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Abstract

In many natural language processing applica-

tions, identifying predictive text can be as im-

portant as the predictions themselves. When

predicting medical diagnoses, for example,

identifying predictive content in clinical notes

not only enhances interpretability, but also al-

lows unknown, descriptive (i.e., text-based)

risk factors to be identified. We here formal-

ize this problem as predictive extraction and

address it using a simple mechanism based

on linear attention. Our method preserves dif-

ferentiability, allowing scalable inference via

stochastic gradient descent. Further, the model

decomposes predictions into a sum of contri-

butions of distinct text spans. Importantly, we

require only document labels, not ground-truth

spans. Results show that our model identifies

semantically-cohesive spans and assigns them

scores that agree with human ratings, while

preserving classification performance.

1 Introduction

Attention-based neural network architectures

achieve human-level performance in many docu-

ment classification tasks. However, understanding

model predictions remains challenging. Common

feature attribution methods are often inadequate,

because the “features” of a document classification

model – individual words or their embeddings –

tend to have limited or ambiguous meaning in iso-

lation, and must instead be interpreted in context.

Rather than examining the importance of individ-

ual words and passing the contextualization task to

the end-user, we may wish to extract distinct spans

of text, such as sentences or paragraphs, and quan-

tify the effect of each span on model predictions.

However, the appropriate span boundaries depend

on the document type, and processing all possible

spans individually is computationally prohibitive.

In some settings, understanding model predic-

tions can be as important as the predictions them-

selves. When predicting medical diagnoses from

clinical notes, for example, attributing predictions

to specific note content assures clinicians that the

model is not relying on data artifacts that are not

clinically meaningful or generalizable. Moreover,

this process may illuminate previously unknown

risk factors that are described in clinical notes but

not captured in a structured manner. Our work is

motivated by the problem of autism spectrum dis-

order (ASD) diagnosis, in which many early symp-

toms are behavioral rather than physiologic, and

are documented in clinical notes using multiple-

word descriptions, not individual terms. Morever,

extended and nuanced descriptions are important

in many common document classification tasks, for

instance, the scoring of movie or food reviews.

Identifying important spans of text is a recurring

theme in natural language processing. In extractive

summarization, a document summary is created

by selecting and concatenating important spans

within a document (Narayan et al., 2018); and in

many question answering tasks, including in the

Stanford Question Answering Dataset (Rajpurkar

et al., 2018), the goal is to identify a span within

a paragraph of text that answers a given question.

In both cases, training typically relies on ground

truth spans, i.e., correct start and end positions are

available during training, which the model learns

to predict.

In contrast, our goal is to identify distinct spans

within a document that, taken together, are suffi-

cient to predict its associated label. In this task,

which we call predictive extraction, ground truth

spans are not available; instead, training is based

on document labels alone, and without predefined

spans, e.g., sentences or paragraphs. Moreover,

similar to feature attribution methods, we wish to

assign scores to each span such that predictions

are effectively decomposed into the contributions

of individual spans. In the current work, which

for simplicity focuses on binary classification, we

achieve this by summing individual span scores to



5235

obtain the log-odds of a positive label.

Since correct start and end positions are not

known, they are represented as latent variables

that must be learned to (a) optimize classification

performance, and (b) satisfy additional span con-

straints; in particular, we wish to ensure that spans

are concise, and do not significantly overlap. A

brute-force approach – in which all sets of spans

satisfying these constraints are evaluated – is com-

putationally intractable, as the number of possibil-

ities is O(nk), where n is the length of the docu-

ment and k is the number of spans. Alternatively,

predicting discrete start and end positions would

introduce categorical latent variables, necessitating

the use of a continuous relaxation (Jang et al., 2016;

Maddison et al., 2016) or gradient estimation alter-

natives (Tucker et al., 2017). Instead, we formulate

a simple but effective approach in which span rep-

resentations are derived directly from a continuous

(probabilistic) representation of the start and end

positions, avoiding more computationally expen-

sive gradient estimation; and the positions them-

selves, are predicted using linear attention. Our

contributions are as follows:

• We define predictive extraction and describe its

importance particularly for prediction tasks in

which model performance exceeds human per-

formance.

• We formulate SpanPredict, a neural network

model for predictive extraction in which pre-

dicted log-odds are formulated as the sum of

contributions of distinct spans.

• We quantify prediction and span selection perfor-

mance on five binary classification tasks, includ-

ing three real-world medical diagnosis prediction

tasks.

• In the context of these studies, we quantify the

effect of span constraints on performance.

2 Related Work

Explaining neural network predictions is a well-

known problem, one that is particularly challeng-

ing in natural language processing, due to the

presence of complex semantic structure and inter-

dependencies (Belinkov and Glass, 2019). The im-

portance of individual words, or their embeddings,

can be quantified using word-pooling strategies in

which some words contribute to predictions, and

others do not (Shen et al., 2018). In many settings,

however, examining individual words in isolation

provides limited insight. One solution is to ask the

model to generate an explanation along with each

prediction (Zhang et al., 2016); inconveniently, ex-

planations must be available during training.

Alternatively, explanations may be selected from

within the document itself. This strategy is closely

related to question answering and extractive sum-

marization, in which text spans are selected to an-

swer a given question or summarize a document,

respectively. If correct spans are known during

training, representations of candidate spans can be

generated and used to evaluate each span as the

possible answer to a question, or for inclusion in a

document summary. Representations for all short

spans can be generated via bidirectional recurrent

neural networks (Lee et al., 2016), for example, or

candidate spans can be limited to individual words

and sentences (Cheng and Lapata, 2016).

Clinical notes contain redundant information as

well as medical jargon and abbreviations, making

meaningful text extraction more useful but also

more challenging. Concept recognition and rela-

tion detection have been used to identify salient

note content, which is then used to create a sum-

mary (Liang et al., 2019). Alternatively, the impor-

tance of specific content can be evaluated based on

its presence or absence in subsequent notes; this

concept has been used to train extractive summa-

rization models using discharge summaries, which

distill information collected during a clinical en-

counter (Alsentzer and Kim, 2018), and using sub-

sequent notes, which are more likely to repeat ear-

lier information if it is important (Liu et al., 2018).

