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Abstract

Existing works on multimodal affective com-
puting tasks, such as emotion recognition, gen-
erally adopt a two-phase pipeline, first ex-
tracting feature representations for each sin-
gle modality with hand-crafted algorithms and
then performing end-to-end learning with the
extracted features. However, the extracted fea-
tures are fixed and cannot be further fine-tuned
on different target tasks, and manually finding
feature extraction algorithms does not general-
ize or scale well to different tasks, which can
lead to sub-optimal performance. In this pa-
per, we develop a fully end-to-end model that
connects the two phases and optimizes them
jointly. In addition, we restructure the current
datasets to enable the fully end-to-end training.
Furthermore, to reduce the computational over-
head brought by the end-to-end model, we in-
troduce a sparse cross-modal attention mecha-
nism for the feature extraction. Experimental
results show that our fully end-to-end model
significantly surpasses the current state-of-the-
art models based on the two-phase pipeline.
Moreover, by adding the sparse cross-modal
attention, our model can maintain performance
with around half the computation in the feature
extraction part.

1 Introduction

Humans show their characteristics through not only
the words they use, but also the way they speak and
their facial expressions. Therefore, in multimodal
affective computing tasks, such as emotion recog-
nition, there are usually three modalities: textual,
acoustic, and visual. One of the main challenges
in these tasks is how to model the interactions be-
tween different modalities, as they contain both sup-
plementary and complementary information (Bal-
trušaitis et al., 2018).

* Equal contribution.
Code is available at: https://github.com/
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Figure 1: An illustration of feature extraction from
hand-crafted model (left), fully end-to-end model (mid-
dle), and sparse end-to-end model (right). The red dots
represent the keypoints extracted by hand-crafted mod-
els. The areas formed by red lines represent the regions
of interest that are processed by (sparse) end-to-end
models to extract the features.

In the existing works, we discover that a two-
phase pipeline is generally used (Zadeh et al.,
2018a,b; Tsai et al., 2018, 2019; Rahman et al.,
2020). In the first phase, given raw input data, fea-
ture representations are extracted with hand-crafted
algorithms for each modality separately, while in
the second phase, end-to-end multimodal learning
is performed using extracted features. However,
there are three major defects of this two-phase
pipeline: 1) the features are fixed after extraction
and cannot be further fine-tuned on target tasks; 2)
manually searching for appropriate feature extrac-
tion algorithms is needed for different target tasks;
and 3) the hand-crafted model considers very few
data points to represent higher-level feature, which
might not capture all the useful information. These
defects can result in sub-optimal performance.

In this paper, we propose a fully end-to-end
model that connects the two phases together and
optimizes them jointly. In other words, the model
receives raw input data and produces the output pre-

https://github.com/wenliangdai/Multimodal-End2end-Sparse
https://github.com/wenliangdai/Multimodal-End2end-Sparse
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dictions, which allows the features to be learned au-
tomatically through the end-to-end training. How-
ever, the current datasets for multimodal emotion
recognition cannot be directly used for the fully
end-to-end training, and we thus conduct a data
restructuring to make this training possible. The
benefits from the end-to-end training are that the
features are optimized on specific target tasks, and
there is no need to manually select feature extrac-
tion algorithms. Despite the advantages of the end-
to-end training, it does bring more computational
overhead compared to the two-phase pipeline, and
exhaustively processing all the data points makes
it computationally expensive and prone to over-
fitting. Thus, to mitigate these side-effects, we also
propose a multimodal end-to-end sparse model,
a combination of a sparse cross-modal attention
mechanism and sparse Convolutional Neural Net-
work (CNN) (Graham and van der Maaten, 2017),
to select the most relevant features for the task and
reduce the redundant information and noise in the
video and audio.

Experimental results show that the simply end-
to-end training model is able to consistently out-
perform the existing state-of-the-art models which
are based on the two-phase pipeline. Moreover,
the incorporation of the sparse cross-modal atten-
tion and sparse CNN is able to greatly reduce the
computational cost and maintain the performance.

