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Abstract
The existence of multiple datasets for sarcasm
detection prompts us to apply transfer learn-
ing to exploit their commonality. The adver-
sarial neural transfer (ANT) framework uti-
lizes multiple loss terms that encourage the
source-domain and the target-domain feature
distributions to be similar while optimizing
for domain-specific performance. However,
these objectives may be in conflict, which
can lead to optimization difficulties and some-
times diminished transfer. We propose a gen-
eralized latent optimization strategy that al-
lows different losses to accommodate each
other and improves training dynamics. The
proposed method outperforms transfer learn-
ing and meta-learning baselines. In particular,
we achieve 10.02% absolute performance gain
over the previous state of the art on the iSar-
casm dataset.

1 Introduction

Sarcastic language is commonly found in social
media posts (González-Ibáñez et al., 2011; May-
nard and Greenwood, 2014), forum discussions
(Khodak et al., 2018a), product reviews (Davidov
et al., 2010; Filatova, 2012) and everyday conversa-
tions (Gibbs, 2000). Detecting sarcasm is an inte-
gral part of creative language understanding (Veale
et al., 2019) and online opinion mining (Kannan-
gara, 2018). Due to highly contextualized expres-
sions, detecting sarcasm is a challenging task, even
for humans (Fox Tree et al., 2020).

A challenge specific to sarcasm detection is the
difficulty in acquiring ground-truth annotations.
Human-annotated datasets (Filatova, 2012; Riloff
et al., 2013; Van Hee et al., 2018; Oprea and Magdy,
2020) usually contain only a few thousand texts,
resulting in many small datasets. In comparison,
automatic data collection using distant supervision
signals like hashtags (Ptáček et al., 2014; Bam-
man and Smith, 2015; Joshi et al., 2015) yielded
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substantially larger datasets. Nevertheless, the auto-
matic approach also led to label noise. For example,
Oprea and Magdy (2020) found nearly half of the
tweets with sarcasm hashtags in one dataset are not
sarcastic.

The existence of diverse datasets and data collec-
tion methods prompts us to exploit their common-
ality through transfer learning. Specifically, we
transfer knowledge learned from large and noisy
datasets to improve sarcasm detection on small
human-annotated datasets that serve as effective
performance benchmarks.

Adversarial neural transfer (ANT) (Ganin and
Lempitsky, 2015; Liu et al., 2017; Kim et al., 2017;
Kamath et al., 2019) employs an adversarial setup
where the network learns to make the shared feature
distributions of the source domain and the target do-
main as similar as possible, while simultaneously
optimizing for domain-specific performance. How-
ever, as the domain-specific losses promote the use
of domain-specific features, these training objec-
tives may compete with each other implicitly. This
leads to optimization difficulties and potentially
degenerate cases where the domain-specific classi-
fiers ignore the shared features and no meaningful
transfer occurs between domains.

To cope with this issue, we propose Latent-
Optimized Adversarial Neural Transfer (LOANT).
The latent optimization strategy can be understood
with analogies to to one-step look-ahead during
gradient descent and Model-Agnostic Meta Learn-
ing (Finn et al., 2017). By forcing domain-specific
losses to accommodate the negative domain dis-
crimination loss, it improves training dynamics
(Balduzzi et al., 2018).

With LOANT, we achieve 10.02% absolute im-
provement over the previous state of the art on
the iSarcasm dataset (Oprea and Magdy, 2020)
and 3.08% improvement on SemEval-18 dataset
(Van Hee et al., 2018). Over four sets of transfer
learning experiments, latent optimization on aver-
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age brings 3.42% improvement in F-score over tra-
ditional adversarial neural transfer and 4.83% over
a similar training strategy from Model-Agnostic
Meta Learning (MAML) (Finn et al., 2017). In
contrast, traditional ANT brings an average of only
0.9% F-score improvement over non-adversarial
multi-task learning. The results demonstrates that
LOANT can effectively perform knowledge trans-
fer for the task of sarcasm detection and suggests
that the proposed latent optimization strategy en-
ables the collaboration among the ANT losses dur-
ing optimization.

Our contributions can be summarized as follows:

1. Inspired by the existence of multiple small
sarcasm datasets, we propose to use transfer
learning to bridge dataset differences. To the
best of our knowledge, this is the first study
of transfer learning between different sarcasm
detection datasets.

2. We propose LOANT, a novel latent-optimized
adversarial neural transfer model for cross-
domain sarcasm detection. By conducting
stochastic gradient descent (SGD) with one-
step look-ahead, LOANT outperforms tra-
ditional adversarial neural transfer, multi-
task learning, and meta-learning baselines,
and establishes a new state-of-the-art F-
score of 46.41%. The code and datasets
are available at https://github.com/
guoxuxu/LOANT.

2 Related Work

2.1 Sarcasm Detection

Acquiring large and reliable datasets has been a
persistent challenge for computational detection
of sarcasm. Due to the cost of annotation, man-
ually labeled datasets (Walker et al., 2012; Riloff
et al., 2013; Wallace et al., 2014; Abercrombie and
Hovy, 2016; Oraby et al., 2016; Van Hee et al.,
2018; Oprea and Magdy, 2020) typically contain
only a few thousand texts. Automatic crawling
(Ptáček et al., 2014; Bamman and Smith, 2015;
Joshi et al., 2015; Khodak et al., 2018b) using hash-
tags or markers yields substantially more texts, but
the results are understandably more noisy. As a
case study, after examining the dataset of Riloff
et al. (2013), Oprea and Magdy (2020) found that
nearly half of tweets with sarcasm hashtags are not
sarcastic. In this paper, we evaluate performance

on the manually labeled datasets, which are rela-
tively clean and can serve as good benchmarks, and
transfer the knowledge learned from automatically
collected datasets.