In contrast to these methods, our focus is on ex-

tracting predictive text in settings where span anno-

tations are costly to obtain. (Lei et al., 2016) tackle

this by introducing two networks, a generator and

an encoder, which, respectively, filter for important

words before making a prediction. However, theirs

is a sampling-based method that must be trained

via REINFORCE. Moreover, unlike our approach,

they are unable to score individual phrases, limiting

interpretability. Our work is perhaps most closely

related to (Bastings et al., 2019), which defines

candidate spans using a modified Kumaraswamy

distribution and then selects spans that are predic-

tive via fused LASSO. Instead, our approach uses

an attention mechanism to identify promising start

and end positions, which are then used to construct

spans nonparametrically. Lastly, another approach

is the prediction-constrained topic model, which

provides interpretable topics that are useful for pre-
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dicting labels of interest (Ren et al., 2019; Hughes

et al., 2017).

3 Model

3.1 Predictive Extraction

We define predictive extraction as follows. Given a

document X and its associated binary label y, the

goal of predictive extraction is to select contiguous

sequences of text called spans that, jointly, are

sufficient to predict the label y effectively. One

wishes to also assign each span a score reflecting

its contribution to the prediction ŷ. In this work,

span selection is regularized by quantifying span

size and overlap among spans, and performance is

evaluated via human rating of randomly selected

spans.

3.2 Proposed Model: SpanPredict

The architecture for the proposed SpanPredict

model is given in Figure 1. For a given pas-

sage of text, let t = 1, . . . , T index token st, and

let et ∈ R
D denote an embedding of token st.

Note that the et may be linear token embeddings,

but may also be contextualized embeddings gener-

ated by BERT (Devlin et al., 2018), for example.

For each embedding et, two probability vectors

p̃ = softmax
(
E⊤wp

)
and q̃ = softmax

(
E⊤wq

)
,

where E = [e1, . . . , eT ], are computed using a pair

of trainable, sentinel attention vectors wp,wq ∈
R
D. Vectors p̃ = [p̃1, . . . , p̃T ] ∈ ∆T−1 and

q̃ = [q̃1, . . . , q̃T ] ∈ ∆T−1, where ∆T−1 is the

T − 1 simplex, represent the set of probabilities of

each token in the sequence being the start and end

of a span of text, respectively. While it is tempting

to create a span by choosing the start and end po-

sitions with highest probabilities, i.e., argmaxt p̃
and argmaxt q̃, respectively, this is problematic

since the argmax function is not differentiable,

precluding training by standard backpropagation.

To produce a span representation r that is

amenable to backpropagation, we employ the cu-

mulative sum function cumsum(x) : x ∈ R
T 7→

c ∈ R
T , where ct =

∑

t′≤t xt′ is an element of

c. Using this function, we define p = cumsum(p̃)
and q = cumsum(q̃::−1), where x::−1 is the vector

x with its elements reversed. Intuitively, pt (ele-

ment of p) represents the probability that the start

of a span has occurred by token t when coming

from the left of the sequence and qt (element of

q) represents the probability that the end has oc-

curred by token t when coming from the right. We

then calculate a set of weights r̃ = p ⊙ q, where

⊙ denotes the element-wise product. The product

r̃ therefore assigns large weights to tokens which

have high mass under both p and q, i.e., those that

are identified as falling between the start and end

points of a span.

Rather than directly using r̃ to compute a span

representation, we first normalize r̃ = [r̃1, . . . , r̃T ]
such that its elements sum to 1. We define the el-

ements of r as rt = r̃t/(
∑

t r̃t + ǫ) and ǫ ≈ 10−8

is included for numeric stability, since r̃ is zero

everywhere if the support of p and q do not over-

lap, indicating a null span. Importantly, normaliza-

tion allows us to compute a score that reflects each

word’s contribution to the span as a whole, regard-

less of the length of the overall sequence. We then

construct a span representation m = Er ∈ R
D, by

taking an average of the embeddings E weighted

by r. This method of constructing spans is a key

feature of our model as it allows for span location

and length to be dictated nonparametrically, driven

only by the content within the identified spans and

the quality of the predictions.

We repeat this procedure J times to identify J
spans mj , j = 1, . . . , J , using unique pairs of sen-

tinel vectors {wpj ,wqj} for each span. Finally, we

employ attention over the J span representations

to generate span scores zj = w⊤
z mj . These scores

are effectively logits, which can be interpreted as

the log-odds of a positive label associated with the

span. The output of the model, ŷ = σ(
∑

j zj),
where σ(·) is the sigmoid function, is compared

against the truth y, and the model is trained via

backpropagation with binary cross-entropy loss.

In this work, we pad or truncate documents, as

appropriate, to have fixed length T̃ . Tokens are

mapped to dense vectors using 100-dimensional

GloVe embeddings, which are then contextualized

with three parallel convolutional layers with filters

of kernel sizes K ∈ {2, 3, 5} prior to span selec-

tion (see Section 5.1 for details). We chose this sim-

ple approach over more complex embeddings, e.g.,

BERT, to focus on the quality of span extraction

and its effect on classification performance rather

than on maximizing performance per se. However,

our approach is agnostic to the choice of embed-

ding, and alternative embeddings may be used if

desired.
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Figure 1: Model architecture. We begin with tokenization followed by an embedding lookup. Three convolutions

with kernel sizes K ∈ {2, 3, 5} (shades of blue) are performed in parallel, and outputs are concatenated to form

contextual embeddings. The span detection module then identifies J = 3 (in this example) spans denoted by green,

yellow, and red. Word scores from the span detectors are used to compute J weighted average span representations,

each denoted by m. These are stacked to form M. Note that the red span weights are all 0, indicating a null span

representation. Finally, we perform attention over the span representations to obtain scores zj , which are added

and passed through a sigmoid to predict ŷ ∈ (0, 1).

3.3 Constraining span uniqueness and size

Our model already contains an implicit penalty

for span size – specifically, the greater the num-

ber of tokens over which the model averages to

compute a span representations, the smaller the

contribution of influential words to the span logits.

Hence, the model should implicitly prefer to have

spans that are concise and not overwhelmed with

“filler” words. Further, our model naturally encour-

ages sparsity of number of spans. Spans that do

not carry meaning are biased towards generating

weights zj of zero since, otherwise, they would

inadvertently reduce the predictive performance.

This also means that the model implicitly learns

the number of spans required to make predictions

on an individual document basis.

