
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 5288–5304

June 6–11, 2021. ©2021 Association for Computational Linguistics

5288

Improving Factual Completeness and Consistency of
Image-to-Text Radiology Report Generation

Yasuhide Miura, Yuhao Zhang, Emily Bao Tsai, Curtis P. Langlotz, Dan Jurafsky
Stanford University

{ysmiura, zyh, ebtsai, langlotz, jurafsky}@stanford.edu

Abstract

Neural image-to-text radiology report gener-
ation systems offer the potential to improve
radiology reporting by reducing the repeti-
tive process of report drafting and identifying
possible medical errors. However, existing
report generation systems, despite achieving
high performances on natural language genera-
tion metrics such as CIDEr or BLEU, still suf-
fer from incomplete and inconsistent genera-
tions. Here we introduce two new simple re-
wards to encourage the generation of factually
complete and consistent radiology reports: one
that encourages the system to generate radiol-
ogy domain entities consistent with the refer-
ence, and one that uses natural language in-
ference to encourage these entities to be de-
scribed in inferentially consistent ways. We
combine these with the novel use of an exist-
ing semantic equivalence metric (BERTScore).
We further propose a report generation sys-
tem that optimizes these rewards via reinforce-
ment learning. On two open radiology report
datasets, our system substantially improved
the F1 score of a clinical information extrac-
tion performance by +22.1 (∆ + 63.9%). We
further show via a human evaluation and a
qualitative analysis that our system leads to
generations that are more factually complete
and consistent compared to the baselines.

1 Introduction

An important new application of natural language
generation (NLG) is to build assistive systems that
take X-ray images of a patient and generate a tex-
tual report describing clinical observations in the
images (Jing et al., 2018; Li et al., 2018; Liu et al.,
2019; Boag et al., 2020; Chen et al., 2020). Figure
1 shows an example of a radiology report generated
by such a system. This is a clinically important
task, offering the potential to reduce radiologists’
repetitive work and generally improve clinical com-
munication (Kahn et al., 2009).

Reference Report
Large right pleural effusion is unchanged 
in size. There is associated right basilar 
atelectasis/scarring, also stable. Healed 
right rib fractures are noted. On the left, 
there is persistent apical pleural thickening
and apical scarring. Linear opacities
projecting over the lower lobe are also 
compatible with scarring, unchanged. 
There is no left pleural effusion. There is 
no pneumothorax. …

Medical Images

Image 
Encoder

Text 
Decoder

Generated Report
… The heart size remains unchanged and is within normal limits. 
Unchanged appearance of thoracic aorta. The pulmonary 
vasculature is not congested. Bilateral pleural effusions are again 
noted and have increased in size on the right than the left. 
The left-sided pleural effusion has increased in size and is now 
moderate in size.

contradiction

Figure 1: A (partial) example of a report generated
from our system (with “. . . ” representing abbreviated
text). The system encodes images and generates text
from that encoded representation. Underlined words
are disease and anatomy entities. The shaded sentences
are an example of a contradictory pair.

Automatic radiology report generation systems
have achieved promising performance as mea-
sured by widely used NLG metrics such as CIDEr
(Vedantam et al., 2015) and BLEU (Papineni et al.,
2002) on several datasets (Li et al., 2018; Jing
et al., 2019; Chen et al., 2020). However, reports
that achieve high performance on these NLG met-
rics are not always factually complete or consis-
tent. In addition to the use of inadequate metrics,
the factual incompleteness and inconsistency is-
sue in generated reports is further exacerbated by
the inadequate training of these systems. Specif-
ically, the standard teacher-forcing training algo-
rithm (Williams and Zipser, 1989) used by most ex-
isting work can lead to a discrepancy between what
the model sees during training and test time (Ran-
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zato et al., 2016), resulting in degenerate outputs
with factual hallucinations (Maynez et al., 2020).
Liu et al. (2019) and Boag et al. (2020) have shown
that reports generated by state-of-the-art systems
still have poor quality when evaluated by their clin-
ical metrics as measured with an information ex-
traction system designed for radiology reports. For
example, the generated report in Figure 1 is incom-
plete since it neglects an observation of atelectasis
that can be found in the images. It is also incon-
sistent since it mentions left-sided pleural effusion
which is not present in the images. Indeed, we
show that existing systems are inadequate in factual
completeness and consistency, and that an image-
to-text radiology report generation system can be
substantially improved by replacing widely used
NLG metrics with simple alternatives.

We propose two new simple rewards that can en-
courage the factual completeness and consistency
of the generated reports. First, we propose the Ex-
act Entity Match Reward (factENT) which captures
the completeness of a generated report by measur-
ing its coverage of entities in the radiology domain,
compared with a reference report. The goal of the
reward is to better capture disease and anatomical
knowledge that are encoded in the entities. Sec-
ond, we propose the Entailing Entity Match Reward
(factENTNLI), which extends factENT with a nat-
ural language inference (NLI) model that further
considers how inferentially consistent the gener-
ated entities are with their descriptions in the ref-
erence. We add NLI to control the overestimation
of disease when optimizing towards factENT. We
use these two metrics along with an existing seman-
tic equivalence metric, BERTScore (Zhang et al.,
2020a), to potentially capture synonyms (e.g., “left
and right” effusions are synonymous with “bilat-
eral” effusions) and distant dependencies between
diseases (e.g., a negation like “. . . but underlying
consolidation or other pulmonary lesion not ex-
cluded”) that are present in radiology reports.

Although recent work in summarization, dia-
logue, and data-to-text generation has tried to ad-
dress this problem of factual incompleteness and
inconsistency by using natural language inference
(NLI) (Falke et al., 2019; Welleck et al., 2019),
question answering (QA) (Wang et al., 2020a), or
content matching constraint (Wang et al., 2020b)
approaches, they either show negative results or
are not directly applicable to the generation of ra-
diology reports due to a substantial task and do-

main difference. To construct the NLI model for
factENTNLI, we present a weakly supervised ap-
proach that adapts an existing NLI model to the ra-
diology domain. We further present a report genera-
tion model which directly optimizes a Transformer-
based architecture with these rewards using rein-
forcement learning (RL).

We evaluate our proposed report generation
model on two publicly available radiology report
generation datasets. We find that optimizing the
proposed rewards along with BERTScore by RL
leads to generated reports that achieve substan-
tially improved performance in the important clin-
ical metrics (Liu et al., 2019; Boag et al., 2020;
Chen et al., 2020), demonstrating the higher clin-
ical value of our approach. We make all our code
and the expert-labeled test set for evaluating the ra-
diology NLI model publicly available to encourage
future research1. To summarize, our contributions
in this paper are:

1. We propose two simple rewards for image-
to-text radiology report generation, which fo-
cus on capturing the factual completeness
and consistency of generated reports, and a
weak supervision-based approach for training
a radiology-domain NLI model to realize the
second reward.

2. We present a new radiology report genera-
tion model that directly optimizes these new
rewards with RL, showing that previous ap-
proaches that optimize traditional NLG met-
rics are inadequate, and that the proposed ap-
proach substantially improves performance on
clinical metrics (as much as ∆ + 64.2%) on
two publicly available datasets.