Traditional sarcasm detection includes methods
based on rules (Tepperman et al., 2006) and lexical
(Kreuz and Caucci, 2007) and pragmatic patterns
(González-Ibánez et al., 2011). Context-aware
methods (Rajadesingan et al., 2015; Bamman and
Smith, 2015) make use of contexts, such as the au-
thor, the audience, and the environment, to enrich
feature representations.

Deep learning techniques for sarcasm detection
employ convolutional networks (Ghosh and Veale,
2016), recurrent neural networks (Zhang et al.,
2016; Felbo et al., 2017; Wu et al., 2018), attention
(Tay et al., 2018), and pooling (Xiong et al., 2019)
operations. Amir et al. (2016) incorporate historic
information for each Twitter user. Cai et al. (2019)
consider the images that accompany tweets and
Mishra et al. (2017) utilize readers’ gaze patterns.
To the best of our knowledge, no prior work has ex-
plored transfer learning between different sarcasm
datasets.

2.2 Adversarial Transfer Learning

As a transfer learning technique, multi-task learn-
ing (MTL) allows related tasks or similar domains
to inform each other and has been a powerful tech-
nique for NLP (Collobert et al., 2011; Yang et al.,
2017; Aharoni et al., 2019; Guo et al., 2019; Raffel
et al., 2020). However, MTL does not always lead
to performance improvements (Alonso and Plank,
2017; Bingel and Søgaard, 2017; Changpinyo et al.,
2018; Clark et al., 2019).

Theoretical analysis (Ben-David et al., 2010) in-
dicates that a key factor for the success of transfer is
to reduce the divergence between the feature spaces
of the domains. Ganin and Lempitsky (2015) pro-
pose to minimize domain differences via a GAN-
like setup, where a domain discriminator network
learns to distinguish between features from two
domains and a feature extraction network learns
to produce indistinguishable features, which are
conducive to transfer learning.

Similar adversarial setups (Liu et al., 2017; Kim
et al., 2017) have been adopted for many NLP tasks,
such as sentiment analysis (Chen et al., 2018; Liu
et al., 2018), satirical news detection (McHardy
et al., 2019), detection of duplicate questions (Ka-
math et al., 2019), named entity recognition (Zhou

https://github.com/guoxuxu/LOANT
https://github.com/guoxuxu/LOANT
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et al., 2019), and QA (Yu et al., 2018).
However, as shown in our experiments, adding

the domain discriminator to MTL does not always
result in improved performance. We attribute this
to the implicit competition between the negative
domain discrimination loss and the domain-specific
losses, which causes difficulties in optimization. In
this paper, we improve the training dynamics of ad-
versarial transfer learning using latent optimization
on BERT features.

2.3 Meta-Learning and Latent Optimization

The idea of coordinating gradient updates of dif-
ferent and competing losses using gradient de-
scent with look-ahead has been explored in Latent-
optimized Generative Adversarial Network (LO-
GAN) (Wu et al., 2019b,a), Symplectic Gradient
Adjustment (Balduzzi et al., 2018; Gemp and Ma-
hadevan, 2019), Unrolled GAN (Metz et al., 2016),
Model-Agnostic Meta Learning (Finn et al., 2017)
and extragradient (Azizian et al., 2020). The dif-
ference between LOGAN and other techniques is
that the LOGAN computes the derivative of the ran-
domly sampled latent input, whereas other methods
compute the second-order derivative in the model
parameter space.

In this paper, we generalize latent optimization
from GANs to multi-task learning, where the adver-
sarial loss is complemented by domain-specific task
losses. In addition, we apply latent optimization
on the output of the BERT module, which differs
from the optimization of the random latent variable
in LOGAN. As large pretrained masked language
models (PMLMs) gain prominence in NLP, latent
optimization avoids gradient computation on the
parameters of enormous PMLMs, providing reduc-
tion in running time and memory usage.

3 The LOANT Method

In supervised transfer learning, we assume labeled
data for both the source domain and the target do-
main are available. The source domain dataset Ds

comprises of data points in the format of (xs, ys)
and the target domain dataset Dt comprises of data
points in the format of (xt, yt). The labels ys and yt
are one-hot vectors. The task of supervised cross-
domain sarcasm detection can be formulated as
learning a target-domain function ft(xt) that pre-
dict correct labels for unseen xt.
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Figure 1: Network architecture of the Adversarial Neu-
ral Transfer model.

3.1 Model Architecture

Fig. 1 shows the model architecture for adversarial
neural transfer (ANT) (Liu et al., 2017; Kamath
et al., 2019; Kim et al., 2017). We use a large pre-
trained neural network, BERT (Devlin et al., 2019),
as the sentence encoder, though the architecture
is not tied to BERT and can use other pretrained
encoders. We denote the parameters of the BERT
encoder as wb, and its output for data in the source
domain and the target domain as zs ∈ RD and
zt ∈ RD respectively. We denote this encoder
operation as

zs = E(xs, wb), zt = E(xt, wb) (1)

On top of these outputs, we apply domain-specific
dense layers to create domain-specific features
vs, vt and shared dense layers to create shared fea-
tures us, ut. We use ws, wt, and wsh to denote the
parameters for the source dense layers, the target
dense layers, and the shared dense layers.