In practice, we observed that spans identified by

our model tend to be rather long and suffer from

significant overlap, which suggests the need for

an additional explicit penalty to make the spans

more concise and distinct. Methods involving L2-

regularization on the magnitudes of rj or zj may

shrink the spans or encourage sparsity, but they do

not directly address the overlap issue. Thus, we

seek a regularization method that directly compares

spans rj with one another.

Since vectors {rj}
J
j=1 each constitute a discrete

probability distribution, a natural choice is to con-

sider divergences between them. Among these, the

generalized Jensen-Shannon divergence (JSD) (Lin,

1991), a symmetric measure of similarity among a

set of J probability distributions, is appealing for

several reasons. The JSD is defined as

JSDπ(r1, . . . , rJ) =

H





J∑

j=1

πjrj





︸ ︷︷ ︸

span overlap

−
J∑

j=1

πjH(rj)

︸ ︷︷ ︸

span conciseness

, (1)

where H(·) denotes the entropy and π =
[π1, . . . , πJ ] ∈ ∆J−1 is a distribution of mixing co-

efficients among the J distributions {rj}
J
j=1 (Lin,

1991). While the JSD is commonly expressed as a

weighted average of Kullback-Leibler divergences

(Manning et al., 1999), in this form, we emphasize

that the JSD can be decomposed into two terms:

the entropy of the (weighted) average of the rjs

and the (weighted) average of the entropies of each

rj . Thus, by maximizing the JSD, we simultane-

ously maximize the entropy of the average distribu-

tion (i.e., minimize overlap between the rjs) while

minimizing the entropy of each rj (i.e., maximize

conciseness of each rj). In addition, the JSD is

bounded below and above by 0 and log(J), respec-

tively, allowing one to monitor convergence during

training (see Appendix C) (Lin, 1991).

We can modify the JSD formulation by intro-

ducing a tunable parameter θ ∈ [0, 0.5] as follows:
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Dataset
Num.

Notes

Num.

tokens

Age:

patients (years)

Age:

controls (years)

ASD 44458 560.1 ± 515.3 2.1 ± 2.4 2.2 ± 2.4

ADHD 45160 480.0 ± 437.3 5.6 ± 2.2 5.5 ± 1.6

Asthma 46588 505.7 ± 441.3 1.7 ± 2.0 1.7 ± 0.2

Table 1: Diagnosis prediction statistics. Each dataset was divided into training, validation, and testing subsets with

a 45:10:45 split. Positive and negative examples are balanced in each dataset.

JSDπ(r1, . . . , rJ ; θ) =

2






θ



H





J∑

j=1

πjrj







−

(1− θ)





J∑

j=1

πjH(rj)










,

(2)

where we recover (1) when θ = 0.5. As we slide

θ closer to 0, the contribution of the second term

increases; hence, the smaller the value of θ, the

smaller we can expect the entropies of the individ-

ual distributions to be. This implies that the span

sizes can be made smaller by reducing θ.

Lemma 3.1. The modified JSD is bounded above

by a constant, independent of the entropies of the

individual {rj}
J
j=1.

Proof. Defining H1 = H
(
∑J

j=1 πjrj

)

and

H2 =
∑J

j=1 πjH(rj), we have:

JSDπ(r1, . . . , rJ ; θ) =

= 2 {θH1 − (1− θ)H2}

= 2 {θH1 − θH2} − 2(1− 2θ)H2

= 2θJSDπ(r1, . . . , rJ)−

2(1− 2θ)H2

≤ 2θJSDπ(r1, . . . , rJ),

(3)

where the last line follows from the fact that 1 −
2θ ≥ 0 ∀ θ ∈ [0, 0.5] and H2 ≥ 0. �

This result provides a lower bound on our

JSD objective, useful for monitoring convergence

during training, i.e., −JSDπ(r1, . . . , rJ ; θ) ≥
−2θ log(J).

4 Learning

The complete objective function we aim to mini-

mize is thus given by:

L = −ED

[
(1− α)

(
y log ŷ+

(1− y) log(1− ŷ)
)
+

αJSD(r1, r2, . . . , rJ ; θ)]

(4)

where D is our dataset, and α ∈ [0, 1) is a hy-

perparameter denoting the weight of the modified

JSD penalty relative to the classification loss. For

simplicity, we choose to take πj = 1/J in (2) and

have therefore omitted π from the expression for

JSDπ(r1, . . . , rJ ; θ) in (4).

Aside from the learning rate, our model consists

of only three hyperparameters J , θ, and α, making

it highly attractive for experimentation. Predictive

performance is not very sensitive to the choice of J ;

here we select J to be proportional to the average

document length in each dataset, but we investigate

the impact of a fixed larger value of J in Appendix

B. To choose α, we employ a method similar to that

used in (Smith, 2017) for choosing a learning rate.

Specifically, we slowly ramp up α from a minimum

value of 0 in increments of 10−5 batch by batch and

monitor validation accuracy. When the accuracy

starts to level off or drop, we mark the value of α;

we found α = 0.1 to be appropriate for our datasets.

Parameter θ is selected via cross-validation (trading

off performance for desired span length), and is a

focus of our experiments, described below.

5 Experiments

Datasets We perform experiments on five

datasets: two publicly available non-medical

datasets, and three constructed from clinical notes

from the Duke University Health System. We con-

sider the IMDb movie reviews dataset1 (Maas et al.,

2011), which contains 25,000 training and testing

1https://www.tensorflow.org/datasets/

catalog/imdb_reviews

https://www.tensorflow.org/datasets/catalog/imdb_reviews
https://www.tensorflow.org/datasets/catalog/imdb_reviews
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Figure 2: Trends in performance. Baseline AUCs – IMDb: 0.938, Amazon: 0.931, ASD: 0.702, ADHD: 0.804,

Asthma: 0.630. Performance tends to drop slightly as θ is decreased, but spans become more concise and distinct.

examples of movie reviews and a binary viewer rat-

ing; and the Amazon Fine Food Reviews dataset2

(McAuley and Leskovec, 2013), which contains

>500,000 reviews of food items, which we sub-

sample to 25,000 training and testing examples and

5000 validation examples for consistency. Positive

and negative examples are balanced in each subset.

Reviews are on a 5-point scale, but we binarize by

labeling ratings of 3 or higher as positive. Average

document length for IMDb is 225.4±166.1 tokens,

and shorter for Amazon at 84.3± 86.1 tokens.