2 Related Work

2.1 Image-to-Text Radiology Report
Generation

Wang et al. (2018) and Jing et al. (2018) first pro-
posed multi-task learning models that jointly gener-
ate a report and classify disease labels from a chest
X-ray image. Their models were extended to use
multiple images (Yuan et al., 2019), to adopt a hy-
brid retrieval-generation model (Li et al., 2018), or
to consider structure information (Jing et al., 2019).
More recent work has focused on generating re-
ports that are clinically consistent and accurate. Liu
et al. (2019) presented a system that generates ac-
curate reports by fine-tuning it with their Clinically

1https://github.com/ysmiura/ifcc

https://github.com/ysmiura/ifcc
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Coherent Reward. Boag et al. (2020) evaluated
several baseline generation systems with clinical
metrics and found that standard NLG metrics are
ill-equipped for this task. Very recently, Chen et al.
(2020) proposed an approach to generate radiology
reports with a memory-driven Transformer. Our
work is most related to Liu et al. (2019); their sys-
tem, however, is dependent on a rule-based infor-
mation extraction system specifically created for
chest X-ray reports and has limited robustness and
generalizability to different domains within radiol-
ogy. By contrast, we aim to develop methods that
improve the factual completeness and consistency
of generated reports by harnessing more robust sta-
tistical models and are easily generalizable.

2.2 Consistency and Faithfulness in Natural
Language Generation

A variety of recent work has focused on consis-
tency and faithfulness in generation. Our work
is inspired by Falke et al. (2019), Welleck et al.
(2019), and Matsumaru et al. (2020) in using NLI
to rerank or filter generations in text summarization,
dialogue, and headline generations systems, respec-
tively. Other attempts in this direction include eval-
uating consistency in generations using QA models
(Durmus et al., 2020; Wang et al., 2020a; Maynez
et al., 2020), with distantly supervised classifiers
(Kryściński et al., 2020), and with task-specific con-
tent matching constraints (Wang et al., 2020b). Liu
et al. (2019) and Zhang et al. (2020b) studied im-
proving the factual correctness in generating radiol-
ogy reports with rule-based information extraction
systems. Our work mainly differs from theirs in the
direct optimization of factual completeness with an
entity-based reward and of factual consistency with
a statistical NLI-based reward.

2.3 Image Captioning with Transformer
The problem of generating text from image data
has been widely studied in the image captioning
setting. While early work focused on combining
convolutional neural network (CNN) and recurrent
neural network (RNN) architectures (Vinyals et al.,
2015), more recent work has discovered the ef-
fectiveness of using the Transformer architecture
(Vaswani et al., 2017). Li et al. (2019) and Pan et al.
(2020) introduced an attention process to exploit se-
mantic and visual information into this architecture.
Herdade et al. (2019), Cornia et al. (2020), and
Guo et al. (2020) extended this architecture to learn
geometrical and other relationships between input
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Figure 2: An overview of Meshed-Memory Trans-
former extended to multiple images.

regions. We find Meshed-Memory Transformer
(Cornia et al., 2020) (M2 Trans) to be more ef-
fective in our radiology report generation task than
the traditional RNN-based models and Transformer
models (an empirical result will be shown in §4),
and therefore use it as our base architecture.

3 Methods

3.1 Image-to-Text Radiology Report
Generation with M2 Trans

Formally, given K individual images x1...K of a
patient, our task involves generating a sequence of
words to form a textual report ŷ, which describes
the clinical observations in the images. This task
resembles image captioning, except with multiple
images as input and longer text sequences as out-
put. We therefore extend a state-of-the-art image
captioning model,M2 Trans (Cornia et al., 2020),
with multi-image input as our base architecture.
We first briefly introduce this model and refer inter-
ested readers to Cornia et al. (2020).

Figure 2 illustrates an overview of theM2 Trans
model. Given an image xk, image regions are first
extracted with a CNN as X = CNN(xk). X is
then encoded with a memory-augmented attention
processMmem(X) as

Mmem(X) = Att(WqX,K,V ) (1)

Att(Q,K,V ) = softmax

(
QKT

√
d

)
V (2)

K = [WkX;Mk] (3)
V = [WvX;Mv] (4)

where Wq,Wk,Wv are weights, Mk,M v are
memory matrices, d is a scaling factor, and [∗; ∗]
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is the concatenation operation. Att(Q,K,V ) is
an attention process derived from the Transformer
architecture (Vaswani et al., 2017) and extended to
include memory matrices that can encode a priori
knowledge between image regions. In the encoder,
this attention process is a self-attention process
since all of the query Q, the key K, and the value
V depend on X .Mmem(X) is further processed
with a feed forward layer, a residual connection,
and a layer normalization to output X̃ . This encod-
ing process can be stacked N times and is applied
to K images, and n-th layer output of K image
will be X̃n,K .

The meshed decoder first processes an encoded
text Y with a masked self-attention and further
processes it with a feed forward layer, a residual
connection, and a layer normalization to output Ÿ .
Ÿ is then passed to a cross attention C(X̃n,K , Ÿ )
and a meshed attentionMmesh(X̃N ,K , Ÿ ) as

Mmesh(X̃N,K , Ÿ ) =
∑
n

αn � C(X̃n,K , Ÿ ) (5)

C(X̃n,K , Ÿ ) = max
K

(Att(WqŸ ,WkX̃n,K ,WvX̃n,K))

(6)

αn = σ
(
Wn[Y ; C(X̃n,K , Ÿ )] + bn

)
(7)

where � is element-wise multiplication, maxK is
max-pooling overK images, σ is sigmoid function,
Wn is a weight, and bn is a bias. The weighted
summation in Mmesh(X̃N ,K , Ÿ ) exploits both
low-level and high-level information from the N
stacked encoder. Differing from the self-attention
process in the encoder, the cross attention uses a
query that depends on Y and a key and a value
that depend on X . Mmesh(X̃N ,K , Ÿ ) is further
processed with a feed forward layer, a residual con-
nection, and a layer normalization to output Ỹ . As
like in the encoder, the decoder can be stacked N
times to output Ỹ N . Ỹ N is further passed to a feed
forward layer to output report ŷ.

3.2 Optimization with Factual Completeness
and Consistency

3.2.1 Exact Entity Match Reward (factENT)

We designed an F-score entity match reward to cap-
ture factual completeness. This reward assumes
that entities encode disease and anatomical knowl-
edge that relates to factual completeness. A named
entity recognizer is applied to ŷ and the correspond-
ing reference report y. Given entities Egen and
Eref recognized from ygen and yref respectively,

precision (pr) and recall (rc) of entity match are
calculated as

prENT =

∑
e∈Egen

δ(e, Eref)

|Egen|
(8)

rcENT =

∑
e∈Eref

δ(e, Egen)

|Eref |
(9)

δ(e, E) =

{
1, for e ∈ E
0, otherwise

(10)

The harmonic mean of precision and recall is taken
as factENT to reward a balanced match of entities.
We used Stanza (Qi et al., 2020) and its clinical
models (Zhang et al., 2020c) as a named entity
recognizer for radiology reports. For example in
the case of Figure 1, the common entities among
the reference report and the generated report are
pleural and effusion, resulting to factENT = 33.3.