The concatenation of features [vs, us] is fed to
the source-domain classifier, parameterized by θs;
[vt, ut] is fed to the target-domain classifier, pa-
rameterized by θt. The two classifiers categorize
the tweets into sarcastic and non-sarcastic and are
trained using cross-entropy. For reasons that will
become apparent later, we make explicit the re-
liance on zs and zt:

Ls(zs) = −
∑
i

ys,i log p(ŷs,i|zs),

Lt(zt) = −
∑
i

yt,i log p(ŷt,i|zt),
(2)
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Figure 2: Schematic of the latent optimization strategy.
The solid black arrows indicate the forward pass and
the dotted red arrows indicate the backward pass.

where ŷs and ŷt are the predicted labels and i is the
index of the vector components.

Simultaneously, the domain discriminator learns
to distinguish the features us and ut as coming
from different domains. The domain discriminator
is parameterized by θd. It is trained to minimize
the domain classification loss,

Ld(zt, zs) = − log p(0|us)− log p(1|ut). (3)

Through the use of the gradient reversal layer, the
shared dense layers and the feature encoder max-
imizes the domain classification loss, so that the
shared features us and ut become indistinguishable
and conducive to transfer learning. In summary, the
network weights wb, ws, wt, wsh, θs, θt are trained
to minimize the following joint loss,

LANT = Ls(zs) + Lt(zt)− Ld(zt, zs), (4)

whereas θd is trained to minimize Ld(zt, zs).
It is worth noting that the effects of three loss

terms in Eq. 4 on the shared parameterswsh andwb

may be competing with each other. This is because
optimizing sarcasm detection in one domain will
encourage the network to extract domain-specific
features, whereas the domain discrimination loss
constrains the network to avoid such features. It is
possible for the competition to result in degenerate
scenarios. For example, the shared features us and
ut may become indistinguishable but also do not
correlate with the labels ys and yt. The domain
classifiers may ignore the shared features us and ut
and hence no transfer happens. To cope with this
issue, we introduce a latent optimization strategy
that forces domain-specific losses to accommodate
the domain discrimination loss.

3.2 Latent Representation Optimization
We now introduce the latent representation opti-
mization strategy. First, we perform one step of

stochastic gradient descent on −Ld on the encoded
features zs and zt with learning rate γ,

z′s = zs + γ
∂Ld(zs, zt)

∂zs
, (5)

z′t = zt + γ
∂Ld(zs, zt)

∂zt
. (6)

We emphasize that this is a descent step because
we are minimizing −Ld.

After that, we use the updated z′s and z′t in the
computation of the losses

LLO
s (zs, z

′
s) = Ls(zs) + Ls(z′s), (7)

LLO
t (zt, z

′
t) = Lt(zt) + Lt(z′t). (8)

The new joint objective hence becomes

LLO = LLO
s (zs, z

′
s) + LLO

t (zt, z
′
t)

− Ld(zs, zt),
(9)

which is optimized using regular stochastic gradi-
ent descent (SGD) on wb, ws, wt, wsh, θs, and θt.

Here we show the general case of gradient com-
putation. Consider any weight vector w in the neu-
ral network. Equations 5 and 6 introduce two inter-
mediate variables z′s and z′t, which are a function
of the model parameter w. Therefore, we perform
SGD using the following total derivative

dLLO

dw
=
∂LLO

∂w
+
∂LLO

s (z′s)

∂z′s

∂z′s
∂w

+
∂LLO

t (z′t)

∂z′t

∂z′t
∂w

.

(10)

where

∂z′s
∂w

=
∂zs
∂w

+ γ
∂2Ld(zs)
∂zs ∂w

∂z′t
∂w

=
∂zt
∂w

+ γ
∂2Ld(zt)
∂zt ∂w

(11)

For every network parameter other than the en-
coder weight wb, ∂z/∂w is zero. The second-order
derivative ∂2Ld(z)

/
∂z ∂w is difficult to compute

due to the high dimensionality of w. Since γ is
usually very small, we adopt a first-order approxi-
mation and directly set the second-order derivative
to zero. Letting φs = [ws, θs] and φt = [wt, θt],
we now show the total derivatives for all network
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Algorithm 1: Training of LOANT
Input: source data (xs, ys), target data

(xt, yt), learning rate γ
Initialize model parameters w
repeat

Sample N batches of data pairs
for i = 1 to N do

Compute forward loss Ls, Lt, Ld;
Compute4zs = ∂Ld(zs)

∂zs
and

4zt = ∂Ld(zt)
∂zt

;
Update the latent representations
z′s = zs + γ 4 zs and
z′t = zt + γ 4 zt;

Compute the new joint loss
LLO = LLO

s + LLO
t − Ld;

Update w using gradient descent.

until the maximum training epoch

parameters:

dLLO

dwb
=
∂LANT

∂wb
+
∂Ls(z′s)
∂wb

+
∂Lt(z′t)
∂wb

+
∂Ls(z′s)
∂z′s

∂zs
∂wb

+
∂Lt(z′t)
∂z′t

∂zt
∂wb

(12)

dLLO

dwsh
=
∂LANT

∂wsh
+
∂Ls(z′s)
∂wsh

+
∂Lt(z′t)
∂wsh

(13)

dLLO

dφs
=
∂Ls(zs)
∂φs

+
∂Ls(z′s)
∂φs

dLLO

dφt
=
∂Lt(zt)
∂φt

+
∂Lt(z′t)
∂φt

dLLO

dθd
=
∂Ld(zs, zt)

∂θd

(14)

More details can be found in Appendix A. Fig. 2 il-
lustrates the latent optimization process. Algorithm
1 shows the LOANT algorithm.

