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Abstract
We introduce AVA, an automatic evaluation ap-
proach for Question Answering, which given
a set of questions associated with Gold Stan-
dard answers (references), can estimate system
Accuracy. AVA uses Transformer-based lan-
guage models to encode question, answer, and
reference texts. This allows for effectively as-
sessing answer correctness using similarity be-
tween the reference and an automatic answer,
biased towards the question semantics. To de-
sign, train, and test AVA, we built multiple
large training, development, and test sets on
public and industrial benchmarks. Our innova-
tive solutions achieve up to 74.7% F1 score in
predicting human judgment for single answers.
Additionally, AVA can be used to evaluate the
overall system Accuracy with an error lower
than 7% at 95% of confidence when measured
on several QA systems.

1 Introduction

Accuracy evaluation is essential both to guide sys-
tem development as well as to estimate its quality,
which is important for researchers, developers, and
users. This is often conducted using benchmark
datasets containing a data sample, possibly repre-
sentative of the target data distribution, provided
with Gold Standard (GS) labels (typically produced
with a human annotation process). The evaluation
is done by comparing the system output with the
expected labels using some metrics.

This approach falls short when the system out-
put spans a large, possibly infinite set of correct
items. For example, in retrieval-based Question
Answering (QA) systems, a correct answer can be
any string in the referent text database. For exam-
ple, for the question, When did Marlins start?, an
answer could be: The Miami Marlins began play
in the 1993 season as the Florida Marlins; They
started in 1993; They firstly played in 1993; In
1993; or any possible natural language text convey-
ing the information that they started in 1993. As

annotating all possible system pieces of output is
infeasible, the standard approach is to re-evaluate
the new output of the system manually. This dra-
matically limits the experimentation velocity while
significantly increases the development costs.

A viable solution for specific NLP tasks such
as Machine Translation (MT), automatically esti-
mates an evaluation score between the system and
the reference answers, which correlates with hu-
man judgment, e.g., the BLEU score is one popular
measure (Papineni et al., 2002). Such methods
cannot be applied to a standard QA setting, since
QA systems, e.g., those developed for TREC-QA
track (Voorhees and Tice, 1999), have the purpose
to provide correct answers and are evaluated with
Accuracy, i.e., the percentage of correct answers.
Segment overlapping metrics such as BLEU, ME-
TEOR, or ROUGE do not provide a binary out-
come, i.e., correct or incorrect (as this is not the
aim of MT evaluation).

Hypothetically speaking, we could apply a
threshold to their score to obtain a binary outcome.
However, it would not be sufficient as the correct-
ness of an answer loosely depends on the match
between the reference and candidate answers. Two
answers can be correct or incorrect independently
of their overlap with the reference. For example,
for the question, What percentage of water in the
body?, associated with a reference, The percentage
of water in the body is 60%, a correct answer is
Most of the human body is water, with an average
of roughly 60%. In contrast, an incorrect answer,
still very similar to the reference, could be: The
percentage of water in the body is variable. The
MT metrics above would find the similarity of the
reference with the incorrect answer higher than the
one of the references with the correct answer. Even
a powerful model such as BERTScore (Zhang et al.,
2020) would not provide a higher score to the cor-
rect answer since it is an unsupervised approach,
not trained for this task.
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It should also be noted that simply training mod-
els for matching the answer candidate with the
reference will again not work. The question seman-
tics would radically influence the correctness of the
answer. That is, match(t, r|q1) can be true while
match(t, r|q2) can be false, where t and r are a pair
of answer candidate and reference, and q1 and q2
are two different questions.

In this paper, we study the design of models
for measuring the Accuracy of QA systems, i.e.,
percentage of correct answers over a test set (to our
knowledge this is the first successful and thorough
study). In particular, we (i) build several baselines
based on pre-trained Transformer models (Devlin
et al., 2019; Liu et al., 2019) to encode the triple,
question q, candidate t, and reference r, in different
ways; and (ii) propose a new attention mechanism,
peer attention, to model the interaction between t
and r, given the semantic bias of q.

To develop and test our models, we created (i) a
dataset, Web-based Question Answering1 (WQA)
for training and testing AVA, the point-wise estima-
tion of QA system output, i.e., the evaluation if an
answer is correct or not, given a GS answer; and
(ii) a System Dataset (SD) constituted by a set of
outputs from several QA systems, for which AVA
estimates their Accuracy.

The results show a high F1 for point-wise mod-
els, up to 74.7%. AVA can almost always rank
systems in terms of Accuracy as manual annota-
tion does. Finally, the Root Mean Square Error
(RMSE) with respect to human evaluation depends
on the datasets, ranging from 2% to 9.5%, with a
Std. Dev. lower than 5%.