We summarize our contributions as follows.

• To the best of our knowledge, we are the first
to apply a fully end-to-end trainable model for
the multimodal emotion recognition task.

• We restructure the existing multimodal emo-
tion recognition datasets to enable the end-to-
end training and cross-modal attention based
on the raw data.

• We show that the fully end-to-end training sig-
nificantly outperforms the current state-of-the-
art two-phase models, and the proposed sparse
model can greatly reduce the computational
overhead while maintaining the performance
of the end-to-end training. We also conduct a
thorough analysis and case study to improve
the interpretability of our method.

2 Related Works

Human affect recognition is a popular and widely
studied research topic (Mirsamadi et al., 2017;

Zhang and Liu, 2017; Xu et al., 2020; Dai et al.,
2020b). In recent years, there is a trend to lever-
age multimodal information to tackle these re-
search tasks, such as emotion recognition (Busso
et al., 2008), sentiment analysis (Zadeh et al.,
2016, 2018b), personality trait recognition (No-
javanasghari et al., 2016), etc, have drawn more
and more attention. Different methods have been
proposed to improve the performance and cross-
modal interactions. In earlier works, early fu-
sion (Morency et al., 2011; Pérez-Rosas et al.,
2013) and late fusion (Zadeh et al., 2016; Wang
et al., 2017) of modalities were widely adopted.
Later, more complex approaches were proposed.
For example, Zadeh et al. (2017) introduced the
Tensor Fusion Network to model the interactions
of the three modalities by performing the Carte-
sian product, while (Wang et al., 2019) used an
attention gate to shift the words using the visual
and acoustic features. In addition, based on the
Transformer (Vaswani et al., 2017), Tsai et al.
(2019) introduced the Multimodal Transformer to
improve the performance given unaligned multi-
modal data, and Rahman et al. (2020) introduced a
multimodal adaptation gate to integrate visual and
acoustic information into a large pre-trained lan-
guage model. However, unlike some other multi-
modal tasks (Chen et al., 2017; Yu et al., 2019;
Li et al., 2019) using fully end-to-end learning,
all of these methods require a feature extraction
phase using hand-crafted algorithms (details in Sec-
tion 5.2), which makes the whole approach a two-
phase pipeline.

3 Dataset Reorganization

The fully end-to-end multimodal model requires
the inputs to be raw data for the three modalities
(visual, textual and acoustic). The existing mul-
timodal emotion recognition datasets cannot be
directly applied for the fully end-to-end training
for two main reasons. First, the datasets provide
split of training, validation and test data for the
hand-crafted features as the input of the model
and emotion or sentiment labels as the output of
the model. However, this dataset split cannot be di-
rectly mapped to the raw data since the split indices
cannot be matched back to the raw data. Second,
the labels of the data samples are aligned with the
text modality. However, the visual and acoustic
modalities are not aligned with the textual modality
in the raw data, which disables the fully end-to-end
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training. To make the existing datasets usable for
the fully end-to-end training and evaluation, we
need to reorganize them according to two steps: 1)
align the text, visual and acoustic modalities; 2)
split the aligned data into training, validation and
test sets.

In this work we reorganize two emotion recog-
nition datasets: Interactive Emotional Dyadic Mo-
tion Capture (IEMOCAP) and CMU Multimodal
Opinion Sentiment and Emotion Intensity (CMU-
MOSEI). Both have multi-class and multi-labelled
data for multimodal emotion recognition obtained
by generating raw utterance-level data, aligning the
three modalities, and creating a new split over the
aligned data. In the following section, we will first
introduce the existing datasets, and then we will
give a detailed description of how we reorganize
them.