3.3 Understanding LOANT
To better understand the LOANT algorithm, we
relate LOANT to the extragradient technique and
Model-Agnostic Meta Learning (Finn et al., 2017).

The vanilla gradient descent (GD) algorithm fol-
lows the direction along which the function value
decreases the fastest. However, when facing an
ill-conditioned problem like the one in Fig. 3, GD
is known to exhibit slow convergence because the
local gradients are close to being orthogonal to the
direction of the local optimum.

For comparison with LOANT, we consider the
extragradient (EG) method (Korpelevich, 1976; Az-

izian et al., 2020) that uses the following update
rule when optimizing the function f(w) with re-
spect to w,

w ← w − η
df(w − γ ∂f(w)

∂w )

dw
. (15)

Similar to LOANT, we can adopt a first-order ap-
proximation to EG if we set the Hessian term to
zero in the total derivative. Instead of optimizing
the immediate function value f(w), this method
optimizes f(w−γ ∂f

∂w ), which is the function value
after one more GD step. This can be understood
as looking one step ahead along the optimization
trajectory. In the contour diagrams of Fig. 3, we
show the optimization of a 2-dimensional quadratic
function. This simple example showcases how the
ability to look one step ahead can improve optimiza-
tion in pathological loss landscapes. We motivate
the nested optimization of LOANT by drawing an
analogy between EG and LOANT.

It is worth noting that LOANT differs from the
EG update rule in important ways. Specifically,
in EG the inner GD step and the outer GD step
are performed on the same function f(·), whereas
LOANT performs the inner step on Ld and the
outer step on Ls or Lt.

For a similar idea with multiple losses, we turn
to MAML (Finn et al., 2017). In MAML, there
are K tasks with losses L1, . . . ,Lk, . . . ,LK . On
every task, we perform a one-step SGD update to
the model parameter w ∈ RL,

wTk
= w − γ ∂Lk(w)

∂w
. (16)

After going through K tasks, the actual update to
w is calculated using the parameters wTk

,

w ← w − η 1

K

∑
k

dLk(wTk
)

dw
. (17)

Utilizing the idea of look ahead, in MAML we
update w so that subsequent optimization on any
single task or combination of tasks would achieve
good results.

Adversarial neural transfer has three tasks, the
source-domain and target-domain classifications
and the negative discriminator loss. The updates
performed by LOANT in Eq. 5 and 6 are similar
to MAML’s look-ahead update in Eq. 16. Specifi-
cally, when we update model parameters using the
gradient from the total loss LLO, we prepare for the
next descent step on −Ld. Therefore, LOANT can
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(a) Vanilla gradient descent, which ex-
hibits a zigzag trajectory. η = 0.025.

(b) First-order extragradient, which sets
the Hessian term to zero. η = 0.025.
γ = 0.01.

(c) Full-Hessian extragradient, which
finds a direct path to the local minimum,
enabling a large learning rate η = 0.1.

Figure 3: Minimization of a 2D function f(w) = w>Aw + b>w + c. A is positive definite and has a condition
number of 40. The initial point is (0,−0.15). The red arrows show the trajectory of w. The look-ahead capability
of extragradient finds a much more direct path to the local minimum than vanilla gradient descent.

be understood as forcing domain-specific losses to
accommodate the domain discrimination loss and
mitigating their competition.

LOANT differs from MAML since, in the inner
update, LOANT updates the sentence-level features
zs and zt instead of the model parameters w. As zs
and zt are usually of much smaller dimensions than
w, this leads to accelerated training and reduced
memory footprint. For example, in the BERT-base
model (Devlin et al., 2019), L is 110 million and
D is 768. Within the regular range of batch size
B, BD � L. In the experiments, we verify the
benefits of LOANT in terms of accuracy and time
and space complexity.

4 Experiments

4.1 Datasets

We conduct four cross-domain sarcasm detection
experiments by transferring from an automatically
collected dataset to a manually annotated dataset.
The two automatically collected datasets include
Ptáček (Ptáček et al., 2014) and Ghosh1 (Ghosh
and Veale, 2016), which treat tweets having partic-
ular hastags such as #sarcastic, #sarcasm
or #not as sarcastic and others as not sarcastic.
We crawled the Ptáček dataset using the NLTK
API2 according to the tweet ids published online3.