The three medical datasets were built by sam-

pling the clinical progress notes of children visiting

the Duke University Health System between Oc-

tober 1, 2013 and October 1, 2018. All analyses

were approved by the Duke University Institutional

Review Board. Diagnosis codes (ICD-9/10) were

used to identify patients eventually diagnosed with

autism spectrum disorder (ASD), attention deficit

hyperactivity disorder (ADHD), or asthma. Notes

from each patient group were then selected at ran-

dom and labeled as positive for the condition cor-

responding to that group. While many of these

notes are not directly related to the condition of

interest, a large proportion contain related infor-

mation or risk factors. Future work will focus on

extracting predictive spans from all notes from a

given patient; here we focus on individual notes

to limit complexity and highlight span extraction

performance. For each diagnosis prediction task,

we then selected notes from age-matched controls

not diagnosed with the condition as of October 1,

2018, and assigned them a negative label. Each

dataset contains an even number of positive and

2https://www.kaggle.com/snap/

amazon-fine-food-reviews

negative examples. Descriptive statistics are shown

in Table 1.

5.1 Methods

We first establish baseline performance for each

dataset by training a CNN-based classifier that re-

places span detection with max-pooling of all filter

activations, but that is otherwise identical to Span-

Predict. Pooled activations are fed into a linear

layer that predicts the log-odds of a positive label.

Our baseline model was motivated by our goal to

understand how the SpanPredict module affects

performance and highlight its flexibility with many

baseline models, rather than to maximize perfor-

mance, per se. A CNN-baseline was preferred

over a BiLSTM, as the latter contains a context

window of infinite length. Thus, a contiguous con-

tiguous sequence of tokens can contain informa-

tion from tokens outside the window, making span

identification and interpretation difficult. Our base-

line is closely related to hierarchical SWEM (Shen

et al., 2018), and despite its simplicity, achieves

an accuracy of 86.3% on IMDb, which is competi-

tive against recent benchmarks (Papers with Code,

2020; Zhang et al., 2018). As shown in figure 2a,

this same model achieves an AUC of 0.938.

To contextualize GloVe embeddings, we apply

C = 3 parallel convolutional layers, each of filter

size F = 50, stride S = 1, kernel sizes K ∈
{2, 3, 5} and with ReLU activations. Tokens are

padded such that the output of each convolution

is of length T̃ . We then concatenate the filters

to obtain refined embeddings et ∈ R
CF , which

are fed into the span detection module. Omitting

the token embedding matrix, our model contains

100× (2 + 3+ 5)×F +C ×F parameters in the

https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews
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convolutional layers and 2J × C × F parameters

in the span detection filters. Thus, SpanPredict

contains 2J × C × F more parameters than our

baseline model, and ≈ 50, 000 parameters in total.

We take a step-wise approach to assessing model

hyperparameters by first training with only binary

cross entropy loss (α = 0). We then train three

models with α = 0.1 – chosen by comparing base-

line performance on α ∈ {0.01, 0.05, 0.1, 0.2} –

and a maximum of J spans, where J is propor-

tional to the average document length in the dataset.

For IMDb, we choose 4; for Amazon, 3; and for

all diagnoses, 7. Within this set of three, we vary

θ across the values {0.5, 0.475, 0.45, 0.4, 0.25} to

assess the impact of the JSD penalty on span size

and prediction performance. In Appendix B, we

show results when J is increased to 10.

For each experiment, we summarize classifica-

tion performance using area under the ROC curve

(AUC, for span size) and intersection over union

(IoU, for span overlap). However, our goal is not to

maximize classification performance, but rather to

maintain good performance while also providing

distinct, concise spans and scoring them accurately.

To evaluate our span selection, we (a) quantify av-

erage span length and overlap for each model; (b)
evaluate model-based span scoring, for which we

have no ground truth, by having human raters score

a random sample of spans; and (c) show a large

number of spans selected by our models, which

may be evaluated qualitatively (Appendix A).

For IMDb and Amazon, samples for human eval-

uation were selected by first filtering for correctly

labeled spans (zij < 0 when yi = 0, where i in-

dexes documents in the testing set and j indexes

spans; and vice versa). The remaining spans were

divided by zij into quantiles, and 40 samples were

drawn from each (to ensure a roughly uniform dis-

tribution of scores). We recruited 3 native English

speakers to rate each span on a 5-point scale (very

negative, negative, neutral, positive, very positive).

A similar procedure was used to select spans

from each medical dataset. Here, we only con-

sidered correctly labeled, condition-positive notes

(yi = 1), since condition-negative notes (yi = 0)

are marked by the absence of information related to

the diagnosis more than the presence of information

denying it. To mitigate rater fatigue, we sampled

20 spans per quantile, per condition, rather than 40.

Three neurology or psychiatry residents rated each

span on a 5-point scale. Raters were asked to grade

the conditional probability of seeing the span given

that the patient has the condition.

5.2 Training

SpanPredict was built in Python using Tensorflow

2.1 and trained on a single NVIDIA Titan Xp

GPU. We use the Adam optimizer with default

values of η = 0.001, ǫ = 10−7, β1 = 0.9, and

β2 = 0.999. Parameters are randomly initialized

from N (0, 0.05) for the convolutional layers and

N (0, 0.5) for the span detection layers. To reg-

ularize training, we employ Dropout (Srivastava

et al., 2014); after selecting α, Dropout rates of

{0.1, 0.25, 0.5, 0.7} were tested and 0.5 was cho-

sen. We train each of our models with a batch

size of 8 for 300 epochs. Our model complexity

is linear in space and time with respect to J . We

report performance using the model stored at the

epoch with the lowest overall validation loss. To

allow the model to warm up to the JSD penalty, we

linearly increase α from 0 to 0.1 over 150 epochs

and then fix its value to 0.1 for the remainder of

the experiment. We use the Keras tokenizer with

a vocabulary size of 30,000 to tokenize our text

and pad or truncate each sequence to a maximum

length of 512 tokens.

6 Results and Discussion

In Figure 2, we describe trends in performance.