3.1 IEMOCAP
IEMOCAP (Busso et al., 2008) is a multimodal
emotion recognition dataset containing 151 videos.
In each video, two professional actors conduct
dyadic conversations in English. The dataset is
labelled by nine emotion categories, but due to the
data imbalance issue, we take the six main cate-
gories: angry, happy, excited, sad, frustrated, and
neutral. As the dialogues are annotated at the ut-
terance level, we clip the data per utterance from
the provided text transcription time, which results
in 7,380 data samples in total. Each data sam-
ple consists of three modalities: audio data with
a sampling rate of 16 kHz, a text transcript, and
image frames sampled from the video at 30 Hz.
The provided pre-processed data from the exist-
ing work (Busso et al., 2008) 1 doesn’t provide
an identifier for each data sample, which makes it
impossible to reproduce it from the raw data. To
cope with this problem, we create a new split for
the dataset by randomly allocating 70%, 10%, and
20% of data into the training, validation, and test-
ing sets, respectively. The statistics of our dataset
split are shown in Table 1.

3.2 CMU-MOSEI
CMU-MOSEI (Zadeh et al., 2018b) comprises
3,837 videos from 1,000 diverse speakers with six
emotion categories: happy, sad, angry, fearful, dis-
gusted, and surprised. It is annotated at utterance-
level, with a total of 23,259 samples. Each data

1http://immortal.multicomp.cs.cmu.edu/
raw_datasets/processed_data/iemocap

Label Avg. word
length

Avg. clip
duration (s)

Train
size

Valid
size

Test
size

Anger 15.96 4.51 757 112 234
Excited 16.79 4.78 736 92 213
Frustrated 17.14 4.71 1298 180 371
Happiness 13.58 4.34 398 62 135
Neutral 13.08 3.90 1214 173 321
Sadness 14.82 5.50 759 118 207

Table 1: Statistics of our IEMOCAP dataset split.

Label Avg. word
length

Avg. clip
duration (s)

Train
size

Valid
size

Test
size

Anger 7.75 23.24 3267 318 1015
Disgust 7.57 23.54 2738 273 744
Fear 10.04 28.82 1263 169 371
Happiness 8.14 24.12 7587 945 2220
Sadness 8.12 24.07 4026 509 1066
Surprise 8.40 25.95 1465 197 393

Table 2: Statistics of our CMU-MOSEI dataset split.

sample in CMU-MOSEI consists of three modali-
ties: audio data with a sampling rate of 44.1 kHz,
a text transcript, and image frames sampled from
the video at 30 Hz. We generate the utterance-level
data from the publicly accesible raw CMU-MOSEI
dataset. 2 The generated utterances are perfectly
matched with the preprocessed data from the ex-
isting work (Zadeh et al., 2018b), but there are
two issues with the existing dataset: 1) in includes
many misaligned data samples; and 2) many of the
samples do not exist in the generated data, and vice
versa, in the provided standard split from the CMU
MultiModal SDK. 3 To cope with the first issue,
we perform data cleaning to remove the misaligned
samples, which results in 20,477 clips in total. We
then create a new dataset split following the CMU-
MOSEI split for the sentiment classification task. 4

The statistics of the new dataset split setting are
shown in Table 2.

4 Methodology

4.1 Problem Definition
We define I multimodal data samples as X =
{(ti, ai, vi)}Ii=1, in which ti is a sequence of words,
ai is a sequence of spectrogram chunks from the

2http://immortal.multicomp.cs.cmu.edu/
raw_datasets/processed_data/cmu-mosei/
seq_length_20/

3https://github.com/A2Zadeh/
CMU-MultimodalSDK

4http://immortal.multicomp.cs.cmu.edu/
raw_datasets/processed_data/cmu-mosei/
seq_length_50/mosei_senti_data_noalign.
pkl

http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/iemocap
http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/iemocap
http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/cmu-mosei/seq_length_20/
http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/cmu-mosei/seq_length_20/
http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/cmu-mosei/seq_length_20/
https://github.com/A2Zadeh/CMU-MultimodalSDK
https://github.com/A2Zadeh/CMU-MultimodalSDK
http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/cmu-mosei/seq_length_50/mosei_senti_data_noalign.pkl
http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/cmu-mosei/seq_length_50/mosei_senti_data_noalign.pkl
http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/cmu-mosei/seq_length_50/mosei_senti_data_noalign.pkl
http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/cmu-mosei/seq_length_50/mosei_senti_data_noalign.pkl
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Figure 2: Architecture of our Multimodal End-to-end Sparse Model (MESM). On the left, we show the general
architecture flow. In the middle and on the right, we exhibit the details of the cross-modal sparse CNN block,
especially the cross-modal attention layer, which is the key to making the CNN model sparse.