The two manually annotated datasets include
SemEval-184 (Van Hee et al., 2018) and iSarcasm

1https://github.com/AniSkywalker/
SarcasmDetection/tree/master/resource

2http://www.nltk.org/howto/twitter.
html

3http://liks.fav.zcu.cz/sarcasm/
4https://github.com/Cyvhee/

SemEval2018-Task3/tree/master/datasets

Dataset Train Val Test % Sarcasm
Ptáček 51009 5668 6298 49.50%
Ghosh 33373 3709 4121 44.84%
SemEval-18 3398 378 780 49.12%
iSarcasm 3116 347 887 17.62%

Table 1: Dataset statistics, including number of sam-
ples in each split and the proportion of sarcastic texts.

(Oprea and Magdy, 2020). SemEval-18 consists
of both sarcastic and ironic tweets supervised by
third-party annotators and thus is used for per-
ceived sarcasm detection. The iSarcasm dataset
contains tweets written by participants of an online
survey and thus is an example of intended sarcasm
detection.

Table 1 summarizes the statistics of the four
datasets. The SemEval-18 dataset is balanced while
the iSarcasm dataset is imbalanced. The two source
datasets are more than ten times the size of the tar-
get datasets. For all datasets, we use the predefined
test set and use a random 10% split of the training
set as the development set.

We preprocessed all datasets using the lexical
normalization tool for tweets from Baziotis et al.
(2017). We cleaned the four datasets by dropping
all the duplicate tweets within and across datasets,
and trimmed the texts to a maximum length of
100. To deal with class imbalance, we performed
upsampling on the target-domain datasets, so that
both the sarcastic and non-sarcastic classes have
the same size as source domain datasets.

4.2 Baselines

We compare LOANT with several competitive
single-task and multi-task baselines.

MIARN (Tay et al., 2018): A state-of-the-art short

https://github.com/AniSkywalker/SarcasmDetection/tree/master/resource
https://github.com/AniSkywalker/SarcasmDetection/tree/master/resource
http://www.nltk.org/howto/twitter.html
http://www.nltk.org/howto/twitter.html
http://liks.fav.zcu.cz/sarcasm/
https://github.com/Cyvhee/SemEval2018-Task3/tree/master/datasets
https://github.com/Cyvhee/SemEval2018-Task3/tree/master/datasets
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text sarcasm detection model ranked top-1 on the
iSarcam dataset. The model is a co-attention based
LSTM model which uses the word embeddings
pretrained on Twitter data5.

Dense-LSTM (Wu et al., 2018): A state-of-the-art
single-task sarcasm detection model ranked top-1
on the SemEval-18 dataset. The model is a densely
connected LSTM network consisting of four Bi-
LSTM layers and the word embeddings pretrained
on two Twitter datasets.

BERT: We finetune the BERT model (Devlin et al.,
2019) with an additional simple classifier directly
on the target dataset.

S-BERT is a two-stage finetuning of the BERT
model. We first finetune BERT on the source
dataset and the best model is selected for further
fine-tuning on the target dataset.

MTL: We implemented a multi-task learning
(MTL) model, which has the same architecture as
LOANT except that the domain discriminator is re-
moved. We use BERT as the shared text encoding
network.

MTL+LO: In this baseline, we applied latent op-
timization to MTL. As MTL does not have the ad-
versarial discriminator, we use the domain-specific
losses to optimize latent representations:

z′s = zs − γ
∂Ls(zs)
∂zs

(18)

z′t = zt − γ
∂Lt(zt)
∂zt

(19)

We use the above to replace Equations 5 and 6 and
keep the rest training steps unchanged. This model
is compared against MTL to study the effects of
LO in non-adversarial training for cross-domain
sarcasm detection.

ANT: This is the conventional adversarial neu-
ral transfer model with the same architecture as
LOANT. The only difference is that we do not ap-
ply latent optimization. For fair comparisons, we
use BERT as the text encoder.

ANT+MAML: In Section 3.3, we discussed the
similarity between LO and MAML. Therefore, we
create a baseline that uses a MAML-like strategy
for encouraging the collaboration of different loss
terms. Instead of optimizing the latent represen-
tation zs and zt, we first take a SGD step in the

5https://nlp.stanford.edu/projects/
glove/

parameter space of wb,

w′
b = wb + γ

∂Ld(zs, zt)
∂wb

. (20)

After that, we use w′
b to compute the gradients

used in the actual updates to all model parameters,
including wb.

4.3 Experimental Settings
Model Settings. For all models using the BERT
text encoder, we use the uncased version of the
BERT-base model and take the 768-dimensional
output from the last layer corresponding to the
[CLS] token to represent a sentence. The BERT
parameters are always shared between domains.
For other network components, we randomly ini-
tialize the dense layers and classifiers. To mini-
mize the effect of different random initializations,
we generate the same set of initial parameters for
each network component and use them across all
baselines wherever possible.

The source dense layer, the shared dense layer,
and the target dense layer are single linear layers
with input size of 768 and output size of 768 fol-
lowed by the tanh activation. The classifier in all
models consists of two linear layers. The first linear
layer has input size of 768×2 (taking both shared
and domain-specific features) and output size of
768 followed by the ReLU activation. The second
linear layer has input size 768 and output size 2
for binary classification. After that we apply the
softmax operation. More details can be found in
Appendix B.