2 Related Work

Automatic evaluation has been an interesting re-
search area for decades (Papineni et al., 2002;
Magnini et al., 2002). There are two typical strate-
gies to design an automatic evaluator: supervised
and unsupervised. In MT research, for example,
BLEU (Papineni et al., 2002) has been a very pop-
ular unsupervised evaluation method for the task.
Other supervised methods have been recently pro-
posed, most notably (Ma et al., 2019). Neural-
based automatic evaluators for dialog systems were
studied in (Ghazarian et al., 2019; Lowe et al.,
2017; Tao et al., 2017; Kannan and Vinyals, 2017).

Automatic evaluation for QA was addressed
by Magnini et al. (2002) and also for multiple sub-

1Available at github.com/alexa/wqa_ava

domain QA systems (Leidner and Callison-Burch,
2003; Lin and Demner-Fushman, 2006; Shah and
Pomerantz, 2010; Gunawardena et al., 2015). How-
ever, little progress has been made in the past two
decades towards obtaining a standard method. Au-
tomating QA evaluation is still an open problem,
and there is no recent work supporting it. As men-
tioned in the introduction MT unsupervised met-
rics, e.g., BLEU score or BERTScore, are not either
a solution or a reasonable baseline for automatic
QA evaluation. They could be used as features for
our models, but we designed several supervised ap-
proaches based on pre-trained Transformer models,
which subsume these MT features.

A remotely related research effort for automa-
tizing answer evaluation concerns student essays.
Short answer grading (SAG), or short answer scor-
ing, involves the automatic grading of students’
answers, typically written in free text, for a given
prompt or question (Mohler et al., 2011). This task
has been studied in (Mitchell et al., 2002; Pulman
and Sukkarieh, 2005) for educational applications.
Neural-based systems have also been recently pro-
posed to improve the models (Riordan et al., 2017;
Wang et al., 2019). Despite the conceptual similar-
ity, i.e., evaluating an answer, the problem setting
for the task is fundamentally different.

Specifically, SAG is prompt-centric; thus, the
learning objective is to score accurately other dif-
ferent answer variants for a particular question by
building models trained on previously known vari-
ants (Wang et al., 2019). Besides, the answers,
while written in free text, are not typically com-
plete sentences. Therefore, the SAG design aims to
capture sufficient content covered in the reference
responses for a question. On the contrary, AVA is
designed to operate in an open-domain QA setting,
where both the question and answer are arbitrary
input and complete sentences.

3 Problem definition and preliminaries

We consider retrieval-based QA systems, which are
mainly constituted by (i) a search engine, retriev-
ing top-k documents related to the questions, and
(ii) an Answer Sentence Selection (AS2) model,
which reranks passages/sentences extracted from
the documents. We can automatically evaluate the
(i) Accuracy of the QA system, which is the per-
centage of correct top sentences, and (ii) complex
measures, such as MAP and MRR, which quantify
the quality of the rank produced by the AS2 model.

github.com/alexa/wqa_ava
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q: What is the population of California?
r: With slightly more than 39 million people (ac-

cording to 2016 estimates), California is the na-
tion’s most populous state—its population is al-
most one and a half times that of second-place
Texas (28 million).

s: 39 million
t: The resident population of California has been

steadily increasing over the past few decades and
has increased to 39.56 million people in 2018.

Table 1: An example of input data

3.1 Answer Sentence Selection (AS2)

The task of reranking answer sentence candidates
provided by a retrieval engine can be modeled with
a classifier scoring the candidates. Let q be a ques-
tion, Tq = {t1, . . . , tn} be a set of answer sentence
candidates for q, we defineR as a ranking function,
which orders the candidates in Tq according to a
score, p (q, ti), indicating the probability of ti to
be a correct answer for q. Popular methods mod-
elingR include Compare-Aggregate (Yoon et al.,
2019), inter-weighted alignment networks (Shen
et al., 2017), and Transformers (Garg et al., 2020).

3.2 Automatic evaluation of QA

The AVA performance can be measured in two
ways: (i) evaluation of the single answers provided
by the target system (point-wise evaluation); and
(ii) the aggregated evaluation of a set of questions
(system-wise evaluation). We define the former
as a function: A (q, r, ti) → {0, 1}, where r is
a reference answer (from GS) and the output is
simply a correct/incorrect label. Table 1 shows an
example question associated with a reference, a
system answer, and a short answer s2.
A can be applied to compute the final Accu-

racy of a system using an aggregator function: we
simply assume the point-wise AVA predictions as
they were the GS. For example, in case of Ac-
curacy, we simply average the AVA predictions,
i.e., 1

|Q|
∑

q∈QA(q, r, t[, s]), where s is a short GS
answer (e.g., used in machine reading). It is an
optional input, which we only use for building a
linear model baseline, described in Section 5.