audio, and vi is a sequence of RGB image frames
from the video. Y = {yi}Ii=1 denotes the annota-
tion for each data sample.

4.2 Fully End-to-End Multimodal Modeling

We build a fully end-to-end model which jointly op-
timizes the two separate phases (feature extraction
and multimodal modelling).

For each spectrogram chunk and image frame
in the visual and acoustic modalities, we first use
a pre-trained CNN model (an 11-layer VGG (Si-
monyan and Zisserman, 2014) model) to extract the
input features, which are then flattened to vector
representations using a linear transformation. After
that, we can obtain a sequence of representations
for both visual and acoustic modalities. Then, we
use a Transformer (Vaswani et al., 2017) model to
encode the sequential representations since it con-
tains positional embeddings to model the temporal
information. Finally, we take the output vector at
the “CLS” token and apply a feed-forward network
(FFN) to get the classification scores.

In addition, to reduce GPU memory and
align with the two-phase baselines which ex-
tract visual features from human faces, we use a
MTCNN (Zhang et al., 2016) model to get the
location of faces for the image frames before feed-
ing them into the VGG. For the textual modality,
the Transformer model is directly used to process
the sequence of words. Similar to the visual and
acoustic modalities, we consider the feature at the

“CLS” token as the output feature and feed it into a
FFN to generate the classification scores. We take
a weighted sum of the classification scores from
each modality to make the final prediction score.

4.3 Multimodal End-to-end Sparse Model

Although the fully end-to-end model has many ad-
vantages over the two-phase pipeline, it also brings
much computational overhead. To reduce this over-
head without downgrading the performance, we in-
troduce our Multimodal End-to-end Sparse Model
(MESM). Figure 2 shows the overall architecture of
MESM. In contrast to the fully end-to-end model,
we replace the original CNN layers (except the
first one for low-level feature capturing) with N
cross-modal sparse CNN blocks. A cross-modal
sparse CNN block consists of two parts, a cross-
modal attention layer and a sparse CNN model that
contains two sparse VGG layers and one sparse
max-pooling layer.

4.3.1 Cross-modal Attention Layer

The cross-modal attention layer accepts two inputs:
a query vector q ∈ Rd and a stack of feature maps
M ∈ RC×S×H×W , where C, S,H, and W are the
number of channels, sequence length, height, and
width, respectively. Then, the cross-modal spatial
attention is performed over the feature maps using
the query vector. The cross-modal spatial attention
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can be formularized in the following steps:

Mq = tanh ((WmM + bm)⊕Wqq) (1)

Mi = softmax (WiMq + bi) (2)

Mns = Nucleus Sampling (Mi) (3)

Mo = Mns ⊗M, (4)

in which Wm ∈ Rk×C , Wq ∈ Rk×d, and Wi ∈ Rk

are linear transformation weights, and bm ∈ Rk

and bi ∈ R1 are biases, where k is a pre-defined
hyper-parameter, and ⊕ represents the broadcast
addition operation of a tensor and a vector. In Eq.2,
the softmax function is applied to the (H ×W ) di-
mensions, and Mi ∈ RS×H×W is the tensor of the
spatial attention scores corresponding to each fea-
ture map. Finally, to make the input feature maps
M sparse while reserving important information,
firstly, we perform Nucleus Sampling (Holtzman
et al., 2019) on Mi to get the top-p portion of the
probability mass in each attention score map (p
is a pre-defined hyper-parameter in the range of
(0, 1]). In Mns, the points selected by the Nucleus
Sampling are set to one and the others are set to
zero. Then, we do broadcast point-wise multipli-
cation between Mns and M to generate the output
Mo. Therefore, Mo is a sparse tensor with some
positions being zero, and the degree of sparsity is
controlled by p.

