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Abstract

We introduce Self-CRItic Pretraining Trans-
formers (SCRIPT) for representation learning
of text. The popular masked language mod-
eling (MLM) pretraining methods like BERT
replace some tokens with [MASK] and an en-
coder is trained to recover them, while ELEC-
TRA trains a discriminator to detect replaced
tokens proposed by a generator. In contrast,
we train a language model as in MLM and fur-
ther derive a discriminator or critic on top of
the encoder without using any additional pa-
rameters. That is, the model itself is a critic.
SCRIPT combines MLM training and dis-
criminative training for learning rich represen-
tations and compute- and sample-efficiency.
We demonstrate improved sample-efficiency
in pretraining and enhanced representations ev-
idenced by improved downstream task perfor-
mance on GLUE and SQuAD over strong base-
lines. Also, the self-critic scores can be di-
rectly used as pseudo-log-likelihood for effi-
cient scoring.

1 Introduction

In natural language processing, the landscape
of unsupervised learning methods is dominated
by masked language modeling (MLM) for bi-
directional encoders, such as BERT (Devlin et al.,
2018; Yang et al., 2019; Liu et al., 2019; Joshi et al.,
2020; Lan et al., 2019; Lewis et al., 2020; Jiao et al.,
2019), and causal masking for uni-directional auto-
regressive decoders (Radford et al., 2018, 2019;
Brown et al., 2020; Raffel et al., 2020; Lewis et al.,
2019) such as GPT. In MLM an encoder is pre-
trained on a generic corpus of text with the hope of
learning universal contextual embeddings, which,
then, are fine-tuned on a specific down-stream task.
Whereas recent developments in causal masking
aim to learn a large-scale model once and define
the down-stream task as an auto-regressive man-
ner in the form of few-shot evaluation (Brown
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et al., 2020). In practice, while an universal auto-
regressive neural backbone model without the need
for fine-tuning such as GPT-3 is desirable, the com-
putational complexity at inference time remains an
open problem. While the two-stage approach of
MLM of smaller models is computationally conve-
nient, the pretraining still incurs a substantial com-
putational cost. Hence, in this work, we focus on
learning contextual bi-directional representations
with the goal of improving upon sample efficiency.

In MLM, the input sequence of tokens is per-
turbed by randomly masking out a small subset
of the identities of tokens (Devlin et al., 2018) or
attention scores to those tokens (Yang et al., 2019).
Then, the generative model is learned as a denois-
ing auto-encoder (Vincent et al., 2008) which re-
covers the masked out tokens. While the learned
contextual representations achieve remarkable per-
formance on down-stream tasks, the pretraining
requires substantial compute. This is mainly due to
learning from gradients from the restricted subset
of tokens (Clark et al., 2020).

In ELECTRA (Clark et al., 2020), the input se-
quence is perturbed by replacing a subset of tokens
by sampled tokens drawn from an auxiliary genera-
tor model in the form of a bi-directional encoder,
which itself is learned by MLM. Then, the discrim-
inative model is learned by a binary classification
task which detects whether a token is unperturbed
or has been replaced. This approach enjoys remark-
able sample efficiency, which, we believe, stems
primarily from reducing the complexity of the clas-
sification task from masked token prediction over a
large set of classes (i.e., a typical vocabulary size
of 30, 522 classes) to replaced token detection (i.e.,
2 classes).

Despite it being less efficient, MLM training
guides the model to learn rich representations.
ELECTRA uses MLLM only in learning the auxil-
iary generator which is discarded after pretraining.
We propose to combine MLM and discriminative
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Figure 1: An overview of SCRIPT. We combine MLM and discriminative training in a single transformer encoder, exploiting
the rich representations extracted through MLM training and the compute- and sample-efficiency though discriminative training,
resulting in a simple yet effective pretraining approach for representation learning. Pretraining starts with replacing a small
portion of tokens (e.g., 15%) in a text sequence = with [MASK], yielding Z. The architecture of SCRIPT is a transformer
encoder with a softmax output layer, producing a distribution over tokens, same as any MLM models like as BERT. In the MLM
forward pass, SCRIPT takes & as input and outputs a distribution for each token. This distribution is first used to compute the
MLM loss, £z, the negative log-likelihood of recovering the masked token. It is then used to construct a Gumbel-Softmax
distribution, from which Z is sampled (indicated by the broken arrows in the figure). The critic forward pass takes Z as input and
goes through the same model. The output softmax distribution is used to construct a binary classifier to discriminate an original
versus a replaced token. And the discriminative training loss, £ pisc, is simply cross-entropy of the derived binary classifier.