3.2.2 Entailing Entity Match Reward
(factENTNLI)

We additionally designed an F-score style reward
that expands factENT with NLI to capture factual
consistency. NLI is used to control the overestima-
tion of disease when optimizing towards factENT.
In factENTNLI, δ in Eq. 10 is expanded to

φ(e,E)=


1, for e ∈ E ∧NLIe(P , h) 6= contradiction

1, for NLIe(P , h) = entailment

0, otherwise
(11)

NLIe(P , h) = nli(p̂, h) where p̂ = argmax
p∈P

sim(h, p)

(12)

where h is a sentence that includes e, P is all sen-
tences in a counter part text (if h is a sentence
in a generated report, P is all sentences in the
corresponding reference report), nli(∗, ∗) is an
NLI function that returns an NLI label which is
one of {entailment, neutral, contradiction}, and
sim(∗, ∗) is a text similarity function. We used
BERTScore (Zhang et al., 2020a) as sim(∗, ∗) in
the experiments (the detail of BERTScore can be
found in Appendix A). The harmonic mean of preci-
sion and recall is taken as factENTNLI to encourage
a balanced factual consistency between a generated
text and the corresponding reference text. For ex-
ample in the case of Figure 1, the sentence “The
left-sided pleural effusion has increased in size and
is now moderate in size.” will be contradictory
to “There is no left pleural effusion.” resulting in
pleural and effusion being rejected in ygen.
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3.2.3 Joint Loss for Optimizing Factual
Completeness and Consistency

We integrate the proposed factual rewards into self-
critical sequence training (Rennie et al., 2017). An
RL loss LRL is minimized as the negative expec-
tation of the reward r. The gradient of the loss is
estimated with a single Monte Carlo sample as

∇θLRL(θ) = −∇θ logPθ(ŷsp|x1...K) (r(ŷsp)− r(ŷgd))
(13)

where ŷsp is a sampled text and ŷgd is a greedy
decoded text. Paulus et al. (2018) and Zhang et al.
(2020b) have shown that a generation can be im-
proved by combining multiple losses. We combine
a factual metric loss with a language model loss
and an NLG loss as

L = λ1LNLL + λ2LRL_NLG + λ3LRL_FACT (14)

where LNLL is a language model loss, LRL_NLG

is the RL loss using an NLG metric (e.g., CIDEr
or BERTScore), LRL_FACT is the RL loss using a
factual reward (e.g., factENT or factENTNLI), and
λ∗ are scaling factors to balance the multiple losses.

3.3 A Weakly-Supervised Approach for
Radiology NLI

We propose a weakly-supervised approach to con-
struct an NLI model for radiology reports. (There
already exists an NLI system for the medical do-
main, MedNLI (Romanov and Shivade, 2018), but
we found that a model trained on MedNLI does not
work well on radiology reports.) Given a large scale
dataset of radiology reports, a sentence pair is sam-
pled and filtered with weakly-supervised rules. The
rules are prepared to extract a randomly sampled
sentence pair (s1 and s2) that are in an entailment,
neutral, or contradiction relation. We designed the
following 6 rules for weak-supervision.

Entailment 1 (E1) (1) s1 and s2 are semantically
similar and (2) NE of s2 is a subset or equal
to NE of s1.

Neutral 1 (N1) (1) s1 and s2 are semantically sim-
ilar and (2) NE of s1 is a subset of NE of s2.

Neutral 2 (N2) (1) NE of s1 are equal to NE of s2
and (2) s1 include an antonym of a word in
s2.

Neutral 3 (N3) (1) NE types of s1 are equal to NE
types of s2 and (2) NE of s1 is different from
NE of s2. NE types are used in this rule to

Training Data #samples Test Accuracy
RadNLI MedNLI

MedNLI 13k 53.3 80.9
MedNLI + RadNLI 19k 77.8 79.8

Table 1: The accuracies of the NLI model trained with
the weakly-supervised approach. RadNLI is the pro-
posed NLI for radiology reports. The values are the av-
erage of 5 runs and the bold values are the best results
of each test set.

introduce a certain level of similarity between
s1 and s2.

Neutral 4 (N4) (1) NE of s1 are equal to NE of
s2 and (2) s1 and s2 include observation key-
words.

Contradiction 1 (C1) (1) NE of s1 is equal or a
subset to NE of s2 and (2) s1 is a negation of
s2.

The rules rely on a semantic similarity measure and
the overlap of entities to determine the relationship
between s1 and s2. In the neutral rules and the
contradiction rule, we included similarity measures
to avoid extracting easy to distinguish sentence
pairs.

We evaluated this NLI by preparing training data,
validation data, and test data. For the training data,
the training set of MIMIC-CXR (Johnson et al.,
2019) is used as the source of sentence pairs. 2k
pairs are extracted for E1 and C1, 0.5k pairs are
extracted for N1, N2, N3, and N4, resulting in a
total of 6k pairs. The training set of MedNLI is
also used as additional data. For the validation data
and the test data, we sampled 480 sentence pairs
from the validation section of MIMIC-CXR and
had them annotated by two experts: one medical
expert and one NLP expert. Each pair is annotated
twice swapping its premise and hypothesis result-
ing in 960 pairs and are split in half resulting in 480
pair for a validation set and 480 pairs for a test set.
The test set of MedNLI is also used as alternative
test data.

We used BERT (Devlin et al., 2019) as an NLI
model since it performed as a strong baseline in
the existing MedNLI system (Ben Abacha et al.,
2019), and used Stanza (Qi et al., 2020) and its clin-
ical models (Zhang et al., 2020c) as a named entity
recognizer. Table 1 shows the result of the model
trained with and without the weakly-supervised
data. The accuracy of NLI on radiology data in-
creased substantially by +24.5% with the addition
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of the radiology NLI training set. (See Appendix
A for the detail of the rules, the datasets, and the
model configuration.)

4 Experiments

4.1 Data
We used the training and validation sets of MIMIC-
CXR (Johnson et al., 2019) to train and validate
models. MIMIC-CXR is a large publicly available
database of chest radiographs. We extracted the
findings sections from the reports with a text ex-
traction tool for MIMIC-CXR2, and used them as
our reference reports as in previous work (Liu et al.,
2019; Boag et al., 2020). Findings section is a nat-
ural language description of the important aspects
in a radiology image. The reports with empty find-
ings sections were discarded, resulting in 152173
and 1196 reports for the training and validation set,
respectively. We used the test set of MIMIC-CXR
and the entire Open-i Chest X-ray dataset (Demner-
Fushman et al., 2012) as two individual test sets.
Open-i is another publicly available database of
chest radiographs which has been widely used in
past studies. We again extracted the findings sec-
tions, resulting in 2347 reports for MIMIC-CXR
and 3335 reports for Open-i. Open-i is used only
for testing since the number of reports is too small
to train and test a neural report generation model.

4.2 Evaluation Metrics
BLEU4, CIDEr-D & BERTScore: We first use
general NLG metrics to evaluate the generation
quality. These metrics include the 4-gram BLEU
scroe (Papineni et al., 2002, BLEU4), CIDEr score
(Vedantam et al., 2015) with gaming penalties
(CIDEr-D), and the F1 score of the BERTScore
(Zhang et al., 2020a).
Clinical Metrics: However, NLG metrics such as
BLEU and CIDEr are known to be inadequate for
evaluating factual completeness and consistency.
We therefore followed previous work (Liu et al.,
2019; Boag et al., 2020; Chen et al., 2020) by ad-
ditionally evaluating the clinical accuracy of the
generated reports using a clinical information ex-
traction system. We use CheXbert (Smit et al.,
2020), an information extraction system for chest
reports, to extract the presence status of a series
of observations (i.e., whether a disease is present
or not), and score a generation by comparing the
values of these observations to those obtained from

2https://github.com/MIT-LCP/mimic-cxr/tree/master/txt

the reference3. The micro average of accuracy, pre-
cision, recall, and F1 scores are calculated over 5
observations (following previous work (Irvin et al.,
2019)) for: atelectasis, cardiomegaly, consolida-
tion, edema, and pleural effusion4.
factENT & factENTNLI: We additionally
include our proposed rewards factENT and
factENTNLI as metrics to compare their values for
different models.