4.3.2 Sparse CNN

We use the submanifold sparse CNN (Graham and
van der Maaten, 2017) after the cross-modal at-
tention layer. It is leveraged for processing low-
dimensional data which lies in a space of higher
dimensionality. In the multimodal emotion recog-
nition task, we assume that only part of the data
is related to the recognition of emotions (an intu-
itive example is given in Figure 1), which makes
it align with the sparse setting. In our model, the
sparse CNN layer accepts the output from the cross-
modal attention layer, and does convolution com-
putation only at the active positions. Theoretically,
in terms of the amount of computation (FLOPs)
at a single location, a standard convolution costs
z2mn FLOPs, and a sparse convolution costs amn
FLOPs, where z is the kernel size, m is the number
of input channels, n is the number of output chan-
nels, and a is the number of active points at this
location. Therefore, considering all locations and
all layers, the sparse CNN can help to significantly
reduce computation.

5 Experiments

5.1 Evaluation Metrics

Following prior works (Tsai et al., 2018; Wang
et al., 2019; Tsai et al., 2019; Dai et al., 2020a),
we use the accuracy and F1-score to evaluate the
models on the IEMOCAP dataset. On the CMU-
MOSEI dataset, we use the weighted accuracy in-
stead of the standard accuracy. Additionally, ac-
cording to Dai et al. (2020a), we use the standard
binary F1 rather than the weighted version.

Weighted Accuracy Similar to existing
works (Zadeh et al., 2018b; Akhtar et al., 2019),
we use the weighted accuracy (WAcc) (Tong et al.,
2017) to evaluate the CMU-MOSEI dataset, which
contains many more negative samples than positive
ones on each emotion category. If normal accuracy
is used, a model will still get a fine score when
predicting all samples to be negative. The formula
of the weighted accuracy is

WAcc. =
TP ×N/P + TN

2N
,

in which P means total positive, TP true positive,
N total negative, and TN true negative.

5.2 Baselines

For our baselines, we use a two-phase pipeline,
which consists of a feature extraction step and an
end-to-end learning step.

Feature Extraction We follow the feature ex-
traction procedure in the previous works (Zadeh
et al., 2018b; Tsai et al., 2018, 2019; Rahman et al.,
2020). For the visual data, we extract 35 facial ac-
tion units (FAUs) using the OpenFace library5 (Bal-
trušaitis et al., 2015; Baltrusaitis et al., 2018) for the
image frames in the video, which capture the move-
ment of facial muscles (Ekman et al., 1980). For the
acoustic data, we extract a total of 142 dimension
features consisting of 12 dimension bark band en-
ergy (BBE) features, 22 dimension mel-frequency
cepstral coefficient (MFCC) features, and 108 sta-
tistical features from 18 phonological classes. We
extract the features per 400 ms time frame using
the DisVoice library6 (Vásquez-Correa et al., 2018,
2019). For textual data, we use the pre-trained

5https://github.com/TadasBaltrusaitis/
OpenFace

6https://github.com/jcvasquezc/
DisVoice

https://github.com/TadasBaltrusaitis/OpenFace
https://github.com/TadasBaltrusaitis/OpenFace
https://github.com/jcvasquezc/DisVoice
https://github.com/jcvasquezc/DisVoice
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Model #FLOPs
(×109)

Angry Excited Frustrated Happy Neutral Sad Average
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