Finally, a single backward pass is guided by the combination of Lsrar and £pise.

training. The resulting model thus has the rich rep-
resentations from both MLM and discriminative
learning and enjoys compute and sample efficiency
from its discriminative learning. Furthermore, in-
stead of learning an auxiliary model in addition
to the main encoder, our approach learns a single
model which is leveraged to recover masked tokens,
propose token replacements, and detect replaced
tokens. Hence the encoder itself is also a critic, giv-
ing the name of our model, Self-CRltic Pretraining
Transformers (SCRIPT). Our experiments show
that SCRIPT has improved compute and sample
efficiency in pretraining and enhanced represen-
tations, hence outperforming strong baselines in
fine-tuning on downstream tasks.

Contributions. (1) We propose a novel pre-
training approach in which the model acts as a
self-critic. (2) We demonstrated improved down-
stream task performance over state-of-the-art under
computational constraints. (3) We show the self-
critic scores may serve as computationally efficient
pseudo-log-likelihood for scoring tasks.

2 Method

We propose a pretraining approach which combines
masked token recovery and replaced token detec-
tion and does not introduce any additional parame-
ters compared to a regular BERT. In the following
sections, we first introduce MLM training which
is the same as that in BERT, and then present self-
critic training.

Suppose £ = [x1,..., ¢, ..., x| IS a text se-
quence where z; is the tth token. In MLM training,

a portion of tokens (e.g., 15%) are replaced with a
special token [MASK]. Let & be the sequence after
the mask replacement and e(2) = {e; € R4},
be the contextual representations computed by the
transformer. Let W € R *? be the weight matrix
of a softmax layer where V' is the vocabulary size.
The logit or score for token ¢ is s; = We; € RY.
Then the log-likelihood of the sequence z is,

E

log pg(z|Z) = my log pe(z¢|) (1)

~
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where m; € {0,1} indicates whether z; is a
masked token, [MASK]. The loss function for
MLM is the negative log-likelihood L y;p7(0) =
—Ep 0 (@) 108 P (2|Z) Where pgqr, is the empiri-
cal data distribution.

Besides defining the log-likelihood for MLM
training, py(x¢|Z) naturally provides a conditional
distribution of x; with which we can construct a
sampled sequence, & = [T, ..., T7|, by replacing
x; with Zy, a token sampled from pg(z¢|Z). x; is
replaced only if it is masked in & (i.e., my = 1). In
particular, the replacement token is sampled from
a Gumbel-Softmax distribution (Jang et al., 2016).
Let 7 = {m,}/_, denote py(x|Z) for notational
clarity. Then the probability of sampling the vth
token in the vocabulary for z; is,

expl(log 7y 4 gv) /7]
Sy _qexpl(log Ty + gor) /7]

p(z|E) = 3)
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where {g,/}Y,_, are i.i.d. samples drawn from
Gumbel (0, 1)! and 7 is the temperature for sam-
pling. The Gumbel-Softmax distribution 7 ap-
proaches one-hot when 7 is small (e.g., 7 = 0.1)
and uniform when 7 is large (e.g., 7 = 10.0).

To apply discriminative training to the model,
we derive a discriminator from the existing model
and parameters. 7; is considered as a positive to-
ken if ; = x, while deemed a negative token
if Z; # x;. In the MLM training, the last layer
defines a V-class classifier with the parameters
W. We can augment W with an extra row for
computing the score or logit for the negative to-
ken class, making it classify V' + 1 classes. De-
note the augmented weight matrix as W . Then
the classification logits are s;” = Wte, € RV+L
However, it is unnecessary to bring in new param-
eters and over-parameterization since subtracting
an arbitrary function f(e;) € R from all the logits,
s — f(er) Vv = 1,...,V + 1, does not change the
softmax output. Thus we fix the last row of W7 to
all zeros 0 € R'*?. Then we have the logit for the
tth token,

Wep = s, foray € {1,...,V}

s =Wte, = .
0, otherwise.

Then the probability of the ¢th token in Z being a
negative token is,
(t|2) : @
p T) =
2521 exp(syy) + 1

while the probability being a positive token is,

1%
Z/Ul:l eXp(Stv’)
ZUV/:1 exp(syy) + 1

where ¢~ and ¢ indicate Z; is a positive token and
a negative token, respectively. The generator per
se is thus also a critic or discriminator for replaced
token detection, giving the name of our model, self-
critic. The loss of discriminative training is simply
the cross-entropy loss,

p(tt|z) = (5)

T

Lpise(0) = —Epy, [ 1) logp(tt|z)+
t=1

1(t7) log p(t”[2)]. (6)

The overall loss function of SCRIPT com-
bines MLM and discriminative training, £y =
'The Gumbel(0, 1) distribution can be sampled using in-

verse transform sampling by drawing u ~ Uniform(0, 1) and
computing g = — log(—logu)

Larrm(0) + aLpisc(f), where « is an coefficient
determining the strength of discriminative train-
ing. The learning of SCRIPT involves two forward
passes through a single model, one for MLLM with
Z as input, one for discriminative training with Z as
input, and a single backward pass. Figure 1 gives
an overview of our model.