4 Dataset creation

To learn and test our models, we needed to build
AVA datasets. The interesting aspect is that we can
automatically derive them from standard AS2 cor-

2The latter can be very effective but it adds an additional
annotation cost, thus we limit its use just for the baseline
model. That is, we aim to have a lower cost AVA model.

pora if they contain questions with multiple correct
answers. For this purpose, we created our dataset
WQA for AS2 and transformed it into AVA-WQA.
We describe our approach to transforming AS2 to
AVA datasets in this section. Finally, we build an-
other benchmarking dataset for AVA constituted by
a set of QA systems and their output on target test
sets. This is used to measure the end-to-end system
performance (system-wise evaluation).

4.1 AS2 datasets

These datasets consist of a set of questions Q, and
for each q ∈ Q, there are Tq = {t1, . . . , tn} candi-
dates, comprised of both correct answers Cq and
incorrect answers Cq, Tq = Cq ∪ Cq.

WQA: The Web-based Question Answering is
a dataset built by Alexa AI as part of the effort to
improve understanding and benchmarking in QA
systems. The creation process includes the follow-
ing steps: (i) given a set of questions we collected
from the web, a search engine is used to retrieve up
to 1,000 web pages from an index containing hun-
dreds of millions of pages. (ii) From the retrieved
documents, all candidate sentences are extracted
and ranked using AS2 models from (Garg et al.,
2020). Finally, (iii) top candidates for each ques-
tion are manually assessed as correct or incorrect by
human judges. This allowed us to obtain a richer
variety of answers from multiple sources with a
higher average number of answers, as shown in
Table 2.

4.2 Point-wise datasets for AVA

We use AS2 datasets as follows: firstly, we only
keep questions with at least two correct answers,
which is critical to build positive and negative
examples. Secondly, given 〈q, ti, tj〉, where ti, tj
are two candidates, we build:

AVA-Pos = 〈q, (ti, tj) ∈ Cq × Cq and ti 6= tj〉
AVA-Neg =

〈
q; (ti, tj) ∈ Cq × Cq

〉
We create AVA-WQA from WQA. The statistics

are shown in Table 2.

4.3 AVA System Dataset (SD)

To measure AVA with respect to the overall sys-
tem Accuracy, we need to have a sample of sys-
tems and their output on different test sets. We
created a dataset with candidate answers collected
from eight systems answering a set of 1,340 ques-
tions. The questions were again sampled from the
Web. We only considered information questions.
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WQA WQA Qs with multiple As AVA-WQA
data split #Qs #As #wrong-As #Qs #As #wrong-As positives negatives total

Train 262 5,399 20,801 245 5,382 20,748 183,894 349,765 533,659
Dev. 283 8,682 19,618 276 8,674 19,502 430,230 426,246 856,476
Test 294 9,412 19,988 281 9,399 19,790 479,028 449,625 928,653

Table 2: WQA and AVA-WQA Statistics

The systems differ from each other in multiple
ways including: (i) modeling: Compare-Aggregate
(CNN-based) and different Transformers-based ar-
chitectures with different hyper-parameter settings;
(ii) training: the systems are trained on different
resources; (iii) candidates: the pool of candidates
is collected and filtered differently and in different
numbers; and (iv) retrieval: different search en-
gines, diverse indexed data sources, and different
retrieval settings. This system variability provides
high generality of our AVA results.

5 Models for AVA

The central intuition for the design of an automatic
QA evaluator is (i) capturing the same information
a standard QA system uses, while (ii) exploiting
the semantic similarity between t and r, biased
by q. We build three types of models: (i) a linear
classifier, which is more interpretable and can help
the model design, (ii) Transformer-based methods,
based on powerful language models, and (iii) our
Peer Attention approach to better model the inter-
action among q, t, and r.

5.1 A linear classifier

Given an input example, (q, r, s, t), our classi-
fier uses the following similarity features: x1=is-
included(s, t), x2=sim-text(r, t), x3=sim-text(r, q);
and x4=sim-text(q, t), where is-included applied to
s and t is a binary feature testing if t includes s,
sim-text is a sort of Jaccard similarity defined as:
sim-text (si, sj) = 2

|tok(si)∩tok(sj)|
|tok(si)|+|tok(sj)| , and tok (s) is

a function that splits s into tokens.
Let x = f (q, r, s, t) = (x1, x2, x3, x4) be a

similarity feature vector describing our evaluation
tuple, and let l be a binary label indicating whether
t answers q or not. We train w on a dataset D =
{(xi, li)}, i = 1, .., |D|, using SVM. We compute
the point-wise evaluation of t as the test xi·w > α,
where α is a threshold trading off Precision for
Recall in standard classification approaches.