4.3 Model Variations
We usedM2 Trans as our report generation model
and used DenseNet-121 (Huang et al., 2017) as
our image encoder. We trainedM2 Trans with the
following variety of joint losses.

NLL M2 Trans simply optimized with NLL loss
as a baseline loss.

NLL+CDr CIDEr-D and NLL loss is jointly opti-
mized with λ1 = 0.01 and λ2 = 0.99 for the
scaling factors.

NLL+BS The F1 score of BERTScore and NLL
loss is jointly optimized with λ1 = 0.01 and
λ2 = 0.99.

NLL+BS+fcE factENT is added to NLL+BS with
λ1 = 0.01, λ2 = 0.495, and λ3 = 0.495.

NLL+BS+fcEN factENTNLI is added to NLL+BS
with λ1 = 0.01, λ2 = 0.495, and λ3 =
0.495.

We additionally prepared three previous models
that have been tested on MIMIC-CXR.

TieNet We reimplemented the model of Wang
et al. (2018) consisting of a CNN encoder
and an RNN decoder optimized with a multi-
task setting of language generation and image
classification.

CNN-RNN2 We reimplemented the model of
Liu et al. (2019) consisting of a CNN encoder
and a hierarchical RNN decoder optimized
with CIDEr and Clinically Coherent Reward

3We used CheXbert instead of CheXpert (Irvin et al., 2019)
since CheXbert was evaluated to be approximately 5.5% more
accurate than CheXpert. The evaluation using CheXpert can
be found in Appendix C.

4These 5 observations are evaluated to be most represented
in real-world radiology reports and therefore using these 5
observations (and excluding others) leads to less variance and
more statistical strength in the results. We include the detailed
results of the clinical metrics in Appendix C for completeness.
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Dataset Model NLG Metrics Clinical Metrics (micro-avg) Factual Rewards
BL4 CDr BS P R F1 acc. fcE fcEN

Previous models
TieNet (Wang et al., 2018) 8.1 37.2 49.2 38.6 20.9 27.1 74.0 − −
CNN-RNN2 (Liu et al., 2019) 7.6 44.7 41.2 66.4 18.7 29.2 79.0 − −
R2Gen (Chen et al., 2020) 8.6 40.6 50.8 41.2 29.8 34.6 73.9 − −

MIMIC- Proposed approach without proposed optimization

CXR M2 Trans w/ NLL 10.5 44.5 51.2 48.9 41.1 44.7 76.5 27.3 24.4
M2 Trans w/ NLL+CDr 13.3 67.0 55.9 50.0 51.3 50.6 76.9 35.2 32.9
Proposed approach
M2 Trans w/ NLL+BS 12.2 58.4 58.4 46.3 67.5 54.9 74.4 35.9 33.0
M2 Trans w/ NLL+BS+fcE 11.1 49.2 57.2 46.3 73.2 56.7 74.2 39.5 34.8
M2 Trans w/ NLL+BS+fcEN 11.4 50.9 56.9 50.3 65.1 56.7 77.1 38.5 37.9

Previous models
TieNet (Wang et al., 2018) 9.0 65.7 56.1 46.9 15.9 23.7 96.0 − −
CNN-RNN2 (Liu et al., 2019) 12.1 87.2 57.1 55.1 7.5 13.2 96.1 − −
R2Gen (Chen et al., 2020) 6.7 61.4 53.8 27.0 17.3 21.1 94.9 − −
Proposed approach without proposed optimization

Open-i M2 Trans w/ NLL 8.2 64.4 53.1 44.7 32.7 37.8 95.8 31.1 34.1
M2 Trans w/ NLL+CDr 13.4 97.2 59.9 48.2 24.2 32.2 96.0 40.6 42.9
Proposed approach
M2 Trans w/ NLL+BS 12.3 87.3 62.4 47.7 46.6 47.2 95.9 41.5 44.1
M2 Trans w/ NLL+BS+fcE 12.0 99.6 62.6 44.0 53.5 48.3 95.5 44.4 46.8
M2 Trans w/ NLL+BS+fcEN 13.1 103.4 61.0 48.7 46.9 47.8 96.0 43.6 47.1

Table 2: Results of the baselines and our M2 Trans model trained with different joint losses. For the metrics,
BL4, CDr, and BS represent BLEU4, CIDEr-D, and the F1 score of BERTScore; P, R, F1 and acc. represent the
precision, recall, F1, and accuracy scores output by the clinical CheXbert labeler, respectively. For the rewards,
fcE and fcEN represent factENT and factENTNLI, respectively.

which is a reward based on the clinical met-
rics.

R2Gen The model of Chen et al. (2020) with a
CNN encoder and a memory-driven Trans-
former optimized with NLL loss. We used the
publicly available official code and its check-
point as its implementation.

For reproducibility, we include model configura-
tions and training details in Appendix B.

5 Results and Discussions

5.1 Evaluation with NLG Metrics and
Clinical Metrics

Table 2 shows the results of the baselines5 and
M2 Trans optimized with the five different joint
losses. We find that the best result for a metric or
a reward is achieved when that metric or reward is
used directly in the optimization objective. Notably,
for the proposed factual rewards, the increases of
+3.6 factENT and +4.9 factENTNLI are observed

5These MIMIC-CXR scores have some gaps from the pre-
viously reported values with some possible reasons. First,
TieNet and CNN-RNN2 in Liu et al. (2019) are evaluated
on a pre-release version of MIMIC-CXR. Second, we used
report-level evaluation for all models, but Chen et al. (2020)
tested R2Gen using image-level evaluation.

on MIMIC-CXR withM2 Trans when compared
againstM2 Trans w/ BS. For the clinical metrics,
the best recalls and F1 scores are obtained with
M2 Trans using factENT as a reward, achieving a
substantial +22.1 increase (∆+63.9%) in F1 score
against the best baseline R2Gen. We further find
that using factENTNLI as a reward leads to higher
precision and accuracy compared to factENT with
decreases in the recalls. The best precisions and
accuracies were obtained in the baseline CNN-
RNN2. This is not surprising since this model
directly optimizes the clinical metrics with its Clin-
ically Coherent Reward. However, this model is
strongly optimized against precision resulting in
the low recalls and F1 scores.

The results ofM2 Trans without the proposed
rewards and BERTScore reveal the strength ofM2

Trans and the inadequacy of NLL loss and CIDEr
for factual completeness and consistency. M2

Trans w/ NLL shows strong improvements in the
clinical metrics against R2Gen. These improve-
ments are a little surprising since both models are
Transformer-based models and are optimized with
NLL loss. We assume that these improvements
are due to architecture differences such as memory
matrices in the encoder ofM2 Trans. The differ-
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M2 Trans w/ BS R2Gen No
Proposed (simple) (Chen et al., 2020) difference

36.5% 12.0% 51.5%

Table 3: The human evaluation result for randomly
sampled 100 reports from the test set of MIMIC-CXR
by two board-certified radiologists.

ence between NLL and NLL+CDr onM2 Trans
indicates that NLL and CIDEr are unreliable for
factual completeness and consistency.