3 Experiments

In the subsequent empirical evaluations, we shall
address the following questions: (1) Does the learn-
ing as self-critic lead to competitive down-stream
task performance? (2) Can we treat the self-critic
scores as pseudo-log-likelihoods? (3) Is the sample
efficiency improved over state-of-the-art baselines?
Hence, we train and evaluate two SCRIPT mod-
els “small” and “base” with an encoder of the 14M
and 110M parameters, respectively. For a direct
comparison, the models are trained on the Open-
WebText corpus (Gokaslan and Cohen, 2019) with
identical pre-processing and optimization proce-
dures as in (Devlin et al., 2018) and (Clark et al.,
2020). We refer to the Appendix for details.

3.1 Transfer to Downstream Tasks

We evaluate the efficacy of our method on the
GLUE natural language understanding bench-
mark (Wang et al., 2018) and the SQuAD 1.1 and
2.0 question answering dataset (Rajpurkar et al.,
2016a). We report mean scores of GLUE tasks
over 8 fine-tuning runs with varying random seed.
For the evaluation on SQuAD, we re-trained the
“small” models with a sequence length of 512 to-
kens. Table 1 depicts improved scores across the
benchmarks. The task specific GLUE scores are
shown in Table 2.

GLUE SQuAD 1.1 SQuAD 2.0

Model Mean EM Fl1 EM F1

ELECTRA-small 80.38 74.13 81.65 65.91 68.59
SCRIPT-small 81.32 74.84 82.43 67.03 69.81
ELECTRA-base 85.06 84.57 90.72 80.86 83.52
SCRIPT-base 85.76 85.43 91.56 81.74 84.25

Table 1: GLUE and SQuAD dev-set scores for models pre-
trained on OpenWebText with identical pre-processing and
optimization.

3.2 Efficient Pseudo-Log-Likelihood Scoring

In contrast to MLM and ELECTRA pretrain-
ing, SCRIPT allows for efficient computation of
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Model Params CoLA SST MRPC STS QQP MNLI QNLI RTE Mean
BERT-small 14M 38.40 88.99 84.55 84.20 87.67 78.07 85.75 61.01 76.08
ELECTRA-small 14M 56.82 88.37 87.41 86.82 88.30 78.94 87.92 68.51 80.38
SCRIPT-small (ours) 14M 59.46 89.56 88.23 87.16 89.38 80.30 88.04 68.42 81.32
BERT-base 110M  51.72 92.83 8393 839 88.75 84.55 89.91 65.98 80.19
ELECTRA-base 110M 6436 91.03 88.23 90.18 91.33 86.21 92.01 77.16 85.06
SCRIPT-base (ours) 11I0M  65.04 93.09 90.08 90.01 91.43 86.88 92.29 77.23 85.76

Table 2: Comparison of small and base models on the GLUE dev set. The models were trained on the OpenWebText
corpus (Gokaslan and Cohen, 2019) for 1, 000, 000 and 766, 000 steps, respectively. The GLUE task scores are means of 8 runs
over a set of random seeds. SCRIPT outperforms ELECTRA while enjoying a simple architecture and learning algorithm.

a pseudo-log-likelihood (PLL) for a given se-
quence x,

T
PLL(z) = ) logp(t'|z). (7)
t=1

The PLL allows for the re-ranking of a set of
sequences produced by a NMT or ASR system.
While language models seem a natural fit for a
ranking problem, Salazar et al. (2019) show im-
proved performance when ranking is based on the
PLL. However, for a sequence with 7" tokens, this
would require 7" forward passes as each token has
to be masked out. Instead, we propose to recruit (7)
as a measure of PLL. Table 3 compares the word
error rates (WER) on the LibriSpeech dataset after
rescoring. SCRIPT performs competitively while
(7) is computed as a single forward pass.

dev test
Model clean other clean other
baseline (1-best) 7.17 19.79 7.26 20.37
oracle (100-best) 2.85 12.21 2.81 12.85
uni-SANLM 6.08 17.32 6.11 18.13
bi-SANLM 5.52 16.61 5.65 17.44
BERT-small 5.65 1697 5.80 17.70
SCRIPT-small 579 17.02 6.12 17.83

Table 3: WERs on LibriSpeech after rescoring. Baseline,
SANLM, and oracle numbers are from Shin et al. (2019).