5.2 Transformer-based models

Transformer-based architectures have delivered
powerful language models, which can capture com-
plex similarity patterns. Thus, they are suitable
methods to improve our basic approach described
in the previous section. Following the linear clas-
sifier modeling, we propose three different ways
to exploit the relations among the members of the
tuple (q, r, s, t).

Let B be a pre-trained language model, e.g.,
the recently proposed BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), XLNet (Yang et al.,
2019), AlBERT (Lan et al., 2020). We use B to
compute the embedding representation of a tuple:
B (a, a′) → x ∈ Rd, where (a, a′) is a short text
pair, x is the output representation of the pair,
and d is the dimension of the output representa-
tion. We use a standard feedforward network, i.e.,
A (x) = Wᵀx+ b, to implement the classification
layer, deciding if an answer is correct, where W
and b are parameters we learn by fine-tuning the
model on AVA datasets. We describe the following
different designs for A.

A0: Text-pair embedding

We build a language model representation for
pairs of members of the tuple, x = (q, r, t) by sim-
ply inputting them to Transformer models B in the
standard sentence pair fashion. We consider four
different configurations of A0, one for each of the
following pairs: (q, r), (q, t), (r, t), and one for the
triplet, (q, r, t), modeled as the concatenation of the
previous three representations. The representation
for each pair is produced by a different and inde-
pendent Transformer instance, i.e., Bp. More for-
mally, we have the following three modelsA0 (Bp),
∀p ∈ P0, where P0 = {(q, r), (q, t), (r, t)}. Ad-
ditionally, we design a model over (q, r, t) with
A0 (∪p∈P0 Bp), where ∪ means concatenation of
the representations. We do not use the short an-
swer, s, as its contribution is minimal when using
powerful Transformer-based models.
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A1: Improved text-triple embedding

The methods above are limited to pair represen-
tations. We improve them by designing B models
that can capture pattern dependencies across q, r
and t. To achieve this, we concatenate pairs of the
three pieces of text. We indicate this string con-
catenation with the ◦ operator. Specifically, we
consider P1 = {(q, r ◦ t), (r, q ◦ t), (t, q ◦ r)} and
propose the following A1. As before, we have the
individual models,A1 (Bp), ∀p ∈ P1 as well as the
combined model,A1 (∪p∈P1 Bp), where again, Bp

uses different instances that are fine-tuned together.

A2: Peer Attention for Transformer models

Our previous designs instantiate different B for
each pair; thus, they learn the feature representa-
tions of the target pair and the relations between its
members during the fine-tuning process. This indi-
vidual optimization limits the modeling of patterns
across the representations of different pairs as there
is no attention mechanism between the B instances:
the combination of features only happens in the last
classification layer.

We propose Peer Attention to improve feature
connections between different B instances. The
idea, similar to the encoder-decoder setting in
Transformer-based models (Vaswani et al., 2017),
is to introduce an additional decoding step for each
pair. That is, we use another Transformer instance
to decode the output from the previous instance.

Figure 1 depicts our proposed setting for learn-
ing the representation of two different pairs: a (e.g.,
equal to (q, t)) and b (e.g., equal to (q, r)). The ap-
proaches from the previous section would learn
two Transformer instances, Ba and Bb, with one
pass. Our Peer Attention, instead, operates two
steps, using four instances, Ba0 , Ba1 , Bb0 , and Bb1
as follows: First, in the encoding step, we learn the
representations, Ba0 and Bb0, as before. Second, in
the decoding step, we use the H[CLS]a0

from Ba0
and H[CLS]b0

from Bb0 , and concatenate them to a
and b, respectively, providing input to Ba1 and Bb1
for the second pass of fine-tuning.

Thus, the representation in one pair can attend
over the representation in the other pair during the
decoding stage. This allows the feature represen-
tations from each instance B to be shared during
training and prediction stages. The final representa-
tion input to the classification layers is constituted
by H[CLS]a0

, H[CLS]a1
, H[CLS]b0

, and H[CLS]b1
.

Figure 1: Peer attention on a and b pairs.

6 Experiments

We study the performance of AVA in predicting:
(i) the correctness of the individual answers output
by a system (point-wise estimation); and (ii) the
overall system performance derived on a test set.
We consider QA Accuracy and passage reranking
measures in comparison to human labeling. The
first aspect evaluates the quality of our approaches,
whereas the second provides evidence on the prac-
tical use of AVA to develop QA systems.

6.1 Datasets and models
We train and test models using our new AVA-WQA
dataset. We also evaluate the point-wise perfor-
mance on the WikiQA and TREC-QA datasets.