5.2 Human Evaluation

We performed a human evaluation to further con-
firm whether the generated radiology reports are
factually complete and consistent. Following prior
studies of radiology report summarization (Zhang
et al., 2020b) and image captioning evaluation
(Vedantam et al., 2015), we designed a simple
human evaluation task. Given a reference report
(R) and two candidate model generated reports
(C1, C2), two board-certified radiologists decided
whether C1 or C2 is more factually similar to R.
To consider cases when C1 and C2 are difficult
to differentiate, we also prepared “No difference”
as an answer. We sampled 100 reports randomly
from the test set of MIMIC-CXR for this evalua-
tion. Since this evaluation is (financially) expensive
and there has been no human evaluation between
the baseline models, we selected R2Gen as the
best previous model andM2 Trans w/ BS as the
most simple proposed model, in order to be able
to weakly infer that all of our proposed models are
better than all of the baselines. Table 3 shows the
result of the evaluation. The majority of the reports
were labeled “No difference” but the proposed ap-
proach received three times as much preference as
the baseline.

There are two main reasons why “No difference”
was frequent in human evaluation. First, we found
that a substantial portion of the examples were
normal studies (no abnormal observations), which
leads to generated reports of similar quality from
both models. Second, in some reports with multiple
abnormal observations, both models made mistakes
on a subset of these observations, making it difficult
to decide which model output was better.

5.3 Estimating Clinical Accuracy with
Factual Rewards

The integrations of factENT and factENTNLI

showed improvements in the clinical metrics. We
further examined whether these rewards can be

Metric ρ
BLEU4 0.092
CIDEr-D 0.034
BERTScore 0.155
factENT 0.196
factENTNLI 0.255

Table 4: The Spearman correlations ρ of NLG met-
rics and factual metrics against clinical accuracy. The
strongest correlation among all metrics is shown is
bold.

used to estimate the performance of the clinical
metrics to see whether the proposed rewards can
be used in an evaluation where a strong clinical
information extraction system like CheXbert is not
available. Table 4 shows Spearman correlations
calculated on the generated reports of NLL+BS.
factENTNLI shows the strongest correlation with
the clinical accuracy which aligns with the opti-
mization where the best accuracy is obtained with
NLL+ BS+factENTNLI. This correlation value is
slightly lower than a Spearman correlation which
Maynez et al. (2020) observed with NLI for the
factual data (0.264). The result suggests the effec-
tiveness of using the factual rewards to estimate the
factual completeness and consistency of radiology
reports, although the correlations are still limited,
with some room for improvement.

5.4 Qualitative Analysis of Improved Clinical
Completeness and Consistency

The evaluation with the clinically findings metrics
showed improved generation performance by in-
tegrating BERTScore, factENT, and factENTNLI.
As a qualitative analysis, we examined some of
the generated reports to see the improvements. Ex-
ample 1 in Figure 3 shows the improved factual
completeness and consistency with BERTScore.
The atelectasis is correctly generated and left plu-
ral effusion is correctly suppressed with NLL+BS.
Example 2 in Figure 4 shows the improved fac-
tual completeness with factENTNLI. The edema
is correctly generated and atelectasis is correctly
suppressed with NLL+BS+fcEN. These examples
reveal the strength of integrating the three metrics
to generate factually complete and consistent re-
ports.

Despite observing large improvements with our
model in the clinical finding metrics evaluation, the
model is still not complete and some typical factual
errors can be found in their generated reports. For
example, Example 3 in Figure 4 includes a compar-
ison of an observation against a previous study as
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Images Reference R2Gen M2 Trans w/ NLL+BS
E

xa
m

pl
e

1
Large right pleural effusion is unchanged
in size. There is associated right basilar
atelectasis/scarring, also stable. Healed
right rib fractures are noted. On the
left, there is persistent apical pleural
thickening and apical scarring. Linear
opacities projecting over the lower lobe
are also compatible with scarring, un-
changed. There is no left pleural effu-
sion. There is no pneumothorax. Hilar
and cardiomediastinal contours are dif-
ficult to assess, but appear unchanged.
Vascular stent is seen in the left axil-
lary/subclavian region.

PA and lateral chest views were obtained
with patient in upright position. Anal-
ysis is performed in direct comparison
with the next preceding similar study
of DATE. The heart size remains un-
changed and is within normal limits. Un-
changed appearance of thoracic aorta.
The pulmonary vasculature is not con-
gested. Bilateral pleural effusions are
again noted and have increased in size
on the right than the left. The left-sided
pleural effusion has increased in size and
is now moderate in size.

As compared to prior chest radiograph
from DATE, there has been interval im-
provement of the right pleural effusion.
There is a persistent opacity at the right
lung base. There is persistent atelecta-
sis at the right lung base. There is no
left pleural effusion. There is no pneu-
mothorax. The cardiomediastinal and hi-
lar contours are unchanged.

Figure 3: An example of radiology reports generated by R2Gen and by the proposed model with the optimization
integrating BERTScore. Repeated sentences are removed from the example to improve readability.

Images Reference M2 Trans w/ NLL+BS M2 Trans w/ NLL+BS+fcEN

E
xa

m
pl

e
2

Frontal and lateral radiographs of the
chest were acquired. There is new mild
interstitial pulmonary edema. A small
right pleural effusion may be minimally
increased. There is also likely a trace left
pleural effusion. There is no focal con-
solidation. The heart size is not signifi-
cantly changed. There is no pneumotho-
rax. Midline sternotomy wires are noted.

Assessment is limited by patient rotation.
The patient is status post median ster-
notomy and CABG. Heart size is moder-
ately enlarged. The aorta is tortuous and
diffusely calcified. There is mild pul-
monary vascular congestion. Small bilat-
eral pleural effusions are present. Patchy
opacities in the lung bases likely reflect
atelectasis. No pneumothorax is identi-
fied. There are no acute osseous abnor-
malities.

The cardiomediastinal and hilar contours
are stable. The aorta is tortuous. The
patient is status post median sternotomy.
The heart is mildly enlarged. The aorta
is tortuous. The lung volumes are lower
compared to the prior chest radiograph.
Mild pulmonary edema is present. Small
bilateral pleural effusions are present.
There is no focal consolidation. No
pneumothorax is seen. Median ster-
notomy wires and mediastinal clips are
noted.

E
xa

m
pl

e
3

A right-sided hemodialysis catheter ter-
minates at the right atrium. Again seen
are reticular interstitial opacities dis-
tributed evenly across both lungs, sta-
ble over multiple prior radiographs, pre-
viously attributed to chronic hypersensi-
tivity pneumonitis on the chest CT from
DATE. The cardiac and mediastinal sil-
houettes are unchanged. The central pul-
monary vessels appear more prominent
since the DATE study. Superimposed
mild edema cannot be excluded. There is
no focal consolidation, pleural effusion,
or pneumothorax.

Right-sided dual lumen central venous
catheter tip terminates in the lower SVC.
Heart size remains mildly enlarged. The
mediastinal and hilar contours are un-
changed. There is no pulmonary edema.
Minimal atelectasis is noted in the lung
bases without focal consolidation. No
pleural effusion or pneumothorax is
seen. There are no acute osseous abnor-
malities.