Baseline AUCs are provided in the caption. Note

that lower AUCs for diagnosis prediction reflect

the comparative difficulty of these tasks. Figure 2a

shows performance relative to the baseline model

for varying JSD penalties. Performance decreases

up to 6% as the penalty increases, with the excep-

tion of ASD, on which the model performs about as

well as or better than baseline for θ ∈ [0.4, 0.475].
Thus, while some information may be lost during

summarization, depending on the dataset, summa-

rization may also serve to denoise the text, improv-

ing predictive performance.

From Figure 2b, we find that as the penalty is

increased, spans become considerably shorter. In-

specting the results when θ = 0.25, we found that

the model tends to focus in on key words rather

than phrases. From Figure 2c, we see that over-

lap also shrinks with span size. The effect is more

rapid for the medical datasets, likely because the

non-medical passages contain text throughout that

is relevant to the sentiment of the passage, whereas

medical notes contain information not relevant to

the prediction task. A notable exception is asthma,
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Figure 3: Example spans in the IMDb (top, positive sentiment) and Amazon (bottom, mixed sentiment) datasets.

Colors represent the different spans (J = 4 for Amazon, J = 3 for IMDb). Solid lines denote rj (heights of r1
and r3 rescaled for visualization purposes). Dashed lines denote p̃j and dotted lines q̃j , with shading to resolve

overlap. The inset plot shows the scores zj , which are added to predict the log-odds of a positive label.
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Figure 4: Predicted log-odds versus median sentiment (3 raters) for all five datasets.

which maintains a relatively constant span size

and overlap, suggesting that diagnosing asthma

requires identifying specific phrases (e.g., “short-

ness of breath”) that cannot be decomposed into

individual words. Finally, we demonstrate in Ap-

pendix B that, for J = 10, AUC is, on average,

greater but at the cost of greater sensitivity to θ.

Figure 3 provides an illustration of individual

spans inferred by SpanPredict (θ = 0.5). In the

IMDb example (top), we see that the model cap-

tures two highly positive spans, each constituting

30-35% of the note, with words such as “profes-

sional,” “laughed,” and “appreciate” appearing in

the red span. SpanPredict is also able to capture

meanings of complex positive phrases, such as

"chock full", "sure handed," "none of the over the

top," and "time has come." The blue and green

spans each cover only a single word; however, these

words – “flawless” and “beautifully” – have signif-

icant positive connotation. This is a feature our

model shares with (Shen et al., 2018), which also

picks out individual tokens.

The Amazon review (Figure 3, bottom) contains

mixed sentiment. The green span contains the word

“quality,” which, akin to words such as “care” or

“workmanship,” is slightly positive. However, the

blue span is filled with negative phrases. This is

reflected in the zj scores in the inset plot, which

are added to predict the log-odds of a positive label.

We find that zj is negative for the blue span while

positive for the green span. The orange span is

most negative, suggesting that the model is able

to synthesize information from the blue and green

spans it overlaps to extract an overall meaning.

Figure 4 shows the human evaluation results. For

each span, we computed the median rating among

the 3 reviewers and performed a non-parametric

ANOVA (Kruskal-Wallis test) to assess agreement

with model-predicted scores. Statistically signifi-

cant differences in means (p < 0.001) were present

in the IMDb, Amazon, and ADHD datasets, but not

the ASD and Asthma datasets. Given our model’s

high agreement with human raters in the IMDb and

Amazon tasks, the lower agreement observed on

the medical diagnosis tasks may indicate that our

model is identifying descriptive risk factors not fa-

miliar to our clinical raters. This hypothesis, which

was suggested by our clinical collaborators, will be

explored further in subsequent work. To measure

inter-rater reliability, we computed Cohen’s kappa
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for each dataset – IMDb: 0.73, Amazon: 0.78,

ASD: 0.53, ADHD: 0.64, Asthma: 0.63. These val-

ues illustrate the difficulty of evaluating the clinical

notes compared to the review datasets.

7 Conclusions

We have introduced the task of predictive extrac-

tion, in which document labels are predicted from

extracted contiguous segments of text called spans.

We presented SpanPredict, which constructs span

representations nonparametrically from contextual-

ized embeddings by predicting start and end posi-

tions using linear attention. Our model is straight-

forward to tune, and assigns interpretable span

scores that are added together to predict the log-

odds of a positive label. Model performance and

span quality are evaluated on two non-medical

and three medical datasets. Notably, we observe

high correlation between human span ratings and

model-predicted span scores, particularly in the

non-medical datasets, illustrating that our model

selects meaningful spans and scores them accu-

rately. Discrepancies between human ratings and

model predictions in the medical datasets may sug-

gest that our model is identifying condition-specific

risk factors that are unfamiliar to trained clinicians.

Future work will consider prediction and span ex-

traction from a collection of documents rather than

individual documents, allowing descriptive risk fac-

tors to be extracted from patient medical histories.

Clinical findings consistently highlighted by Span-

Predict will be analyzed as possible risk factors via

standard statistical methods. Additionally, whereas

SpanPredict identifies a set of spans sufficient to

predict the label, future work will explore methods

for ensuring that all predictive spans are identified.

Ethical considerations

This paper introduced the problem of predictive ex-

traction, which attempts to identify distinct spans of

text within a document that, taken together, are suf-

ficient to predict its associated label. Its positive im-

pact can best be described within the context of dis-

ease classification from narrative clinical text. For

example, ASD is a classically difficult condition

to diagnose, as its symptoms are often behavioral,

rather than physiological, making clinical notes

critical for classification. Focus on classification

alone, however, is not sufficient, as a clinical deci-

sion support tool requires a level of interpretability

to assure clinicians that the model is not relying

on data artifacts that are not clinically meaningful

or generalizable. This requirement is present in

many document classification tasks, including the

scoring of food or movie reviews. Our newly intro-

duced algorithm, SpanPredict, addresses this need

by identifying important and unlabeled predictive

phrases without substantially worsening classifi-

cation performance. As such, SpanPredict can be

used as a real-time decision aid, providing narra-

tive summaries optimized for disease classification,

thus leading to faster diagnoses and long-term im-

provements in function, while minimizing health-

care cost and utilization.