Table 3 summarizes the configurations we con-
sider for training and testing. As the linear classi-
fier baseline, we used SVM by scikit-learn, setting
the probability parameter to enable Platt scaling
calibration on the classifier score.

We developed our Transformer-based AVA
on top of the HuggingFace’s Transformer li-
brary (Wolf et al., 2020), which also offers
a native encoder-decoder setting through the
encoder_hidden_states feature. We use
RoBERTa-Base as the initial pre-trained model for
each B instance (Liu et al., 2019), with the de-
fault hyper-parameter setting of GLUE trainings:
(i) AdamW variant (Loshchilov and Hutter, 2017)
as optimizer, (ii) a learning rate of 1e-06 set for
all fine-tuning exercises, and (iii) a maximum se-
quence length set to 128. Our number of iterations
is two. We also use a development set to enable
early stopping based on F1 measure after the first
iteration. We fix the same batch size setting in the
experiments to avoid possible performance discrep-
ancies caused by different batch sizes.
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Model Setting Configurations

Linear Classifier using 4 features xi
A0 one for each and one for all from P0
A1 all possible combinations from P1
A2 the best setting from A1

Table 3: The AVA configurations used in training

6.2 Metrics

We study the performance of AVA in evaluating
passage reranker systems, which differ not only in
methods but also in domains and application set-
tings. We employ the following evaluation strate-
gies to benchmark AVA.

Point-wise evaluation We use Precision, Recall,
and F1, to measure the performance of AVA in
predicting if an answer candidate is correct or not.

System-wise evaluation We use AVA in a sim-
ple aggregator to estimate the overall system per-
formance over a test set. The metrics we consider
in our estimation are: Precision-at-1 (P@1), Mean
Average Precision (MAP), and Mean Reciprocal
Rank (MRR), as TREC-QA and WikiQA contain
answer ranks. In contrast, we only use P@1 on SD
dataset, as this only includes the selected answers
for each system.

To measure the quality of AVA with respect to
GS annotation we use (i) Root Mean Square Error:

RMSE (a, h) =
√

1
nΣn

i=1(ai − hi)
2, where a and

h are the measures given by AVA and the human
annotation, respectively; and (ii) Kendall’s Tau-
b3 to measure the correlation between the system
ranks produced by AVA and GS one, i.e., τ = c−d

c+d ,
where c and d are the numbers of concordant and
discordant pairs between the two rankings.

6.3 Results on Point-wise Evaluation

We evaluate the performance of AVA in predicting
if an answer t is correct for a question q, given a
reference r. Table 4 shows the result. The first
column reports the names of the systems described
in Section 5. The second column shows the F1
measured on AVA-WQA. We note that:

• The SVM classifier performs much lower than
any Transformer-based model (fed with a com-
plete input): clearly, Transformer models can
exploit powerful language models, suggesting
that generalization is important.

3We use scipy.stats.kendalltau

Modeling configuration F1
Linear Classifier 0.3999
A0 ({(q, r)}) 0.0695
A0 ({(r, t)}) 0.6247
A0 ({(q, t)}) 0.6713
A0 (P0) 0.6807

A1 ({(q, r ◦ t)}) 0.7014
A1 ({(r, q ◦ t)}) 0.7383
A1 ({(t, q ◦ r)}) 0.7236

A1 ({(q, r ◦ t) , (t, q ◦ r)}) 0.7421
A1 ({(r, q ◦ t) , (t, q ◦ r)}) 0.7447
A1 ({(r, q ◦ t) , (q, r ◦ t)}) 0.7435

A1 (P1) 0.7303
A2 ((r, q ◦ t) , (t, q ◦ r)) 0.7472

Table 4: AVA F1 on AVA-WQA test set, using train and
dev. sets from AVA-WQA.

• A0 ({(q, r)}) as expected cannot predict if an
answer is correct (its F1 is lower than 7%)
since it does not use the answer representa-
tion.

• A0 ({(q, t)}) is already a good model as it is
as much powerful as a QA system.

• A0 ({(r, t)}) is already a reasonable model,
intuitively based on paraphrasing between r
and t, but its F1 is 9% (62.47 vs 68.07) lower
than A0 (P0), which uses all information, in-
dicating that the semantic bias of q is essential
to learn the right similarity between r and t.

• The results of the A1 models using a single
triplet of q, r and t (i.e., 70.14, 73.87, 72.36)
indicate that a text concatenation as input to
Transformer models captures more informa-
tion than concatenating the three separate em-
bedding pairs, e.g., A0 ({(r, t)}) only obtains
68.07. Interestingly, q text must be concate-
nated with t or r, to generate more effective
features (2 or 4 points more).

• The triplet combination, e.g., A1

(
{r, q ◦ t),

(t, q ◦ r)}
)
, provides an even more accurate

model, while the redundant information from
A1 (P1) does not produce benefits.