The cardiomediastinal and hilar contours
are normal. The lung volumes are low.
The lung volumes are present. There is
mild pulmonary edema. There is no fo-
cal consolidation. No pleural effusion
or pneumothorax is seen. A right-sided
central venous catheter is seen with tip
in the right atrium.

Figure 4: Examples of radiology reports generated by the proposed model with the optimization integrating
BERTScore and factENTNLI. Repeated sentences are removed from the examples to improve readability.

“. . . appear more prominent since . . . ” in the refer-
ence but our model (or any previous models) can
not capture this kind of comparison since the model
is not designed to take account the past reports of
a patient as input. Additionally, in this example,
edema is mentioned with uncertainty as “cannot be
excluded” in the reference but the generated report
with factENTNLI simply indicates it as “There is
mild pulmonary edema”.

6 Conclusion

We proposed two new simple rewards and com-
bined them with a semantic equivalence metric to
improve image-to-text radiology report generation
systems. The two new rewards make use of ra-
diology domain entities extracted with a named
entity recognizer and a weakly-supervised NLI to
capture the factual completeness and consistency
of the generated reports. We further presented a
Transformer-based report generation system that

directly optimizes these rewards with self-critical
reinforcement learning. On two open datasets, we
showed that our system generates reports that are
more factually complete and consistent than the
baselines and leads to reports with substantially
higher scores in clinical metrics. The integration of
entities and NLI to improve the factual complete-
ness and consistency of generation is not restricted
to the domain of radiology reports, and we predict
that a similar approach might similarly improve
other data-to-text tasks.
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A Detail of Radiology NLI

A.1 Rules & Examples of Weakly-Supervised
Radiology NLI

We prepared the 6 rules (E1, N1–N4, and C1) to
train the weakly-supervised radiology NLI. The
rules are applied against sentence pairs consisting
from premises (s1) and hypotheses (s2) to extract
pairs that are in entailment, neutral, or contradic-
tion relation.

Entailment Rule: E1
1. s1 and s2 are semantically similar.

2. The named entities (NE) of s2 is a subset or
equal to the named entities of s1 as NE(s2) ⊆
NE(s1).

We used BERTScore (Zhang et al., 2020a) as a sim-
ilarity metric and set the threshold to sim(s1, s2) ≥
0.76. The clinical model of Stanza (Zhang et al.,
2020c) is used to extract anatomy entities and ob-
servation entities. s1 and s2 are conditioned to be
both negated or both non-negated. The negation
is determined with a negation identifier or the ex-
istence of uncertain entity, using NegBio (Peng
et al., 2018) as the negation identifier and the clin-
ical model of Stanza is used to extract uncertain
entities. s2 is further restricted to include at least 2
entities as |NE(s2)| ≥ 2. These similarity metric,
named entity recognition model, and entity number
restriction are used in the latter neutral and contra-
diction rules. The negation restriction is used in
the neutral rules but is not used in the contradiction
rule. The following is an example of a sentence
pair that matches E1 with entities in bold:

s1 The heart is mildly enlarged.

s2 The heart appears again mild-to-moderately
enlarged.

Neutral Rule 1: N1
1. s1 and s2 are semantically similar.

2. The named entities of s1 is a subset of the
named entities of s2 as NE(s1) ( NE(s2).

Since s1 is a premise, this condition denotes that
the counterpart hypothesis has entities that are not

6distilbert-base-uncased with the baseline score is used
as the model of BERTScore for a fast comparison and a
smooth score scale. We swept the threshold value from
{0.6, 0.7, 0.8, 0.9} and set it to 0.7 as a relaxed boundary
to balance between accuracy and diversity.

included in the premise. The following is an exam-
ple of a sentence pair that matches N1 with entities
in bold:

s1 There is no pulmonary edema or definite con-
solidation.

s2 There is no focal consolidation, pleural effu-
sion, or pulmonary edema.

Neutral Rule 2: N2
1. The named entities of s1 are equal to the

named entities of s2 as NE(s1) = NE(s2).

2. The anatomy modifiers (NEmod) of s1 include
an antonym (ANT) of the anatomy modifier of
s2 as NEmod(s1) ∩ANT(NEmod(s2)) 6= ∅.

Anatomy modifiers are extracted with the clinical
model of Stanza and antonyms are decided using
WordNet (Fellbaum, 1998). Antonyms in anatomy
modifiers are considered in this rule to differentiate
experessions like left vs right and upper vs lower.
The following is an example of a sentence pair that
matches N2 with antonyms in bold:

s1 Moreover, a small left pleural effusion has
newly occurred.

s2 Small right pleural effusion has worsened.

Neutral Rule 3: N3
1. The named entity types (NEtype) of s1 are

equal to the named entity types of s2 as
NEtype(s1) = NEtype(s2).

2. The named entities of s1 is different from the
named entities of s2 as NE(s1)∩NE(s2) = ∅.

Specific entity types that we used are anatomy and
observation. This rule ensures that s1 and s2 have
related but different entities in same types. The
following is an example of a sentence pair that
matches N3 with entities in bold:

s1 There is minimal bilateral lower lobe atelecta-
sis.

s2 The cardiac silhouette is moderately en-
larged.

Neutral Rule 4: N4
1. The named entities of s1 are equal to the

named entities of s2 as NE(s1) = NE(s2).
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2. s1 and s2 include observation keywords
(KEY) that belong to different groups as
KEY(s1) 6= KEY(s2).

The groups of observation keywords are setup
following the observation keywords of CheX-
pert labeler (Irvin et al., 2019). Specifi-
cally, G1 = {normal, unremarkable}, G2 =
{stable, unchanged}, and G3 = {clear} are
used to determine words included in different
groups as neutral relation. The following is an
example of a sentence pair that matches N4 with
keywords in bold:

s1 Normal cardiomediastinal silhouette.

s2 Cardiomediastinal silhouette is unchanged.

Contradiction Rule: C1
1. The named entities of s1 is a subset or equal to

the named entities of s2 as NE(s2) ⊆ NE(s1).

2. s1 or s2 is a negated sentence.

Negation is determined with the same approach as
E1. The following is an example of a sentence pair
that matches C1 with entities in bold:

s1 There are also small bilateral pleural effu-
sions.

s2 No pleural effusions.

A.2 Validation and Test Datasets of
Radiology NLI

We sampled 480 sentence pairs that satisfy the fol-
lowing conditions from the validation section of
MIMIC-CXR:

1. Two sentences (s1 and s2) have
BERTScore(s1, s2) ≥ 0.5.

2. MedNLI labels are equally distributed over
three labels: entailment, neutral, and contra-
diction7.

These conditions are introduced to reduce neutral
pairs since most pairs will be neutral with random
sampling. The sampled pairs are annotated twice
swapping its premise and hypothesis by two ex-
perts: one medical expert and one NLP expert. For
pairs that the two annotators disagreed, its labels
are decided by a discussion with one additional
NLP expert. The resulting 960 bidirectional pairs
are splitted in half resulting in 480 pairs for a vali-
dation set and 480 pairs for a test set.

7We used the baseline BERT model of Wu et al. (2019) to
assign MedNLI labels to the pairs.