Training Setting. We optimize all models using
Adam (Kingma and Ba, 2014) with batch size of
128. We tune the learning rate (LR) on the develop-
ment set from 1e-5 to 1e-4 in increments of 2e-5.
To objectively assess the effects of latent optimiza-
tion (LO), we first find the best LR for the base
models such as ANT and MTL. After that, with
the best LR unchanged, we apply LO to ANT and
MTL. We use the cosine learning rate schedule for
all models. All models are trained for 5 epochs
on Nvidia V100 GPUs with 32GB of memory in
mixed precision. Due to the large model size and
pretrained weights of BERT, 5 epochs are sufficient
for convergence.

Evaluation Metrics. Following (Wu et al., 2018;
Van Hee et al., 2018; Oprea and Magdy, 2020), we
select and compare models using the F-score on
the sarcastic class in each dataset. We additionally

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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Target: SemEval-18
Model F-score Recall Precision

Single-task

Random† 0.3730 0.3730 0.3730
Unigram SVM† 0.5890 0.6590 0.5320
LSTM† 0.5260 0.4440 0.6450
DenseLSTM ∗ 0.6510 0.7106 0.6005
BERT 0.6626 0.7055 0.6246

Source: Ptáče

S-BERT 0.6676 0.7055 0.6337
MTL 0.6404 0.7896 0.5386
ANT 0.6348 0.8187 0.5184
MTL+LO 0.6598 0.7346 0.5989
ANT+MAML 0.6454 0.7540 0.5641
LOANT (ours) 0.6702 0.8025 0.5754

Source: Ghosh

S-BERT 0.6512 0.7766 0.5607
MTL 0.6525 0.7475 0.5789
ANT 0.6626 0.8899 0.5278
MTL+LO 0.6622 0.8058 0.5620
ANT+MAML 0.6338 0.7281 0.5610
LOANT (ours) 0.6818 0.7734 0.6096

Target: iSarcasm
Model F-score Recall Precision
SIARN‡ 0.3420 0.7820 0.2190
MIARN‡ 0.3640 0.7930 0.2360
LSTM‡ 0.3360 0.7470 0.2170
DenseLSTM‡ 0.3180 0.2760 0.3750
BERT 0.3492 0.4904 0.2711
S-BERT 0.3710 0.5541 0.2788
MTL 0.3767 0.3503 0.4074
ANT 0.3857 0.5159 0.3079
MTL+LO 0.4379 0.4267 0.4496
ANT+MAML 0.3951 0.5605 0.2923
LOANT (ours) 0.4642 0.4968 0.4357
S-BERT 0.3383 0.5732 0.2400
MTL 0.3838 0.5159 0.3056
ANT 0.4063 0.4904 0.3468
MTL+LO 0.3987 0.4012 0.3962
ANT+MAML 0.3589 0.4904 0.2830
LOANT (ours) 0.4101 0.4649 0.3668

† Results reported in (Van Hee et al., 2018), ∗ in (Wu et al., 2018) and ‡ in (Oprea and Magdy, 2020).
.

Table 2: Performance on the sarcastic class reported by single-task and multi-task models on the same test sets.
The best performed F-score on the four groups of transfer learning are in bold. The best single task learning results
are underlined.

report the corresponding Recall and Precision. In
all our experiments, we use the development set for
model selection and report their performance on
the test set. To evaluate the efficiency of LOANT
versus MAML-based training, we also compare
their required GPU memory and average training
time in each epoch. We compare models on the
target domain datasets. Additional multi-domain
performance can be found in Appendix C.

4.4 Comparison with the States of the Art

We compare LOANT with state-of-the-art meth-
ods on the SemEval-18 dataset (Van Hee et al.,
2018) and the iSarcasm datast (Oprea and Magdy,
2020). Table 2 presents the test performance of
LOANT and all baseline models. Our LOANT
model consistently outperforms all single-task base-
lines by large margins. In particular, LOANT out-
performs MIARN by 10.02% on iSarcasm (Oprea
and Magdy, 2020) whereas the fine-tuned BERT
achieved 1.48% lower than MIARN. On SemEval-
18, the fine-tuned BERT achieves better test perfor-
mance than other four single-task baselines. The
results indicate that fine-tuning BERT, a popular
baseline, does not always outperform the traditional
LSTM networks specifically designed for the task.
We hypothesize that the large BERT model can eas-
ily overfit the small datasets used, which highlights
the challenge of sarcasm detection.

SemEval-18 iSarcasm
Model RAM/Time RAM/Time

Source:
Ptáče

LOANT 1.01x/2.41x 1.01x/2.55x
MTL+LO 1.01x/1.92x 1.01x/1.91x
ANT 1.00x/1.00x 1.00x/1.00x
ANT + MAML 1.99x/8.31x 1.93x/10.2x

Source:
Ghosh

LOANT 1.01x/2.44x 1.01x/1.94x
MTL+LO 1.01x/1.94x 1.01x/1.89x
ANT 1.00x/1.00x 1.00x/1.00x
ANT + MAML 1.99x/8.41x 1.93x/10.7x

Table 3: Running time and maximum memory foot-
print for different transfer learning methods.

4.5 Transfer Learning Performance

The middle and bottom sections of Table 2 present
the test performance of six transfer learning models
(S-BERT, MTL, ANT, MTL+LO, ANT+MAML,
and LOANT) under four groups of transfer learning
experiments. These models generally outperform
the single-task models, demonstrating the impor-
tance of transfer learning. Among these, we have
the following observations.