LF-LSTM - 71.2 49.4 79.3 57.2 68.2 51.5 67.2 37.6 66.5 47.0 78.2 54.0 71.8 49.5
LF-TRANS - 81.9 50.7 85.3 57.3 60.5 49.3 85.2 37.6 72.4 49.7 87.4 57.4 78.8 50.3
EmoEmbs† - 65.9 48.9 73.5 58.3 68.5 52.0 69.6 38.3 73.6 48.7 80.8 53.0 72.0 49.8
MulT† - 77.9 60.7 76.9 58.0 72.4 57.0 80.0 46.8 74.9 53.7 83.5 65.4 77.6 56.9

FE2E 8.65 88.7 63.9 89.1 61.9 71.2 57.8 90.0 44.8 79.1 58.4 89.1 65.7 84.5 58.8
MESM (p = 0.7) 5.18 88.2 62.8 88.3 61.2 74.9 58.4 89.5 47.3 77.0 52.0 88.6 62.2 84.4 57.4

Table 3: The results on the IEMOCAP dataset. #FLOPs is the number of floating point operations per second. We
report the accuracy (Acc.) and the F1-score on six emotion categories: angry, excited, frustrated, happy, neutral
and sad. We re-run the models marked by †, as we use two more categories and the split is different.

Model #FLOPs
(×109)

Angry Disgusted Fear Happy Sad Surprised Average
WAcc. F1 WAcc. F1 WAcc. F1 WAcc. F1 WAcc. F1 WAcc. F1 WAcc. F1

LF-LSTM - 64.5 47.1 70.5 49.8 61.7 22.2 61.3 73.2 63.4 47.2 57.1 20.6 63.1 43.3
LF-TRANS - 65.3 47.7 74.4 51.9 62.1 24.0 60.6 72.9 60.1 45.5 62.1 24.2 64.1 44.4
EmoEmbs† - 66.8 49.4 69.6 48.7 63.8 23.4 61.2 71.9 60.5 47.5 63.3 24.0 64.2 44.2
MulT† - 64.9 47.5 71.6 49.3 62.9 25.3 67.2 75.4 64.0 48.3 61.4 25.6 65.4 45.2

FE2E 8.65 67.0 49.6 77.7 57.1 63.8 26.8 65.4 72.6 65.2 49.0 66.7 29.1 67.6 47.4
MESM (0.5) 4.34 66.8 49.3 75.6 56.4 65.8 28.9 64.1 72.3 63.0 46.6 65.7 27.2 66.8 46.8

Table 4: The results on the CMU-MOSEI dataset. WAcc stands for weighted accuracy. We report the accuracy and
the F1-score on six emotion categories: angry, disgusted, fear, happy, sad and surprised. We re-run the models
marked by †, as the data we use is unaligned along the sequence length dimension and the split is different.

GloVe (Pennington et al., 2014) word embeddings
(glove.840B.300d7).

Multimodal Learning As different modalities
are unaligned in the data, we cannot compare our
method with existing works that can only handle
aligned input data. We use four multimodal learn-
ing models as baselines: the late fusion LSTM
(LF-LSTM) model, the late fusion Transformer
(LF-TRANS) model, the Emotion Embeddings
(EmoEmbs) model (Dai et al., 2020a), and the Mul-
timodal Transformer (MulT) model (Tsai et al.,
2019). They receive the hand-crafted features ex-
tracted from the first step as input and give the
classification decisions.

5.3 Training Details

We use the Adam optimizer (Kingma and Ba, 2014)
for the training of every model we use. For the
loss function, we use the binary cross-entropy loss
as both of the datasets are multi-class and multi-
labelled. In addition, the loss for the positive sam-
ples is weighted by the ratio of the number of pos-
itive and negative samples to mitigate the imbal-
ance problem. For all of the models, we perform
an exhaustive hyper-parameter search to ensure we
have solid comparisons. The best hyper-parameters

7https://nlp.stanford.edu/projects/
glove/

are reported in Appendix A. Our experiments are
run on an Nvidia 1080Ti GPU, and our code is
implemented in the PyTorch (Paszke et al., 2019)
framework v1.6.0. We perform preprocessing for
the text and audio modalities. For the text modality,
we perform word tokenization for our baseline and
subword tokenization for our end-to-end model.
We limit the length of the text to up to 50 tokens.
For the audio modality, we use mel-spectrograms
with a window size of 25 ms and stride of 12.5 ms
and then chunk the spectrograms per 400 ms time
window.