• Finally, the Peer Attention model applied to
the best representations, e.g., A1

(
{r, q ◦ t),

(t, q ◦ r)}
)
, boost them even more, reaching

∼75%. This is an important result, consid-
ering that the annotator agreement (the refer-
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Metrics RMSE ± σ
Kendall
τ p

TREC-QA-Dev
P@1 0.000 ± 0.000 1.000 0.003
MAP 0.040 ± 0.019 1.000 0.003
MRR 0.015 ± 0.011 0.866 0.017

TREC-QA-Test
P@1 0.034 ± 0.018 1.000 0.003
MAP 0.041 ± 0.029 0.867 0.017
MRR 0.020 ± 0.012 1.000 0.003

WikiQA-Dev
P@1 0.000 ± 0.000 1.000 0.009
MAP 0.050 ± 0.039 0.733 0.056
MRR 0.063 ± 0.052 0.690 0.056

WikiQA-Test
P@1 0.079 ± 0.030 0.889 0.017
MAP 0.081 ± 0.040 0.733 0.056
MRR 0.095 ± 0.035 0.867 0.017

Table 5: System-wise evaluation on TREC-QA and
WikiQA using AVA model, A2 ((r, q ◦ t) , (t, q ◦ r)).

ence is not available to them) is lower than
25%.

6.4 Results on system-wise evaluation
We evaluate the ability of AVA in predicting the Ac-
curacy of QA systems as well as the performance
of AS2 tasks. We conduct two evaluation studies
with two public datasets, TREC-QA and WikiQA,
and our SD dataset.

Results on public datasets For TREC-QA and
WikiQA, we evaluated a bag of different models
on the development and test sets and compared the
results to the performance measured by AVA using
one of the best models according to the point-wise
evaluation, i.e., A2 ((r, q ◦ t) , (t, q ◦ r)).

More specifically, we apply each model m to se-
lect the best answer t from the list of candidates for
q in the dataset. We first compute the performance
of modelm based on the provided annotations. The
metrics include Accuracy or Precision-at-1 (P@1),
MAP, and MRR.

We then run AVA for (q, t) using the GS answers
of q as references, r. When multiple references are
available, the final score of (q, t) is the average of
AVA scores applied to different r. Before comput-
ing the Accuracy on the test set, we tune the AVA
threshold to minimize the RMSE between the Ac-
curacy (P@1) measured by AVA and GS, on the
dev. set of each dataset. We use these thresholds to
evaluate the results also on the test sets.

We considered six different systems built with
one Compare-Aggregate (CNN) trained model and
five other Transformers-based models. Four of the
latter are collected from public resources4 (Garg

4github.com/alexa/wqa_tanda

et al., 2020). These models differ in the architec-
tures, BERT vs RoBERTa vs TANDA, and their
training data; thus, their output is rather different.
We removed questions that have no correct or no
incorrect answers.

Table 5 reports the overall results averaged over
the six models. We note that (i) if we set the thresh-
old on the dev. set, the error on P@1 on the dev. set
is 0, which should not surprise the reader as we fit
such set. (ii) This is not the case for MAP, which is
a much harder value to predict as it requires to esti-
mate an entire ranking. (iii) On the TREC-QA test
set, AVA has an error ranging from 2 to 4.1 points
on any measure. (iv) On the WikiQA test set, the
error is higher, reaching 9.5%, probably due to
the fact that WikiQA data is rather different (more
than TREC-QA data) from the data used for train-
ing AVA. (v) the Std. Dev. is low, suggesting that
AVA can be used to estimate system performance,
with an error ranging from 4% to 16.5% at 95%
confidence, depending on measure and dataset.

Additionally, we compute the Kendall’s Tau-b
correlation between the ranking of the six systems
sorted in order of performance (P@1) according
to GS and AVA. We observe a perfect correlation
on TREC-QA and a high correlation on WikiQA.
This means that AVA can be used to determine if
a model is better than another, which is desirable
when developing and/or deploying new systems;
the low p-values indicate reliable results.

Finally, Table 7 compares the performance eval-
uated with GS and AVA for all six models. It is
interesting to note the high variability of the perfor-
mance of our tested QA systems, e.g., P@1 ranges
from 59.6 to 96.2 (with several intermediate re-
sults) on TREC-QA. Nevertheless, as shown in
Table 5, the predictions of AVA are close to those
from humans.