A.3 Configuration of Radiology NLI Model
We used bert-base-uncased as a pre-trained BERT
model and further fine-tuned it on MIMIC-III
(Johnson et al., 2016) radiology reports with a
masked language modeling loss for 8 epochs. The
model is further optimized on the training data
with a classification negative log likelihood loss.
We used Adam (Kingma and Ba, 2015) as an opti-
mization method with β1 = 0.9, β2 = 0.999, batch
size of 16, and the gradient clipping norm of 5.0.
The learning rate is set to lr = 1e−5 by running
a preliminary experiment with lr = {1e−5, 2e−5}.
The model is optimized for the maximum of 20
epochs and a validation accuracy is used to decide
a model checkpoint that is used to evaluate the test
set. We trained the model with a single Nvidia Ti-
tan XP taking approximately 2 hours to complete
20 epochs.

B Configurations of Radiology Report
Generation Models

B.1 M2 Trans
We used DenseNet-121 (Huang et al., 2017) as a
CNN image feature extractor and pre-trained it on
CheXpert dataset with the 14-class classification
setting. We used GloVe (Pennington et al., 2014)
to pre-train text embeddings and the pre-trainings
were done on a training set with the embedding
size of 512. The parameters of the model is set
up to the dimensionality of 512, the number of
heads to 8, and the number of memory vector to
40. We set the number of Transformer layer to
nlayer = 1 by running a preliminary experiment
with nlayer = {1, 2, 3}. The model is first trained
against NLL loss using the learning rate sched-
uler of Transformer (Devlin et al., 2019) with the
warm-up steps of 20000 and is further optimized
with a joint loss with the fixed learning rate of
5e−6. Adam is used as an optimization method
with β1 = 0.9 and β2 = 0.999. The batch size is
set to 48 for NLL loss and 24 for the joint losses.
For λ∗, we first swept the optimal value of λ1
from {0.03, 0.02, 0.01, 0.001} using the develop-
ment set. We have restricted λ2 and λ3 to have
equal values in our experiments and constrined that
all λ∗ values sum up to 1.0. The model is trained
with NLL loss for 32 epochs and further trained
for 32 epochs with a joint loss. Beam search with
the beam size of 4 is used to decode texts when
evaluating the model against a validation set or a
test set. We trained the model with a single Nvidia
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Titan XP taking approximately 10 days to complete
its optimization.

B.2 TieNet

We used ResNet-50 as a CNN image feature ex-
tractor with default ImageNet pre-trained weights.
We used GloVe to pre-train text embeddings with
the same configuration asM2 Trans. The parame-
ters of the model is set up to the LSTM dimension
of 256 and the number of global attentions to 5.
The combination of NLL loss and the multi-label
classification loss is used as its joint loss with the
balance parameter α = 0.85. The model is trained
against the joint loss using a linear rate scheduler
with the initial learning rate of 1e−4 and the multi-
plication of 0.5 per 8 epochs. The batch size is set
to 32 and the model is trained with the joint loss
for 32 epochs. Adam is used as an optimization
method with β1 = 0.9 and β2 = 0.999. Beam
search with the beam size of 4 is used to decode
texts. We trained the model with a single Nvidia
Titan XP taking approximately 2 days to complete
its optimization.

B.3 CNN-RNN2

We used DenseNet-121 as a CNN image feature ex-
tractor with default ImageNet pre-trained weights.
We used GloVe to pre-train text embeddings with
the same configuration asM2 Trans. The parame-
ters of the model is set up to the LSTM dimension
of 256. We modified an information extraction sys-
tem from CheXpert to CheXbert to improve the
training speed of this model. The combination of
CIDEr and Clinically Coherent Reward is used as
its joint loss with the balance parameter λ = 10.0.
The model is first trained against NLL loss using
a linear rate scheduler with the initial learning rate
of 1e−4 and the multiplication of 0.5 per 8 epochs.
The model is further optimized with the joint loss
with the fixed learning rate of 5e−6. Adam is used
as an optimization method with β1 = 0.9 and
β2 = 0.999. The batch size is set to 32 for the
NLL loss and 24 for the joint losses. The model
is trained with NLL loss for 32 epochs and further
trained for 32 epochs with the joint loss. Beam
search with the beam size of 4 is used to decode
texts. We trained the model with a single Nvidia
Titan XP taking approximately 11 days to complete
its optimization.

C Detailed Result of Clinical Metrics

Table 5 shows the detailed results of the clinical
metrics for R2Gen,M2 Trans w/ BS,M2 Trans
w/ BS+fcE, andM2 Trans w/ BS+fcEN. In most
cases, the best F1 scores are observed in the cases
when factENT or factENTNLI is included in the
joint losses. Consolidation is one exception where
the best precisions, recalls, and F1 scores vary
among the joint losses. We assume this is due
to the infrequent appearance of consolidation in
both MIMIC-CXR and Open-i. For comparison
against some past studies, we show the detailed
results when CheXpert is used instead of CheXbert
in Table 6. Since CheXbert is more or equally ac-
curate for most observations than CheXpert, the
scores in Table 6 follow similar trends against ones
in Table 5. Table 7 shows the detailed results for
the 9 remaining observations that are defined in
CheXpert. Note that many of these observations
are infrequent and have relatively weaker and un-
stable extraction performances compared to the 5
observations in Table 5.
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MIMIC-CXR Open-i

Observation
(# MIMIC-CXR / # Open-i) R2Gen NLL +

BS

NLL +
BS +
fcE

NLL +
BS +
fcEN

R2Gen NLL +
BS

NLL +
BS +
fcE

NLL +
BS +
fcEN

P 41.2 46.3 46.3 50.3 27.0 47.7 44.0 48.7
Micro Average R 29.8 67.5 73.2 65.1 17.3 46.6 53.5 46.9
(2713 / 654) F1 34.6 54.9 56.7 56.7 21.1 47.2 48.3 47.8

acc. 73.9 74.4 74.2 77.1 94.9 95.9 95.5 96.0

P 35.4 39.9 37.9 40.6 35.6 44.0 35.8 39.4
Atelectasis R 27.8 67.4 80.5 76.2 7.4 35.6 47.7 45.4
(604 / 216) F1 31.1 50.2 51.6 53.0 12.3 39.4 40.9 42.2

acc. 68.3 65.5 61.1 65.2 93.1 92.9 91.1 91.9
P 32.4 35.8 34.3 37.5 24.5 56.6 57.3 60.0

Cardiomegaly R 53.5 73.3 81.3 61.3 33.8 55.6 55.6 46.7
(535 / 225) F1 40.4 48.1 48.2 46.6 28.4 56.1 56.4 52.5

acc. 64.0 63.9 60.2 67.9 88.5 94.1 94.2 94.3
P 14.3 10.5 19.6 19.2 0.0 10.9 15.2 14.3

Consolidation R 7.0 18.5 5.7 3.2 0.0 26.3 26.3 5.3
(157 / 19) F1 9.4 13.4 8.9 5.5 0.0 15.4 19.2 7.7

acc. 91.0 84.0 92.1 92.6 99.0 98.4 98.7 99.3
P 55.3 59.7 56.0 65.6 10.0 39.0 30.9 41.4

Edema R 24.3 59.2 69.9 52.7 4.0 30.7 50.7 32.0
(645 / 75) F1 33.8 59.5 62.2 58.5 5.7 34.3 38.4 36.1

acc. 73.8 77.8 76.6 79.4 97.0 97.4 96.3 97.5
P 76.2 67.2 68.2 65.9 85.7 54.3 59.4 56.0

Pleural Effusion R 24.1 80.6 78.5 82.0 15.1 63.0 66.4 66.4
(772 / 119) F1 36.6 73.3 73.0 73.1 25.7 58.4 62.7 60.8

acc. 72.6 80.7 80.9 80.1 96.9 96.8 97.2 96.9

Table 5: The detailed results of R2Gen,M2 Trans w/ BS,M2 Trans w/ BS+fcE, andM2 Trans w/ BS+fcEN for
the 5 observations. P is precision, R is recall, and acc. is accuracy. #MIMIC- CXR and #Open-i are the numbers
of times that a corresponding observation has appeared as positive in the test set of MIMIC-CXR and Open-i,
respectively.