6 Analysis

6.1 Results Analysis

In Table 3, we show the results on the IEMOCAP
dataset. Compared to the baselines, the fully end-
to-end (FE2E) model surpasses them by a large
margin on all the evaluation metrics. Empirically,
this shows the superiority of the FE2E model over
the two-phase pipeline. Furthermore, our MESM
achieves comparable results with the FE2E model,
while requiring much less computation in the fea-
ture extraction. Here, we only show the results of
MESM with the best p value of the Nucleus Sam-
pling. In Section 6.3, we conduct a more detailed
discussion of the effects of the top-p values. We
further evaluate the methods on the CMU-MOSEI

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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Figure 3: Case study of MESM on six basic emotion categories (happy, sad, angry, surprised, fear, disgusted).
From left to right, we show the original image and the Nucleus Sampling (p = 0.6) result over points in each
attention layer. Red regions represent the points that are computed for the next layer.

Attention over Mel-Spectrum

original layer 1 layer 2 layer 3

Figure 4: Visualization of cross-modal attention of the
acoustic modality. We only show the highest 10% value
of mel-spectrogram in each image. From left to right,
we show the original image and the Nucleus Sampling
(p = 0.6) results over points in each attention layer.
Red regions represent the active points that will go to
the next sparse CNN layer.

dataset and the results are shown in Table 4. We
observe similar trends on this dataset.

6.2 Case Study

To improve the interpretability and gain more in-
sights from our model, we visualize the attention
maps of our sparse cross-modal attention mecha-
nism on the six basic emotions: happy, sad, an-
gry, surprised, fear, and disgusted. As shown in
Figure 3, in general, the models attend to several
regions of interest such as the mouth, eyes, eye-
brows, and facial muscles between the mouth and

the eyes. We verify our method by comparing the
regions that our model captures based on the facial
action coding system (FACS) (Ekman, 1997). Fol-
lowing the mapping of FACS to human emotion
categories (Basori, 2016; Ahn and Chung, 2017),
we conduct empirical analysis to validate the sparse
cross-modal attention on each emotion category.
For example, the emotion happy is highly influ-
enced by raising of the lip on both ends, while
sad is related to a lowered lip on both ends and
downward movement of the eyelids. Angry is de-
termined from a narrowed gap between the eyes
and thinned lips, while surprised is expressed with
an open mouth and raising of the eyebrows and
eyelids. Fear is indicated by a rise of the eyebrows
and upper eyelids, and also an open mouth with the
ends of the lips slightly moving toward the cheeks.
For the emotion disgusted, wrinkles near the nose
area and movement of the upper lip region are the
determinants.

Based on the visualization of the attention maps
on the visual data in Figure 3, the MESM can cap-
ture most of the specified regions of interest for
the six emotion categories. For the emotion angry,
the sparse cross-modal attention can retrieve the
features from the lip region quite well, but it some-
times fails to capture the gap between the eyes. For
surprised, the eyelids and mouth regions can be
successfully captured by MESM, but sometimes
the model fails to consider the eyebrow regions.
For the acoustic modality, it is hard to analyse the
attention in terms of emotion labels. We show a
general visualization of the attention maps over
the audio data in Figure 4. The model attends to
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Figure 5: The trend line of the Top: Weighted Accu-
racy and Bottom: FLOPs (x109)) of the MESM with
different top-p values used in the Nucleus Sampling.
represents performance of MESM, while represents
performance of the FE2E model

the regions with high spectrum values in the early
attention layer, and more points are filtered out
after going through further cross-modal attention
layers. More visualized examples are provided in
Appendix B.