Results on SD We use the SD dataset in this eval-
uation to have a further system-wise evaluation.
This differs from the one before as the systems’
configurations and the data reflect an industrial sce-
nario. The task is more challenging as the output
is not just from one neural model, it comes from a
combination of modules, ranging from query under-
standing, retrieval engine setting, indexed data, doc-
ument and sentence filters, and finally, the adopted
AS2 model. Additionally, the questions set is rather
different from the one used for training. Table 6
reports the Accuracy of eight QA systems (S1, ...,
S8) on the dev. and test sets, evaluated according to
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ADS Split Evaluator S1 S2 S3 S4 S5 S6 S7 S8 RMSE ± σ
Kendall
τ p

Dev (20%) AVA 0.215 0.278 0.22 0.369 0.285 0.294 0.283 0.355 0.0198 ± 0.012 0.929 0.0004GS 0.218 0.282 0.234 0.379 0.309 0.315 0.261 0.319

Test (80%) AVA 0.235 0.289 0.235 0.355 0.319 0.321 0.301 0.357 0.0350 ± 0.019 0.643 0.031GS 0.235 0.324 0.26 0.393 0.356 0.365 0.249 0.336

Table 6: Systems’ P@1 evaluated with AVA and the GS annotations of SD

Metrics M1 M2 M3 M4 M5 M6

T
R

E
C

-D
ev G
ol

d P@1 0.717 0.870 0.891 0.935 0.739 0.826
MAP 0.691 0.858 0.913 0.912 0.769 0.796
MRR 0.819 0.923 0.937 0.967 0.835 0.890

AV
A

P@1 0.717 0.870 0.891 0.935 0.739 0.826
MAP 0.688 0.831 0.864 0.857 0.717 0.772
MRR 0.809 0.920 0.940 0.967 0.803 0.876

T
R

E
C

-T
es

t

G
ol

d P@1 0.596 0.885 0.904 0.962 0.712 0.788
MAP 0.661 0.873 0.894 0.904 0.771 0.801
MRR 0.763 0.933 0.945 0.976 0.820 0.869

AV
A

P@1 0.635 0.904 0.962 0.981 0.712 0.827
MAP 0.639 0.845 0.896 0.886 0.680 0.789
MRR 0.764 0.936 0.981 0.990 0.793 0.880

W
ik

iQ
A

-D
ev

G
ol

d P@1 0.545 0.727 0.455 0.545 0.636 0.727
MAP 0.636 0.744 0.656 0.621 0.755 0.781
MRR 0.720 0.831 0.695 0.703 0.803 0.864

AV
A

P@1 0.545 0.727 0.455 0.545 0.636 0.727
MAP 0.523 0.751 0.643 0.617 0.713 0.774
MRR 0.568 0.841 0.682 0.698 0.788 0.841

W
ik

iQ
A

-T
es

t

G
ol

d P@1 0.563 0.844 0.781 0.688 0.813 0.781
MAP 0.634 0.778 0.753 0.746 0.834 0.820
MRR 0.746 0.917 0.876 0.833 0.906 0.883

AV
A

P@1 0.625 0.781 0.719 0.656 0.719 0.656
MAP 0.660 0.750 0.687 0.683 0.705 0.704
MRR 0.732 0.820 0.783 0.741 0.791 0.762

Table 7: Details of system-wise evaluation on
TREC-QA and WikiQA using AVA model and GS,
A2 ((r, q ◦ t) , (t, q ◦ r))

GS and AVA, along with RMSE and Kendall statis-
tics of the two different evaluations. The RMSE
is rather low 3.5% with a standard deviation of
1.9%, which indicates a max prediction error less
than ±7% with a confidence of 95%. The rank
correlation is lower than what was observed on
the academic benchmarks as the 8 evaluated sys-
tems have very close Accuracy. In any case, AVA
can still be effectively used to select the top 3-4
systems.

6.5 Qualitative Analysis

Table 8 reports some example questions from
TREC-QA test set, the top candidate selected by
the TANDA system (Garg et al., 2020), the classifi-
cation score of the latter, and the AVA score, which
will determine a correct answer when it is larger
than 0.5. For the first three questions, we note that,
even thought the score of TANDA system is low,
e.g., 0.0001, AVA can assign a rather high score,

e.g., 0.596. In the first question, this is possible
since AVA can match the winner of the literature
prize, Sully Prudhomme, as well as the year of the
event with the answer candidate. This match can
not happen with the question.

In the second question, Eileen Marie can be
matched with the question but there is basically
no direct match between branch of the service and
to command a space shuttle mission as air force col.
In contrast, the reference provides easy matching,
such as air force colonel and command a space
mission. A similar rationale applies to the third
question.

Conversely, a wrong answer could be classified
as such by AVA, even if TANDA assigned it a very
large score. For example, 1988 can be a reason-
able date in an answer to the fourth question. This
match prevents the selector to discard the answer.
In contrast, the date above does not match with
1986 in the reference, and the importance of this
mismatch is amplified by the presence of when in
the question, which suggests AVA to pay attention
to dates (in line with peer-attention modeling).