MIMIC-CXR Open-i

Observation
(# MIMIC-CXR / # Open-i) R2Gen NLL +

BS

NLL +
BS +
fcE

NLL +
BS +
fcEN

R2Gen NLL +
BS

NLL +
BS +
fcE

NLL +
BS +
fcEN

P 37.6 46.0 46.0 49.9 16.7 46.3 42.7 47.8
Micro Average R 29.1 67.2 72.9 64.6 17.1 45.8 52.5 46.3
(2713 / 654) F1 32.8 54.6 56.4 56.3 16.9 46.1 47.1 47.0

acc. 74.6 74.2 74.0 76.8 93.4 95.8 95.4 95.9

P 35.6 39.9 37.8 40.6 33.3 42.9 34.7 38.2
Atelectasis R 23.9 67.6 80.6 76.4 7.1 35.4 47.2 44.8
(604 / 216) F1 28.6 50.2 51.5 53.0 11.7 38.8 40.0 41.2

acc. 72.1 65.6 61.1 65.3 93.2 92.9 91.0 91.9
P 28.6 36.1 34.6 37.6 20.4 55.2 55.5 60.0

Cardiomegaly R 49.2 72.8 81.1 60.5 31.3 53.5 53.0 45.7
(535 / 225) F1 36.2 48.2 48.5 46.4 24.7 54.3 54.2 51.9

acc. 63.0 63.8 60.0 67.6 86.8 93.8 93.8 94.2
P 10.7 10.5 19.6 19.2 1.1 10.9 14.7 14.3

Consolidation R 9.4 17.8 5.5 3.1 10.5 26.3 26.3 5.3
(157 / 19) F1 10.0 13.2 8.6 5.3 2.0 15.4 18.9 7.7

acc. 88.4 83.7 91.9 92.4 94.0 98.4 98.7 99.3
P 49.0 58.7 54.9 64.3 5.8 35.0 30.1 39.7

Edema R 29.1 59.0 69.5 52.3 4.1 28.8 50.7 31.5
(645 / 75) F1 36.5 58.8 61.4 57.7 4.8 31.6 37.8 35.1

acc. 74.5 77.6 76.2 79.2 96.4 97.3 96.3 97.5
P 75.6 66.5 67.6 65.2 63.3 53.2 57.5 54.6

Pleural Effusion R 23.4 80.3 78.2 81.6 16.4 63.8 66.4 66.4
(772 / 119) F1 35.8 72.7 72.5 72.5 26.0 58.0 61.6 59.9

acc. 75.1 80.3 80.6 79.8 96.8 96.8 97.1 96.9

Table 6: The detailed results of R2Gen,M2 Trans w/ BS,M2 Trans w/ BS+fcE, andM2 Trans w/ BS+fcEN for
the 5 observations evaluated with CheXpert instead of CheXbert.
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MIMIC-CXR Open-i

Observation
(# MIMIC-CXR / # Open-i) R2Gen NLL +

BS

NLL +
BS +
fcE

NLL +
BS +
fcEN

R2Gen NLL +
BS

NLL +
BS +
fcE

NLL +
BS +
fcEN

P 4.4 5.1 4.8 4.6 3.8 0.7 2.0 4.0
Enlarged Cardiomediastinum R 19.8 50.5 19.8 47.7 16.7 4.2 4.2 20.8
(111 / 24) F1 7.1 9.3 7.7 8.4 6.3 1.2 2.7 6.7

acc. 75.6 53.4 77.5 50.6 96.4 95.1 97.8 95.8
P 0.0 40.0 10.7 26.1 0.0 0.0 0.0 3.1

Fracture R 0.0 3.6 5.4 10.7 0.0 0.0 0.0 2.3
(56 / 43) F1 0.0 6.6 7.1 15.2 0.0 0.0 0.0 2.7

acc. 97.6 97.6 96.7 97.1 98.7 98.6 98.1 97.8
P 37.5 33.3 22.2 44.4 25.0 0.0 0.0 66.7

Lung Lesion R 3.1 1.0 2.1 4.1 1.1 0.0 0.0 4.5
(97 / 89) F1 5.7 2.0 3.8 7.5 2.2 0.0 0.0 8.4

acc. 95.8 95.8 95.7 95.8 97.3 97.3 97.3 97.4
P 44.5 48.8 53.5 54.9 43.1 50.5 57.8 41.1

Lung Opacity R 29.9 41.6 10.4 26.6 8.1 29.1 7.6 22.1
(798 / 344) F1 35.8 44.9 17.4 35.8 13.7 36.9 13.4 28.7

acc. 63.5 65.3 66.5 67.6 89.4 89.7 89.9 88.7
P 31.4 44.4 49.8 48.8 78.1 80.8 82.1 81.7

No Finding R 43.9 35.9 41.7 39.9 84.1 93.4 91.5 88.4
(396 / 2319) F1 36.6 39.7 45.4 43.9 81.0 86.6 86.5 84.9

acc. 74.4 81.6 83.1 82.8 72.6 80.0 80.2 78.2
P 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Pleural Other R 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(39 / 29) F1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

acc. 98.1 98.3 98.3 98.3 99.1 99.1 99.1 99.1
P 42.1 62.7 62.1 0.0 27.6 31.3 38.6 0.0

Pneumonia R 15.8 16.3 17.0 0.0 7.3 19.3 24.8 0.0
(424 / 109) F1 23.0 25.8 26.7 0.0 11.6 23.9 30.2 0.0

acc. 80.9 83.1 83.1 81.9 96.3 96.0 96.3 96.7
P 60.0 28.7 37.0 50.0 100.0 40.0 0.0 100.0

Pneumothorax R 3.8 34.6 12.8 10.3 6.7 13.3 0.0 13.3
(78 / 15) F1 7.2 31.4 19.0 17.0 12.5 20.0 0.0 23.5

acc. 96.7 95.0 96.4 96.7 99.6 99.5 99.6 99.6
P 52.2 50.8 53.2 49.0 10.0 16.2 19.7 13.1

Support Devices R 68.9 83.5 78.7 89.7 12.2 43.9 36.6 56.1
(624 / 41) F1 59.4 63.2 63.5 63.3 11.0 23.7 25.6 21.3

acc. 75.0 74.1 75.9 72.4 97.6 96.5 97.4 94.9

Table 7: The detailed results of R2Gen,M2 Trans w/ BS,M2 Trans w/ BS+fcE, andM2 Trans w/ BS+fcEN for
the remaining 9 observations.