6.3 Effects of Nucleus Sampling

To have an in-depth understanding of the effects
of Nucleus Sampling on the MESM, we perform
more experiments with different top-p values rang-
ing from 0 to 1, with a step of 0.1. As shown in
Figure 5, empirically, the amount of computation is
reduced consistently with the decrease of the top-p
values. In terms of performance, with a top-p value
from 0.9 to 0.5, there is no significant drop in the
evaluation performance. Starting from 0.5 to 0.1,
we can see a clear downgrade in the performance,
which means some of the useful information for
recognizing the emotion is excluded. The inflec-
tion point of this elbow shaped trend line can be an
indicator to help us make a decision on the value
of the top-p. Specifically, with a top-p of 0.5, the
MESM can achieve comparable performance to the
FE2E model with around half of the FLOPs in the
feature extraction.

Model Mods. Avg. Acc Avg. F1

FE2E

TAV 84.5 58.5
TA 83.7 54.0
TV 82.8 55.7
VA 81.2 54.4
T 80.8 50.0
A 73.3 44.9
V 78.2 49.8

MESM
TAV 84.4 57.3
TA 83.6 56.7
TV 82.1 56.0

Table 5: Results of the ablation study of our fully
end-to-end model (FE2E) and multimodal end-to-end
sparse model (MESM) on the IEMOCAP dataset. In
the Mods. (modalities) column, the T/A/V indicates
the existence of the textual (T), acoustic (A), and visual
(V) modalities.

7 Ablation Study

We conduct a comprehensive ablation study to fur-
ther investigate how the models perform when one
or more modalities are absent. The results are
shown in Table 5. Firstly, we observe that the
more modalities the more improvement in the per-
formance. TAV, representing the presence of all
three modalities, results in the best performance
for both models, which shows the effectiveness of
having more modalities. Secondly, with only a sin-
gle modality, the textual modality results in better
performance than the other two, which is similar
to the results of previous multimodal works. This
phenomenon further validates that using textual (T)
to attend to acoustic (A) and visual (V) in our cross-
modal attention mechanism is a reasonable choice.
Finally, with two modalities, the MESM can still
achieve a performance that is on par with the FE2E
model or is even slightly better.

8 Conclusion and Future Work

In this paper, we first compare and contrast the
two-phase pipeline and the fully end-to-end (FE2E)
modelling of the multimodal emotion recognition
task. Then, we propose our novel multimodal
end-to-end sparse model (MESM) to reduce the
computational overhead brought by the fully end-
to-end model. Additionally, we reorganize two
existing datasets to enable fully end-to-end train-
ing. The empirical results demonstrate that the
FE2E model has an advantage in feature learning
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and surpasses the current state-of-the-art models
that are based on the two-phase pipeline. Further-
more, MESM is able to halve the amount of com-
putation in the feature extraction part compared to
FE2E, while maintaining its performance. In our
case study, we provide a visualization of the cross-
modal attention maps on both visual and acous-
tic data. It shows that our method can be inter-
pretable, and the cross-modal attention can suc-
cessfully select important feature points based on
different emotion categories. For future work, we
believe that incorporating more modalities into the
sparse cross-modal attention mechanism is worth
exploring since it could potentially enhance the
robustness of the sparsity (selection of features).
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A Hyper-parameter Settings

IEMOCAP CMU-MOSEI
FE2E MESM FE2E MESM

Batch size 8 8 8 8
Learning rate 5e-5 5e-5 5e-5 5e-5
Dim 64 64 64 64
#Heads 4 4 4 4
#Layers 4 4 4 4
Max text len 50 100 50 100
N - 3 - 3

Table 6: The best hyper-parameters used in training for
the two datasets.

B Case Study on Acoustic Modality

We provide more visualized examples of the sparse
cross-modal attention maps of the acoustic modal-
ity in Figure 6.
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Figure 6: Case study of the sparse cross-modal attention maps on six basic emotion categories (happy, sad, angry,
surprised, fear, disgusted) on the audio modality. From the left to right, we show the original image and the
Nucleus Sampling results over feature points in each attention layer. Red regions represent the active points that
will be computed in the next sparse layer.