AVA vs. Overfitted reranker We investigated
the performance of AVA in an open-domain set-
ting, where the candidate answers are all sentences
contained in the retrieved web documents.

Given a question, we analyzed the top-1 candi-
dates reranked by two models: (i) a Transformer-
based reranker fine-tuned on the same test ques-
tions (overfitting them); and (ii) the general AVA
model using the answer the reranker was trained
on, as reference. We used ASNQ (Garg et al.,
2020) questions, which are typically associated
with only one correct answer. For each ques-
tion, we retrieved the top 200 relevant documents,
∼10,000 sentences, from a large index built with
the 100MM documents from Common Crawl
(commoncrawl.org), and used them as input
of our models.

We manually evaluated the top-1 answer candi-
date produced by the reranker and AVA for 100
randomly selected questions. The results show that

commoncrawl.org
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Question q Candidate t TANDA Reference r A
when were the no-
bel prize awards first
given ?

among them is the winner of the
first prize in 1901 , sully prud-
homme .

0.0001
(correct)

leo tolstoy lost the first literature
prize in 1901 to the forgettable rene
f . a . sully prudhomme .

0.596

what branch of the ser-
vice did eileen marie
collins serve in ?

the first woman to command a
space shuttle mission , air force col
. eileen collins , sees her flight next
month as `` a great challenge ” in
more ways than one .

0.046
(correct)

shuttle commander eileen collins
, a working mother and air force
colonel , was set to make history
as the first woman to command a
space mission .

0.895

what was johnny ap-
pleseed ’s real name ?

appleseed , whose real name was
john chapman , planted many trees
in the early 1800s .

0.026
(correct)

whitmore said he was most fasci-
nated with the story of john chap-
man , who is better known as
johnny appleseed .

0.948

when was the chal-
lenger space shuttle
disaster ?

sept . 29 , 1988 _ americans return
to space aboard the shuttle discov-
ery , after a 32-month absence in
the wake of the challenger accident
.

0.995
(incorrect)

challenger was lost on its 10th mis-
sion during a 1986 launch accident
that killed seven crew members .

0.080

Table 8: Examples show AVA can detect the failures of the state-of-the-art model by Garg et al. (2020).

Ques. q Reference r Overfitted Reranker A
when did apple com-
puter change to apple
inc

On January 9 , 2007 , Apple
Computer , Inc. shortened its
name to simply Apple Inc .

On January 9th, 2007 “Apple Com-
puters” was renamed “Apple Inc.” to
reflect the shift in focus towards cos-
tumers electronics.

In 2007, Apple Computer, Inc.
changed their name to Apple, Inc.

how much gold is
there in fort knox

As of November 2017, Fort
Knox holdings are 4,582 met-
ric tons (147.3 million oz.
troy).

At over 15 million ounces of gold, the
deposit is one of the world’s largest, lo-
cated in an area designated for mining.5

According to official records, Fort
Knox holds 4,578 metric tons of gold
bullion, or roughly 2.5% of the entire
world’s known gold supply.

what muscle in the up-
per body covers the
upper chest

The pectoralis major is a thick
, fan - shaped muscle , situ-
ated at the chest ( anterior ) of
the human body .

The upper portion of your back is re-
ferred to as the thoracic spine, and it
includes the trapezius, rhomboids, teres
muscles, infraspinatus, and lats.

Chest presses focus on exactly that–the
chest muscle, called the pectoralis ma-
jor.

Table 9: Examples show AVA can identify correct answers sharing the semantics of the questions.

AVA is much more accurate than the overfitted
reranker, 66% versus 25%.

Table 9 shows some questions q, with their ref-
erences r, and the answers selected by the two
models. We note that the overfitted reranker selects
answers that either (i) highly overlap with the ref-
erence (first example), or (ii) are typically wrong
when such continuous word overlapping is missing
(second and third examples).

In contrast, AVA selects answers that are rather
different from the reference, even though they share
the same semantics in answering the question.

7 Conclusion

We have presented AVA, the first automatic evalua-
tor method for QA systems. We created seven dif-
ferent datasets, classified into three different types,
which we used to develop AVA. We released those
based on public data and plan to release the others.
Then, we proposed different Transformer-based

models and a new peer attention approach to cap-
ture answer and reference similarity induced by the
question semantics. Our extensive experimentation
has shown the AVA effectiveness for different types
of evaluation: point-wise and system-wise over Ac-
curacy, MAP and MRR. The results suggest that
AVA can estimate the measures above, with a max
error of 7% at 95% of confidence.

AVA can also be applied to generate distant su-
pervision data. An example of this future applica-
tion is given by (Krishnamurthy et al., 2021).
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