Effects of the Domain Discriminator. The per-
formance differences between MTL and ANT can
be explained by the addition of the domain dis-
criminator, which encourages the shared features
under the source domain and the target domain to
have the same distributions. In the four pairs of
experiments, ANT marginally outperforms MTL
by an average of 0.9% F-score. In the Ptáček→
SemEval-18 experiment, the domain discriminator
causes F-score to decrease by 0.56%. Overall, the
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benefits of the adversarial discriminator to transfer
learning appear to be limited. As discussed earlier,
the competition between the domain-specific losses
and the negative domain discrimination loss may
have contributed to the ineffectiveness of ANT.

Effects of Latent Optimization. We can observe
the effects of LO by comparing ANT with LOANT
and comparing MTL with MTL+LO. Note that
in these experiments we adopted the best learn-
ing rates for the baseline models ANT and MTL
rather than the latent-optimized models. On av-
erage, LOANT outperforms ANT by 3.42% in F-
score and MTL+LO outperforms MTL by 2.63%,
which clearly demonstrates the benefits provided
by latent optimization.

Latent Space vs. Model Parameter Space. In
the ANT+MAML baseline, we adopt a MAML-
like optimization strategy, which performs the look-
ahead in the BERT parameter space instead of the
latent representation space. Interestingly, this strat-
egy does not provide much improvements and on
average performs 1.40% worse than ANT. LOANT
clearly outperforms ANT+MAML.

In addition, optimization in the latent space also
provides savings in computational time and space
requirements. Table 3 shows the time and mem-
ory consumption for different transfer learning
methods. Adding LO to ANT has minimal ef-
fects on the memory usage, but adding MAML
nearly doubles the memory consumption. On av-
erage, ANT+MAML increases the running time of
LOANT by 3.1 fold.

The Influence of Domain Divergence. In trans-
fer learning, the test performance depends on the
similarity between the domains. We thus investi-
gate the dissimilarity between datasets using the
Kullback–Leibler (KL) divergence between the un-
igram probability distributions,

dKL =
∑
g∈V

Pt(g)log
Pt(g)

Ps(g)
. (21)

where Ps(g) and Pt(g) are the probabilities of un-
igram g for the source domain and target domain
respectively. V is the vocabulary. Table 4 shows
the results. Ptáček is more similar to the two tar-
get datasets than Ghosh. Among the two target
datasets, iSarcasm is more similar to Ptáček than
SemEval-18.

Comparing LOANT and ANT, we observe that
the largest improvement, 7.85%, happens in the

SemEval-18 iSarcasm
Ptáček 0.1631 0.0521
Ghosh 0.2300 0.2217

Table 4: The KL divergence of word probability over
the overlapped vocabulary for each pair of domains.

Ptáček→ iSarcasm transfer where domain diver-
gence is the smallest. The Ptáček→ SemEval-18
transfer comes in second with 3.54%. Transferring
from Ghosh yields smaller improvements. Fur-
ther, we observe the same trend in the comparison
between MTL+LO and MTL. The largest improve-
ment brought by LO is 6.12% in the Ptáček →
iSarcasm transfer. As one may expect, applying
LO leads to greater performance gains when the
two domains are more similar.

5 Conclusion

Transfer learning holds the promise for the effective
utilization of multiple datasets for sarcasm detec-
tion. In this paper, we propose a latent optimization
(LO) strategy for adversarial transfer learning for
sarcasm detection. By providing look-ahead in the
gradient updates, the LO technique allows multiple
losses to accommodate each other. This proves
to be particularly effective in adversarial transfer
learning where the domain-specific losses and the
adversarial loss potentially conflict with one an-
other. With the proposed LOANT method, we set
a new state of the art for the iSarcasm dataset. We
hope the joint utilization of multiple datasets will
contribute to the creation of contextualized seman-
tic understanding that is necessary for successful
sarcasm detection.
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Appendix for “Latent-Optimized
Adversarial Neural Transfer for Sarcasm

Detection”

A First-order Approximation

Here we explain the gradients for the model param-
eters wb, wsh, φs, φt and θd. Generically, we apply
the first-order approximation by substituting Eq.11
into Eq. 10 and setting the Hessian to zero, which
gives

dLLO

dw
=
∂LLO

∂w
+
∂LLO

s (z′s)

∂z′s

∂zs
∂w

+
∂LLO

t (z′t)

∂z′t

∂zt
∂w

.

(22)

Note that zs and zt depend on only the parameter
wb. For the rest of the parameters, wsh, φs, φt and
θd, the partial derivatives ∂zs

∂w and ∂zt
∂w are zero.

Now we consider the joint objective (Eq.
9), which contains domain-specific classification
losses produced by both the old latent vector z and
the new latent vector z′. Thus, we derive at the
generic formula

∂LLO

∂w
=
∂LLO

s

∂w
+
∂LLO

t

∂w
− ∂Ld

∂w

=
∂Ls(zs)
∂w

+
∂Lt(zt)
∂w

− ∂Ld(zs, zt)
∂w

+
∂Ls(z′s)
∂w

+
∂Lt(z′t)
∂w

(23)

By the same reasoning above, the total derivative
of LLO against wb is

dLLO

dwb
=
∂LLO

∂wb
+
∂LLO

s (z′s)

∂z′s

∂zs
∂wb

+
∂LLO

t (z′t)

∂z′t

∂zt
∂wb

(24)

∂LLO

∂wb
=
∂Ls(zs)
∂wb

+
∂Lt(zt)
∂wb

− ∂Ld(zs, zt)
∂wb

+
∂Ls(z′s)
∂wb

+
∂Lt(z′t)
∂wb

(25)

For the rest of the parameters, the computation
is slightly different as they do not contribute to zs
and zt.