While the positive impact of our contribution

is clear, there are potential negative consequences

related to biases in training. When algorithms are

trained on patient datasets that are incomplete or

under-/mis-representative of certain populations,

they can develop discriminatory biases in their out-

comes. When considering clinical notes, there is

also potential for biased language in patient medi-

cal records related to race and ethnicity, including

perpetuating of negative stereotypes, blaming a pa-

tient for their symptoms, or casting doubt on patient

reports and experience. This biased language likely

changes the context of words and may negatively

impact classification performance. This is of partic-

ular importance in ASD, where white children with

ASD receive their diagnoses substantially earlier

Black children with ASD. Ignoring these biases

might create self-fulfilling prophecies that confirm

existing social biases or create new applications of

bias altogether. In light of these negative impacts,

it will become critical to evaluate the performance

of SpanPredict in various populations prior to be-

ing put in production, so that all biases are well-

characterized. Nonetheless, the overall impact of

the paper is a net positive as it advances the field

of interpretable document classification, using a

novel methodology that only requires labels for the

classification.
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Appendix A. Example spans

In Tables 2 through 11, we list example spans se-

lected from each of the corpora whose log-odds

scores were highly positive or highly negative.
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Table 2: Selected spans among top 100 positive scores for IMDb

Span Text Score

this wonderful film is a love story, and shows that not all relationships are

destined to last. even so they can be great worth the pain suffering of

+6.13

was born to play this role, and her performance will most likely be remembered

as she is supported by an ideal cast, and the direction and design are tops. it

doesn’t get any better than this.

+6.12

in love with the cats break into song. with the song everybody wants to be a cat.

thomas gets to love music like the other cats. thomas and really like each other.

i loved this movie and i like the cats to

+6.12

i have nothing but good things to say about this tasteful and heartwarming film.

i think that the effort of

+6.12

this remarkable film just gets better every time you watch it. a true cinematic

work of art from a visionary director.

+6.11

a wonderful film that everyone interested in should see. but it’s not a perfect or

definitive work on the subject.

+6.11

Table 3: Selected spans among top 100 negative scores for IMDb

Span Text Score

poor ward, so lovely, but so surely she’s been better in other movies. -6.71

this turgid film that i can think of. any proper film lover will have an almost

impossible time trying to find any redeeming value in this crap, definitely one

to avoid.

-6.71

in another of the dreadful horror films i seem so attracted to, we have a bunch of -6.71

of the most annoying characters ever captured on film. this crap is an insult to

movies and i almost never rate a movie i don’t see from start to finish, but in

this case the former is impossible. 2 10

-6.70

poor souls from wasting their time and or money with this movie. i [unk] it and

wish i never even wasted the hard drive space. if i spent 10 bucks to see this in

theaters i would kill

-6.70

i would ward off any temptation to view this movie, it is quite simply dull. the

characters are predictable and the assassin is quite [unk] there is no tension, fun,

no style or even a glimmer of

-6.68
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Table 4: Selected spans among top 100 positive scores for Amazon

Span Text Score

this for the first time recently and found it awesome i made a perfect vegetable

curry, very flavorful and spicy. i’m going to make up another batch over the

weekend, and put this curry paste on my list to order again.

+8.40

brew it correctly and you really get a beautiful cup of tea. i highly +8.40

getting harder and harder to find in the stores so i’m stocking up from amazon.

my toddler loves it and we use it on all meats. i make rice using coconut milk

to serve with this and it’s yum

+8.39

a very well built mole trap that works great when set correctly. the safety latch

is a nice

+8.39

bowl. wonderful product and so nice that i can buy in bulk since we go through

it so fast.

+8.39

a decent price depending if you do subscribe and save . these bars are great for

my little ones, they love them, and they are a good healthy alternative to candy

or cookies.

+8.39

Table 5: Selected spans among top 100 negative scores for Amazon

Span Text Score

was terrible it tasted like we were licking an ashtray. it has a burnt grounds

flavor. i highly recommend not wasting your money on this product.

-7.30

the one can i tasted and threw out to the food pantry. -7.30

really stale items from amazon.com and this was one. unedible. beware of the

quality of food items on this website that are on special as they can be very

close to due dates or in this case, not expired but stale and unedible just the

same.

-7.30

this product claims and hours of entertainment. my dog had it completely

destroyed on 20 minutes. i’m completely disappointed.

-7.30

life threatening . undigested pieces of these chews were in his waste. i do not

reccomend

-7.30

this is disgusting, it doesn’t taste like watermelon at all. it’s actually a blend of

several different juices, plus the ascorbic acid, and the blend does not meld at

all. it’s just bitter, overly sweet, and has a nasty aftertaste.

-7.29
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Table 6: Selected spans among top 100 positive scores for ASD

Span Text Score

subjective intake chief complaint problems with sleep, inattention, and behav-

ioral concerns both in the home and school setting. DATE, recently more anger

and recent tic like behavior

+6.95

psychologist presenting problem NAME is a 3 year, 4 month old female who

was referred for a neurodevelopmental assessment due to concerns regarding

her overall development, behavior, and social emotional functioning and to

assess for autism spectrum disorder

+6.82

problem list diagnosis • disruptive behavior disorder • impaired speech articula-

tion • daytime enuresis • other subjective visual disturbances • hypermetropia

of both eyes • adhd attention deficit

+6.81

problem list diagnosis • anemia of prematurity • history of colitis • meconium

tox for thc • extreme immaturity of newborn, 27 completed weeks • nasal

congestion of newborn • presumed

+6.78

motor delay DATE • hypotonia DATE • clasped thumb DATE • polydactyly

DATE • developmental

+6.74

therapy NAME was seen for developmental support during rop eye exam today.

the

+6.65

Table 7: Selected spans among top 100 negative scores for ASD

Span Text Score

subjective NAME is a 5 y.o. female who presents for her 5 year well child visit.

history was obtained today by father. concerns had om a few weeks ago. check

her throat.

-5.91

CLINIC sick visit patient active problem list diagnosis • routine child health

maintenance chief complaint patient presents with • fussy x several days. dad ?

possible ear infection hpi has never

-5.90

NAME is a male child here for his 15 month well child visit. concerns none

diet varied voiding and stooling well. past medical history active ambulatory

-5.87

evaluation was performed today unless otherwise noted. assessment encounter

diagnosis name primary? • regular astigmatism of both eyes yes plan 1. astig-

matism

-5.83

breast bottle vitamins formula no 0 oz. per feeding of feedings in 24 hours 0

solids yes juice no elimination patterns loose sleep sleeps all night development

-5.81

subjective is a 17 m.o. male and is here for a well child visit. history was

obtained today by is 17 months old and is here for a 15 month exam. he is

doing well.