3.3 Computational Efficiency

Wall-clock time. We compare the number of train-
ing steps per second. For direct comparison, we
modify the ELECTRA reference code”. For TPU
v3 with 8 TPU cores, ELECTRA and SCRIPT
achieve 31.3 and 22.7 training iterations per sec-

https://github.com/google-research/
electra

ond with a mean MXU utilization of 14.93% and
17.91% for small models, respectively.

GLUE. Figure 2 depicts the improvement in
the mean GLUE scores for ELECTRA-small and
SCRIPT-small over the number of training steps.
While the wall-clock time per computational train-
ing step of SCRIPT is increased over ELECTRA,
the sample-efficiency of SCRIPT in terms of the
mean GLUE score over training steps is higher.
Hence, the efficiency of both methods may be com-
parable, however, SCRIPT achieves improved over-
all performance on GLUE.

GLUE Mean
80

78

76

4

——ELECTRA
—a— SCRIPT

PO ®
\0\39@10“”@ Vs %QQ"@\QQQ‘Q@

090" A\
Step

Figure 2: Comparison between ELECTRA-small and
SCRIPT-small on the GLUE mean score over training steps
on the OpenWebText corpus.

4 Conclusion

This work presents SCRIPT for representation
learning. It is a transformer encoder like BERT.
In pretraining, it recovers masked tokens, pro-
poses negative samples, and acts as a self-critic,
discriminating between sampled and original to-
kens. The joint MLM and discriminative learn-
ing improves sample efficiency in pretraining and
enhances representation learning, leading to im-
proved performance over strong baselines on vari-
ous downstream tasks. It also provides an efficient
way for computing pseudo-log-likelihood for scor-
ing tasks and achieves competitive performance.
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Appendix

4.1 Experiment Details

We describe the configuration used for pre-
trainined and fine-tuning below.

Pre-Training Hyperparameters. We largely
use the same hyperparameters as BERT and ELEC-
TRA. The coefficient for discriminative learning, c,
is set to be 50. We use dynamic token masking with
the masked positions decided on-the-fly. Among
the 15% tokens selected for masking, 80% are re-
placed with [MASK], 10% are kept to be the same,
10% are replaced with a random token. The full set
of hyperparameters are displayed in Table 4.

Fine-Tuning Hyperparameters. We follow the
fine-tuning hyperparameters used in ELECTRA.
The full set of hyperparameters is listed in Table 5.

4.2 GLUE Description

Each subtask of GLUE is described below.

MNLI. Multi-genre Natural Language Inference
(Williams et al., 2018). Given a pair of sentences,
the task is to predict whether whether the second
sentence is an entailment, contradiction, or neutral
with respect to the first one.

QQP. Quora Question Pairs (Iyer et al., 2017).
The task is to determine whether a pair of questions
asked on Quora are semantically equivalent.

QNLI. Question Natural Language Inference.
It is a binary classification task constructed from
SQuAD (Rajpurkar et al., 2016b). The task is to
predict whether a context sentence contains the
answer to a question sentence.

SST. Stanford Sentiment Treebank (Socher et al.,
2013). This task is binary task to determine if a
sentence is positive or negative in sentiment.

STS. Semantic Textual Similarity (Cer et al.,
2017). The tasks is to predict how similar two
sentences are on a 1-5 scale in terms of semantic
meaning.

CoLA. Corpus of Linguistic Acceptability
(Warstadt et al., 2018). The task is to determine
whether a given sentence is linguistically "accept-
able".

MRPC. Microsoft Research Paraphrase Corpus
(Dolan and Brockett, 2005). The task is to predict
whether two sentences are semantically equivalent.

RTE. Recognizing Textual Entailment (Gi-
ampiccolo et al., 2007). Given a premise and a hy-
pothesis, the task is to predict whether the premise
entails the hypothesis.
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Hyperparameter

Small Base

Number of layers
Hidden Size

FFN inner hidden size
Attention heads
Attention head size
Embedding Size
Mask percent
Learning Rate Decay
Warmup steps

12 12
256 768
1024 3072
4 12
64 64
128 768
15 15

Linear Linear
10000 10000

Learning Rate Se-4 2e-4
Adam € le-6 le-6
Adam f; 0.9 0.9
Adam [, 0.999  0.999
Attention Dropout 0.1 0.1
Dropout 0.1 0.1
Weight Decay 0.01 0.01
Batch Size 128 256
Table 4: Pre-train hyperparameters.

Hyperparameter Value

Learning Rate 3e-4 for Small, 1e-4 for Base

Adam € le-6

Adam 4 0.9

Adam (9 0.999

Layerwise LR decay 0.8

Learning rate decay = Linear

Warmup fraction 0.1

Attention Dropout 0.1

Dropout 0.1

Weight Decay 0

Batch Size 32

Train Epochs 10 for RTE and STS, 2 for SQuAD, 3 for other tasks

Table 5: Fine-tune hyperparameters.
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