s* are fucking ret*

Movie review Query: Average sentence embeddings of the ”bad movie” class of SST-5
Nearest neighbor: This movie was terribly boring, but so forgettable as well that it didn’t stand out for how awful it was..

Product review Query: Average sentence embeddings of the ”positive” class of CR
Nearest neighbor: The phone is very good looking with superb camera setup and very lightweight.

Question type Query: Average sentence embeddings of the ”location” class of TREC
Nearest neighbor: Lansing is the capital city of which state?

Table 9: Examples of nearest neighbors using a per-sentence or label-average query from different domains.

5 Analysis of similarity search

In this section, we present the results of our Sen-
tAugment sentence embedding (SASE) method on
semantic textual similarity (STS) benchmarks and
present examples of retrieved sentence based on
large-scale similarity search.

5.1 Sentence embeddings (SASE)
In Table 10, we compare our sentence embedding
method to previous approaches including BERT
(Mean) (Devlin et al., 2018), InferSent (Conneau
et al., 2017), GenSen (Subramanian et al., 2018),
USE (Cer et al., 2018), Sentence-BERT (Reimers
and Gurevych, 2019), uSIF (Ethayarajh, 2018a),
Charagram (Wieting and Gimpel, 2017) and
BGT (Wieting et al., 2019b). On average, our
embeddings outperform previous approaches by
0.2% on STS 2012 to 2016 (Agirre et al., 2012,
2013, 2014, 2015, 2016), and by 0.9% on STS-
Benchmark (Cer et al., 2017).

Model
Semantic Textual Similarity (STS)

2012 2013 2014 2015 2016 Avg STS-B

BERT (Mean) 48.8 46.5 54.0 59.2 63.4 54.4 -
InferSent 61.1 51.4 68.1 70.9 70.7 64.4 70.6
GenSen 60.7 50.8 64.1 73.3 66.0 63.0 -
USE 61.4 59.0 70.6 74.3 73.9 67.8 -
Sentence-BERT 66.9 63.2 74.2 77.3 72.8 70.9 -
uSIF- 68.3 66.1 78.4 79.0 - - 79.5
Word, trigram 67.8 62.7 77.4 80.3 78.1 73.3 79.9
BGT 68.9 62.2 75.9 79.4 79.3 73.1 -

SASE (ours) 69.7 62.9 77.3 79.8 78.1 73.5 80.8

Table 10: Results of our sentence encoder (SASE) on
STS benchmarks from 2012 to 2016 and on the test sets
of the STS-Benchmark dataset, compared to previously
published results. We report Pearson’s r × 100.

5.2 Examples of large-scale similarity search
SentAugment uses large-scale similarity search
combined with an embedding space with billions of

sentences to find in-domain sentences. In Table 9,
we show examples of nearest neighbors extracted
from CommonCrawl based on sentence-level or
label-level queries and for different domains such
as biomedical, financial or hate-speech data. We
see that retrieving nearest neighbors can lead to
good paraphrases which either preserve the mean-
ing or augment it with additional information. We
also observe reformulation of the same input sen-
tence. As for label-level queries, we observe that
retrieved sentences match very well the domain of
the downstream task. We also release as part of
our work nearest-neighbor indexes for researchers
to explore further large-scale similarity search of
web data. These indexes provide more examples
of how well the model performs when trying to
find similar sentences in our corpus using our sen-
tence embedding. We hope this will lead to an
improved understanding of large-scale embedding
spaces and also help the community analyze the
content and biases of large-scale web corpora used
to train language models.

6 Conclusion

Recent work in natural language understanding has
focused on unsupervised pretraining. In this pa-
per, we show that self-training is another effective
method to leverage unlabeled data. We introduce
SentAugment, a new data augmentation method for
NLP that retrieves relevant sentences from a large
web data corpus. Self-training is complementary
to unsupervised pre-training for a range of natu-
ral language tasks and their combination leads to
further improvements on top of a strong RoBERTa
baseline. We also explore knowledge distillation
and extend previous work on few-shot learning by
showing that open domain data with SentAugment
is sufficient for good accuracy.
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