-5.76
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Table 8: Selected spans among top 100 positive scores for ADHD

Span Text Score

behavioral parent training patient and family response to interventions we

discussed parenting stress and consistent plan to move to pdi 4 next week.

objective mental status exam behavioral

+5.33

sensory disorder subjective pain assessment no pain. patient caregiver com-

ments NAME is reportedly behind in reading is likely going to need summer

school reports of difficulty keeping place when reading. family considering

testing to rule out adhd. objective goals demonstrate improved

+5.23

outpatient prescriptions on file prior to visit medication sig dispense refill •

clonidine hcl catapres 0.1 mg tablet take 0.1 mg by mouth nightly. 2 • melatonin

3 mg tablet take 3 mg by mouth nightly. • methylphenidate concerta 54 mg

+5.18

list diagnosis • dyslexia, developmental • intermittent asthma • right elbow pain

• food allergy • fire ant sting past medical history active ambulatory problems

diagnosis date noted • dyslexia, developmental DATE • intermittent asthma

DATE

+5.18

diagnosis • gestational age, NUMBER weeks • apnea of prematurity • breech

presentation • unconjugated hyperbilirubinemia

+5.15

5 y.o. male who presents with h o developmental delay, speech disorder, sensory

and fine motor disorders, challenging behavior and who would likely continue

to benefit from continued evaluation to address identified concerns. will obtain

information to assist r o adhd

+4.92

Table 9: Selected spans among top 100 negative scores for ADHD

Span Text Score

5 y.o. female presenting with 3 days of runny nose, congestion, sore throat,

cough. today she woke up with a little bit of drainage from her right eye. as the

day has gone

-3.08

presents for an established patient office visit here for wcc. is doing well hopes

to go to early hs past medical history past medical

-3.06

y.o. female is here today for the influenza vaccine. vaccine administered today

influenza quad patient guardian reviewed or provided the hard copy of the

YEAR influenza vaccine information

-3.01

diagnosis • healthy infant or child • abdominal pain, periumbilical current

outpatient

-2.99

3 y.o. female here for evaluation of woke up with abdominal pain temp to 100

at daycare mother says she vomited x 1 this morning her sister was seen last

week for strep patient active

-2.95

subjective pain assessment no pain. patient caregiver comments NAME is

doing very well in swim and basketball. he coped very well when parents were

recently out of the in the care of extended family. objective goals NAME will...

1. open snack

-2.91
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Table 10: Selected spans among top 100 positive scores for Asthma

Span Text Score

history diagnosis date • rad reactive airway disease , unspecified history re-

viewed. no pertinent surgical history. family history problem relation age of

onset • asthma mother outpatient prescriptions marked as taking for the DATE

encounter office visit with NAME medication sig • albuterol

+7.75

pt goal home airway clearance dates start DATE, description patient will in-

crease airway clearance at home to three times a day when

+7.74

pediatric icu progress note DATE hospital day 1 icu admission indication 3 m.o.

female with principal problem respiratory distress active problems hypotonia

laryngomalacia chromosomal abnormality NAME is a 3

+7.68

patient active problem list diagnosis • gestation period, 28 weeks • respiratory

insufficiency • breech birth overnight none medications caffeine citrated 5 mg

kg

+7.63

CLINIC sick visit patient active problem list diagnosis • tof tetralogy of fallot

• sacral dimple • chromosome abnormalities chief complaint patient presents

with • nasal congestion • cough • sneezing • breathing problems hpi NAME is

+7.58

inhalation started as ordered and held near nose and mouth for ventilation

administration.

+7.53

Table 11: Selected spans among top 100 negative scores for Asthma

Span Text Score

vaccine less than 7yo im • hib prp omp conjugate vaccine 3 dose im pedvaxhib

• pneumococcal conjugate vaccine 13 valent im prevnar 13 • hepatitis a vaccine

pediatric

-5.67

19 m.o. here today with a red swollen slightly tender distal right 4th finger.

patient injured that finger in a cabinet roughly 6 days ago. last 2 to 3 days it

-5.66

20 m.o. male who presents today for the evaluation of chief complaint patient

presents with • cough • nasal congestion history was obtained today by father.

uri symptoms for gt 1 week. no worse but

-5.65

motor runs and climbs well throws a ball stacks 3 or more blocks fine motor

uses spoon and cup scribbles, tries to use

-5.61

21 m.o. with problems with gait and balance, some crying at night. grandmother

thinks he is having difficulty with constant falling and running with some

bruising of his head or face. no limp, no deformity or swelling. he has

-5.60

20 m.o. female brought in by mother. hpi NAME presents with a 2 days history

of of the fever, with maximum temperature of 104. she was seen in er 2 days

ago and diagnosed with viral illness. she is still running fever, has runny nose

and is fussy.

-5.60
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Appendix B. AUC, span size, and span

overlap with J = 10

Figure 5 illustrates the performance of our model

for a fixed value of J = 10, larger than that chosen

for each dataset in the main paper (4, 3, and 7 for

IMDb, Amazon, and the health datasets, respec-

tively). While AUC is generally higher for each

dataset compared to that obtained with a smaller

value of J , we find that span length and overlap are

now more sensitive to θ and drop more rapidly as θ
is increased. In practice, we employ smaller values

of J and adjust θ to achieve a desired level of span

size and overlap to (1) allow for finer control of

the tradeoff in performance, span size, and span

overlap, and to (2) avoid overparameterizing our

model.
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Figure 5: Trends in performance. Baseline AUCs – IMDb: 0.938, Amazon: 0.931, ASD: 0.702, ADHD: 0.804,

Asthma: 0.630. Performance tends to drop slightly as θ is decreased, but spans become more concise and distinct.
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Appendix C. Training loss vs. epoch

In Figures 6 through 20, we show the traces of train-

ing loss as a function of epoch for each experiment.