∂LLO

∂wsh
=
∂Ls(zs)
∂wsh

+
∂Lt(zt)
∂wsh

− ∂Ld(zs, zt)
∂wsh

+
∂Ls(z′s)
∂wsh

+
∂Lt(z′t)
∂wsh

(26)

∂LLO

∂φs
=
∂Ls(zs)
∂φs

+
∂Ls(z′s)
∂φs

(27)

∂LLO

∂φt
=
∂Lt(zt)
∂φt

+
∂Lt(z′t)
∂φt

(28)

The parameter of the domain discriminator θd is
updated to minimize Ld(zs, zt). This is in con-
trast to the rest of the model, which minimizes
−Ld(zs, zt). The update rule for θd is

θd ← θd − η
∂Ld(zs, zt)

∂θd
(29)

B Hyperparameters and Model
Initialization

We set the batch size to 128 for all models and
search for the optimal learning rate (LR) from 2e-5
to 1e-4 in increments of 2e-5 using the F-score on
the development set. We show the best learning
rates found in Table 5.

The best learning rate for fine-tuning BERT on
SemEval-18 and iSarcasm is 4e-5. S-BERT model
is finetuned twice, first on the source domain and
then on the target domain. Thus, we search for
one best learning rate for each finetuning using
the source and target development sets respectively.
The best first-round LR is 6e-05 for Ptáče and 8e-5
for Ghosh.

Other models, MTL, ANT and the LO-adpated
versions are selected using the target development
set. For a rigorous comparison, we use the best LR
for ANT when training LOANT and the best LR
for MTL when training MTL+LO.

We follow the released code6 to implement the
Gradient Reversal Layer. It is controlled by a sched-
ule which gradually increases the weight of the
gradients from the domain discrimination loss.

C Source Domain Performance

The original goal of the paper is to use auto-
matically collected sarcasm datasets, which are
large but noisy, to improve performance on human-
annotated datasets, which are clean and provide
good performance measure. That is why we pro-
vided only the target domain performance.

Upon close inspection, LOANT also improves
the performance on the source domain, even though

6https://github.com/fungtion/DANN

https://github.com/fungtion/DANN
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Models
Ptáče →
SemEval

Ghosh →
SemEval

Ptáče →
iSarcasm

Ghosh →
iSarcasm

S-BERT 1e-4 1e-4 4e-5 2e-5
MTL 6e-4 8e-5 4e-5 1e-4

MTL+LO 6e-4 8e-5 4e-5 1e-4
ANT 2e-5 4e-5 2e-5 2e-5

ANT+MAML 2e-5 4e-5 2e-5 2e-5
LOANT 2e-5 4e-5 2e-5 2e-5

Table 5: Learning rate chosen by each model on the
given search grid.

Domain ANT LOANT MTL MTL+LO
Ptacek 0.8307 0.8484 0.8640 0.8629

iSarcasm 0.3857 0.4642 0.3767 0.4379
Average 0.6082 0.6563 0.62035 0.6504
Ghosh 0.7345 0.6596 0.6609 0.6688

iSarcasm 0.4063 0.4101 0.3838 0.3953
Average 0.5704 0.5349 0.5224 0.5321
Ptacek 0.8626 0.8612 0.8722 0.8666

SemEval18 0.6348 0.6702 0.6404 0.6598
Average 0.7487 0.7657 0.7563 0.7632
Ghosh 0.7161 0.7752 0.7700 0.7579

SemEval18 0.6626 0.6818 0.6525 0.6622
Average 0.6894 0.7285 0.7113 0.7101

Table 6: Test F1 score for both domains using model
selection on the target domain only.

Domain ANT LOANT MTL MTL+LO
Ptacek 0.8307 0.8484 0.8640 0.8629

iSarcasm 0.3857 0.4642 0.3767 0.4379
Average 0.6082 0.6563 0.6204 0.6504
Ghosh 0.7787 0.7826 0.7859 0.7807

iSarcasm 0.3965 0.3215 0.3764 0.3953
Average 0.5876 0.5521 0.5812 0.5880
Ptacek 0.8567 0.8612 0.8720 0.8632

SemEval18 0.6463 0.6702 0.6594 0.6666
Average 0.7515 0.7657 0.7657 0.7649
Ghosh 0.7919 0.7962 0.7672 0.7884

SemEval18 0.6427 0.6490 0.6357 0.6442
Average 0.7173 0.7226 0.7015 0.7163

Table 7: Test F1 score for both domains using model
selection on the average F1 of the two domains.

model selection was performed on the target do-
main. Table 6shows the results.

In Table 7, we also show the results after model
selection on both domains. Naturally, this might
lead to slightly lowered target-domain performance
than achieved by model selection on target do-
main only. Comparing LOANT with ANT, and
MTL+LO with MTL, our results show that, in most
cases, LO-based models improve both source and
target domain F1. In particular, target domain F1
obtains more improvement than source domain F1.
This suggests that LO provides benefits to knowl-
edge transfer.