For all models except the baseline, we separate

our loss into two components: one for the negative

log likelihood (denoted “loglik”) and another for

the negative JSD (denoted “uniqueness”). In each

experiment we find that the lower bound (LB) for

negative JSD is not violated, providing experimen-

tal support for our proof of an upper bound on the

modified JSD. Note that the bottom right subplot in

each non-baseline model – titled “span_size” – can

be ignored as this is related to a feature that was

ultimately not incorporated into the model. There

is no contribution to the total loss from this compo-

nent; hence, the value is zero across all epochs.
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Figure 6: IMDb: Baseline

(a) No penalty (b) θ = 0.5, LB = -1.39 (c) θ = 0.475, LB=-1.32

(d) θ = 0.45, LB=-1.25 (e) θ = 0.4, LB=-1.11 (f) θ = 0.25, LB=-0.69

Figure 7: IMDb: J = 4

(a) No penalty (b) θ = 0.5, LB = -2.30 (c) θ = 0.475, LB=-2.19

(d) θ = 0.45, LB=-2.07 (e) θ = 0.4, LB=-1.84 (f) θ = 0.25, LB=-1.15

Figure 8: IMDb: J = 10
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Figure 9: Amazon: Baseline

(a) No penalty (b) θ = 0.5, LB = -1.10 (c) θ = 0.475, LB=-1.04

(d) θ = 0.45, LB=-0.99 (e) θ = 0.4, LB=-0.88 (f) θ = 0.25, LB=-0.55

Figure 10: Amazon: J = 3

(a) No penalty (b) θ = 0.5, LB = -2.30 (c) θ = 0.475, LB=-2.19

(d) θ = 0.45, LB=-2.07 (e) θ = 0.4, LB=-1.84 (f) θ = 0.25, LB=-1.15

Figure 11: IMDb: J = 10
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Figure 12: ASD: Baseline

(a) No penalty (b) θ = 0.5, LB = -1.95 (c) θ = 0.475, LB=-1.85

(d) θ = 0.45, LB=-1.75 (e) θ = 0.4, LB=-1.56 (f) θ = 0.25, LB=-0.97

Figure 13: ASD: J = 7

(a) No penalty (b) θ = 0.5, LB = -2.30 (c) θ = 0.475, LB=-2.19

(d) θ = 0.45, LB=-2.07 (e) θ = 0.4, LB=-1.84 (f) θ = 0.25, LB=-1.15

Figure 14: ASD: J = 10
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Figure 15: ADHD: Baseline

(a) No penalty (b) θ = 0.5, LB = -1.95 (c) θ = 0.475, LB=-1.85

(d) θ = 0.45, LB=-1.75 (e) θ = 0.4, LB=-1.56 (f) θ = 0.25, LB=-0.97

Figure 16: ADHD: J = 7

(a) No penalty (b) θ = 0.5, LB = -2.30 (c) θ = 0.475, LB=-2.19

(d) θ = 0.45, LB=-2.07 (e) θ = 0.4, LB=-1.84 (f) θ = 0.25, LB=-1.15

Figure 17: ADHD: J = 10
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Figure 18: Asthma: Baseline

(a) No penalty (b) θ = 0.5, LB = -1.95 (c) θ = 0.475, LB=-1.85

(d) θ = 0.45, LB=-1.75 (e) θ = 0.4, LB=-1.56 (f) θ = 0.25, LB=-0.97

Figure 19: Asthma: J = 7

(a) No penalty (b) θ = 0.5, LB = -2.30 (c) θ = 0.475, LB=-2.19

(d) θ = 0.45, LB=-2.07 (e) θ = 0.4, LB=-1.84 (f) θ = 0.25, LB=-1.15

Figure 20: Asthma: J = 10
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Appendix D. Code

The IMDb and Amazon datasets were processed

using the following scripts:

• imdb_baseline.ipynb – to train base-

line model on IMDb and obtain AUC

• imdb_main.ipynb – to train SpanPredict

model on IMDb and obtain (1) AUC and (2)

average span length

• imdb_spans.ipynb – to obtain spans for

human evaluation and supplementary material

from IMDb

• amazon_baseline.ipynb – to train

baseline model on Amazon Food Reviews and

obtain AUC

• amazon_main.ipynb – to train SpanPre-

dict model on Amazon Food Reviews and ob-

tain (1) AUC and (2) average span length

• amazon_spans.ipynb – to obtain spans

for human evaluation and supplementary ma-

terial from Amazon Food Reviews

• imdb_amazon_IoU.ipynb – to obtain

average intersection over union from both

datasets on non-baseline models

The ASD, ADHD, and Asthma datasets were

processed using the following scripts:

• asd_adhd_asthma_baseline.ipynb

– to train baseline model on ASD / ADHD /

Asthma datasets and obtain AUC

• asd_adhd_asthma_main.ipynb – to

train SpanPredict model on ASD / ADHD

/ Asthma datasets and obtain (1) AUC and (2)

average span length

• asd_adhd_asthma_spans.ipynb – to

obtain spans for human evaluation and sup-

plementary material from ASD / ADHD /

Asthma datasets

• asd_adhd_asthma_IoU.ipynb – to ob-

tain average intersection over union from ASD

/ ADHD / Asthma datasets on non-baseline

models

To train a SpanPredict model from scratch,

use the {imdb, amazon}_main script. J ,

α, and θ can be set using the num_spans,

uniqueness_weight_, and JSD_weight

fields of the model_options variable,

respectively. Note that JSD_weight is de-

fined as a tuple: (θ, 1 − θ). For instance,

to set J = 10, α = 0.1, and θ = 0.25,

use: model_options = {‘num_spans’:

10, ‘uniqueness_weight_’: 0.1,

‘JSD_weight’: (0.25, 0.75), ...}.

All other parameters of model_options and

all parameters of training_options can be

left as is. This will create a database which stores

every span extracted from every document in the

testing corpus. The {imdb, amazon}_spans

and {imdb, amazon}_IoU scripts can then

be used to obtain (1) example spans (e.g., those

tabulated in Appendix A and those selected for

human evaluation) and (2) intersection-over-union

scores, respectively.

Note that due to privacy restrictions, we are un-

able to share models trained on the ASD, ADHD,

and Asthma datasets. However, we provide base-

line, no penalty, and θ = 0.5 model checkpoints

for the IMDb and Amazon datasets (with J = 4
and J = 3, respectively, for the non-baseline

models). These were produced using the {imdb,

amazon}_main script and can be loaded by mak-

ing the appropriate modifications.

For all our models, we employ 100 dimen-

sional GloVe embeddings, which can be found

here: http://nlp.stanford.edu/data/

glove.6B.zip.

http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip

