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Abstract

We study how masking and predicting tokens
in an unsupervised fashion can give rise to
linguistic structures and downstream perfor-
mance gains. Recent theories have suggested
that pretrained language models acquire useful
inductive biases through masks that implicitly
act as cloze reductions. While appealing, we
show that the success of the random masking
strategy used in practice cannot be explained
by such cloze-like masks alone. We construct
cloze-like masks using task-specific lexicons
for three different classification datasets and
show that the majority of pretrained perfor-
mance gains come from generic masks that are
not associated with the lexicon. To explain
the empirical success of these generic masks,
we demonstrate a correspondence between the
masked language model (MLM) objective and
existing methods for learning statistical depen-
dencies in graphical models. Using this, we
derive a method for extracting these learned
statistical dependencies in MLMs and show
that these dependencies encode useful induc-
tive biases in the form of syntactic structures.
In an unsupervised parsing evaluation, simply
forming a minimum spanning tree on the im-
plied statistical dependence structure outper-
forms a classic method for unsupervised pars-
ing (58.74 vs. 55.91 UUAS).

1 Introduction

Pretrained masked language models (Devlin et al.,
2019; Liu et al., 2019b) have benefitted a wide
range of natural language processing (NLP)
tasks (Liu, 2019; Wadden et al., 2019; Zhu et al.,
2020). Despite recent progress in understanding
what useful information is captured by MLMs (Liu
et al., 2019a; Hewitt and Manning, 2019), it re-
mains a mystery why task-agnostic masking of
words can capture linguistic structures and transfer
to downstream tasks.

One popular justification of MLMs relies on
viewing masking as a form of cloze reduction.

Cloze-like 

Masking

I this movie[MASK]

Dependency 
Learning

I like this movie

Figure 1: We study the inductive bias of MLM ob-
jectives and show that cloze-like masking (left) does
not account for much of the downstream performance
gains. Instead, we show that MLM objectives are bi-
ased towards extracting both statistical and syntactic
dependencies using random masks (right).

Cloze reductions reformulate an NLP task into a
prompt question and a blank and elicit answers by
filling in the blank (Figure 1). When tested by cloze
reductions pretrained MLMs and left-to-right lan-
guage models (LMs) have been shown to possess
abundant factual knowledge (Petroni et al., 2019)
and display impressive few-shot ability (Brown
et al., 2020). This success has inspired recent
hypotheses that some word masks are cloze-like
and provide indirect supervision to downstream
tasks (Saunshi et al., 2020; Lee et al., 2020). For
example, a sentiment classification task (Pang et al.,
2002) can be reformulated into filling in like or hate
in the cloze I [MASK] this movie. Such cloze-like
masks provide a clear way in which an MLM can
implicitly learn to perform sentiment classification.

While this hypothesis is appealing, MLMs in
practice are trained with uniform masking that
does not contain the special structure required by
cloze-like masks most of the time. For example,
predicting a generic word this in the cloze I like
[MASK] movie would not offer task-specific super-
vision. We quantify the importance of cloze-like
and generic masks by explicitly creating cloze-like
masks using task-specific lexicons and comparing
models pretrained on these masks. These experi-
ments suggest that although cloze-like masks can
be helpful, the success of uniform masking cannot
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be explained via cloze-like masks alone. In fact, we
demonstrate that uniform masking performs as well
as a negative control where we explicitly remove
cloze-like masks from the mask distribution.

To address this mismatch between theory and
practice, we offer a new hypothesis of how generic
masks can help downstream learning. We pro-
pose a conceptual model for MLMs by drawing
a correspondence between masking and graphical
model neighborhood selection (Meinshausen and
Bühlmann, 2006). Using this, we show that MLM
objectives are designed to recover statistical de-
pendencies in the presence of latent variables and
propose an estimator that can recover these learned
dependencies from MLMs. We hypothesize that
statistical dependencies in the MLM objective cap-
ture useful linguistic dependencies and demonstrate
this by using recovered statistical dependencies
to perform unsupervised parsing, outperforming
an actual unsupervised parsing baseline (58.74 vs
55.91 UUAS; Klein and Manning, 2004). We re-
lease our implementation on Github1.

2 Related works

Theories inspired by Cloze Reductions. Cloze
reductions are fill-in-the-blank tests that reformu-
late an NLP task into an LM problem. Existing
work demonstrates that such reductions can be
highly effective for zero/few-shot prediction (Rad-
ford et al., 2019; Brown et al., 2020) as well as
relation extraction (Petroni et al., 2019; Jiang et al.,
2020).

These fill-in-the-blank tasks provide a clear way
by which LMs can obtain supervision about down-
stream tasks, and recent work demonstrates how
such implicit supervision can lead to useful rep-
resentations (Saunshi et al., 2020). More general
arguments by Lee et al. (2020) show these theo-
ries hold across a range of self-supervised settings.
While these theories provide compelling arguments
for the value of pre-training with cloze tasks, they
do not provide a clear reason why uniformly ran-
dom masks such as those used in BERT provide
such strong gains. In our work, we quantify this
gap using lexicon-based cloze-like masks and show
that cloze-like masks alone are unlikely to account
for the complete success of MLM since generic and
non-cloze masks are responsible for a substantial
part of the empirical performance of MLMs.

1https://github.com/tatsu-lab/mlm_
inductive_bias

Theories for vector representations. Our goal
of understanding how masking can lead to useful
inductive biases and linguistic structures is closely
related to that of papers studying the theory of word
embedding representations (Mikolov et al., 2013;
Pennington et al., 2014; Arora et al., 2015). Ex-
isting work has drawn a correspondence between
word embeddings and low-rank factorization of a
pointwise mutual information (PMI) matrix (Levy
and Goldberg, 2014) and others have shown that
PMI is highly correlated with human semantic sim-
ilarity judgements (Hashimoto et al., 2016).

While existing theories for word embeddings
cannot be applied to MLMs, we draw inspiration
from them and derive an analogous set of results.
Our work shows a correspondence between MLM
objectives and graphical model learning through
conditional mutual information, as well as evidence
that the conditional independence structure learned
by MLMs is closely related to syntactic structure.

Probing Pretrained Representations. Recent
work has applied probing methods (Belinkov and
Glass, 2019) to analyze what information is cap-
tured in the pretrained representations. This line of
work shows that pretrained representations encode
a diverse range of knowledge (Peters et al., 2018;
Tenney et al., 2019; Liu et al., 2019a; Hewitt and
Manning, 2019; Wu et al., 2020). While probing
provides intriguing evidence of linguistic structures
encoded by MLMs, they do not address the goals
of this work, which is how the pretraining objective
encourages MLMs to extract such structures.

3 Motivation

3.1 Problem Statement

Masked Language Modeling asks the model to
predict a token given its surrounding context. For-
mally, consider an input sequence X of L tokens
〈x1, . . . , xL〉 where each variable takes a value
from a vocabulary V . Let X ∼ D be the data
generating distribution of X . Let xi be the ith
token in X , and let X\i denote the sequence af-
ter replacing the ith token with a special [MASK]
token. In other words,

X\i := 〈x1, . . . , xi−1,[MASK], xi+1, . . . , xL〉.

Similarly, define X\{i,j} as replacing both xi and
xj with [MASK]. MLM determines what tokens
are masked by a mask distribution i ∼ M . The
goal of MLM is to learn a probabilistic model pθ

https://github.com/tatsu-lab/mlm_inductive_bias
https://github.com/tatsu-lab/mlm_inductive_bias
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positivebeautiful movie Modified Input:
Cloze-like Mask: [MASK]beautiful movie 
Generic Mask: positive[MASK] beautiful 

Figure 2: In our case study, we append the true label to
each input and create ideal cloze-like masks. We study
how deviations from the ideal mask distribution affect
downstream performance by adding in generic masks.

that minimizes

LMLM = E
X∼D,i∼M

− log pθ(xi|X\i).

In BERT pretraining, each input token is masked
with a fixed, uniform probability, which is a hyper-
parameter to be chosen. We refer to this strategy as
uniform masking.

Finetuning is the canonical method for using
pretrained MLMs. Consider a prediction task
where y ∈ Y is the target variable, e.g., the senti-
ment label of a review. Finetuning uses gradient
descent to modify the pretrained parameters θ and
learn a new set of parameters φ to minimize

Lfinetune = E
X∼D′,y∼p(y|X)

− log pθ,φ(y|X),

where p(y|x) is the ground-truth distribution and
D′ is the data distribution of the downstream task.

Our goals. We will study how the mask distri-
bution M affects downstream performance. We
define perfect cloze reductions as some partition
of the vocabulary Vy such that p(xi ∈ Vy|X\i) ≈
p(y|X). For a distribution M such that the masks
we draw are perfect cloze-reductions, the MLM ob-
jective offers direct supervision to finetuning since
LMLM ≈ Lfinetune. In contrast to cloze-like mask-
ing, in uniform masking we can think of pθ as
implicitly learning a generative model of X (Wang
and Cho, 2019). Therefore, as M moves away
from the ideal distribution and becomes more uni-
form, we expect pθ to model more of the full data
distribution D instead of focusing on cloze-like su-
pervision for the downstream task. This mismatch
between theory and practice raises questions about
how MLM with uniform masking can learn useful
inductive biases.

When LMLM is not Lfinetune, what is LMLM learn-
ing? We analyze LMLM and show that it is similar
to a form of conditional mutual information based
graphical model structure learning.

3.2 Case Study for Cloze-like Masking
To motivate our subsequent discussions, we per-
form a controlled study for the case when LMLM ≈
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SST-2 Finetuning Results
Cloze-100%
Cloze-80%
Cloze-60%
Cloze-40%
Cloze-20%
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No Pretrain

Figure 3: SST-2 development set accuracy. CLOZE-p%
is pretrained on a mixture of masks where p% of the
masks are Cloze-like. NOPRETRAIN trains a classifier
without any pretraining. Even a small modification of
the ideal mask distribution degrades performance.

Lfinetune and analyze how deviations from the ideal
mask distribution affect downstream performance.
We perform analysis on the Stanford Sentiment
Treebank (SST-2; Socher et al., 2013), which re-
quires models to classify short movie reviews into
positive or negative sentiment. We append the
ground-truth label (as the word positive or negative)
to each movie review (Figure 2). Masking the last
word in each review is, by definition, an ideal mask
distribution. To study how the deviation from the
ideal mask distribution degrades downstream per-
formance, we vary the amount of cloze-like masks
during training. We do this by masking out the last
word for p% of the time and masking out a random
word in the movie review for (100 − p)% of the
time, and choose p ∈ {0, 20, 40, 60, 80, 100}.

Experimental details. We split the SST-2 train-
ing set into two halves, use one for pretraining, and
the other for finetuning. For the finetuning data,
we do not append the ground-truth label. We pre-
train small transformers with LMLM using different
masking strategies and finetune them along with
a baseline that is not pretrained (NOPRETRAIN).
Further details are in Appendix A.

Results. We observe that while cloze-like masks
can lead to successful transfer, even a small modifi-
cation of the ideal mask distribution deteriorates
performance. Figure 3 shows the development set
accuracy of seven model variants averaged across
ten random trials. We observe as p decreases, the
performance of CLOZE-p% degrades. Notably,
CLOZE-80% is already worse than CLOZE-100%
and CLOZE-20% does not outperform NOPRE-
TRAIN by much. We notice that CLOZE-0% in
fact degrades finetuning performance, potentially
because the pretrained model is over-specialized
to the language modeling task (Zhang et al., 2020;
Tamkin et al., 2020). While this is a toy example,
we observe similar results for actual MLM models
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x2: prefer

x5: flight

x3: the x4: morning

x1: I

Figure 4: Our conceptual framework of MLM. All co-
ordinates of X are dependent on the latent variable Z
while there is only sparse dependency among X .

across three tasks (Section 5.1), and this motivates
us to look for a framework that explains the success
of generic masks in practice.

4 Analysis

In the previous section, we saw that cloze-like
masks do not necessarily explain the empirical suc-
cess of MLMs with uniform masking strategies.
Understanding uniform masking seems challeng-
ing at first, as uniform-mask MLMs seem to lack
task-specific supervision and is distinct from exist-
ing unsupervised learning methods such as word
embeddings (which rely upon linear dimensional-
ity reduction) and autoencoders (which rely upon
denoising). However, we show in this section that
there is a correspondence between MLM objectives
and classic methods for graphical model structure
learning. As a consequence, we demonstrate that
MLMs are implicitly trained to recover statistical
dependencies among observed tokens.

4.1 Intuition and Theoretical Analysis

Our starting point is the observation that predicting
a single feature (xi) from all others (X\i) is the
core subroutine in the classic Gaussian graphical
model structure learning algorithm of Meinshausen
and Bühlmann (2006). In this approach, L differ-
ent Lasso regression models are trained (Tibshirani,
1996) with each model predicting xi from X\i, and
the nonzero coefficients of this regression corre-
spond to the conditional dependence structure of
the graphical model.

The MLM objective can be interpreted as a non-
linear extension of this approach, much like a clas-
sical algorithm that uses conditional mutual in-
formation (MI) estimators to recover a graphical
model (Anandkumar et al., 2012). Despite the sim-
ilarity, real world texts are better viewed as models
with latent variables (e.g. topics; Blei et al., 2003)
and many dependencies across tokens arise due
to latent variables, which makes learning the di-
rect dependencies difficult. We show that MLMs

implicitly recover the latent variables and can cap-
ture the direct dependencies while accounting for
the effect of latent variables. Finally, MLMs are
only approximations to the true distribution and
we show that the MLM objective can induce high-
quality approximations of conditional MI.

Analysis setup. To better understand MLMs
as a way to recover graphical model structures,
we show mask-based models can recover latent
variables and the direct dependencies among vari-
ables in the Gaussian graphical model setting
of Meinshausen and Bühlmann (2006). Let X =
[x1, . . . ,xL] ∈ RL represent an input sequence
where each of its coordinates xi represents a token,
and Z ∈ Rk be a latent variable that controls the se-
quence generation process. We assume that all co-
ordinates of X are dependent on the latent variable
Z, and there are sparse dependencies among the
observed variables (Figure 4). In other words, we
can write Z ∼ N(0,ΣZZ) and X ∼ N(AZ,ΣXX).
Intuitively, we can imagine that Z represents shared
semantic information, e.g. a topic, and ΣXX repre-
sents the syntactic dependencies. In this Gaussian
graphical model, the MLM is analogous to regress-
ing each coordinate of X from all other coordinates,
which we refer to as masked regression.

MLM representations can recover latent
variable. We now study the behavior of masked
regression through the representation xmask,i that
is obtained by applying masked regression on the
ith coordinate of X and using the predicted values.
Our result shows that masked regression is similar
to the two-step process of first recovering the latent
variable Z from X\i and then predicting xi from
Z.

Let ΣXX,\i,i ∈ Rd−1 be the vector formed by
dropping the ith row and taking the ith column of
ΣXX and β2SLS,i be the linear map resulting from
the two-stage regression X\i → Z→ xi.

Proposition 1. Assuming that ΣXX is full rank,

xmask,i = β2SLS,iX\i +O(
∥∥ΣXX,\i,i

∥∥
2
),

In other words, masked regression implicitly re-
covers the subspace that we would get if we first ex-
plicitly recovered the latent variables (β2SLS,i) with
an error term that scales with the off-diagonal terms
in ΣXX . The proof is presented in Appendix C.

To give additional context for this result, let us
consider the behavior of a different representation
learning algorithm: PCA. It is well-known that
PCA can recover the latent variables as long as
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the ΣZZ dominates the covariance Cov(X). We
state this result in terms of XPCA, the observed data
projected to the first k components of PCA.
Proposition 2. Let λk be the kth eigenvalue of
AΣZZA

> and λXX,k+1 be the k+1th eigenvalue
of ΣXX and V be the first k eigenvectors of Cov(X).
Assuming λk > λXX,k+1, we have

EX ‖AZ−XPCA‖2 ≤√
2 ‖ΣXX‖op

λk − λXX,k+1
(‖AZ‖2+

√
tr(ΣXX))+

∥∥∥AA>
∥∥∥
op

√
tr(ΣXX),

where ‖·‖op is the operator norm and tr(·) is the
trace.

This shows that whenever ΣXX is sufficiently
small and λk is large (i.e., the covariance is domi-
nated by Z), then PCA recovers the latent informa-
tion in Z. The proof is based on the Davis-Kahan
theorem (Stewart and Sun, 1990) and is presented
in Appendix C.

Comparing the bound of PCA and masked re-
gression, both bounds have errors that scales with
ΣXX, but the key difference in the error bound is
that the error term for masked regression does not
scale with the per-coordinate noise (diag(ΣXX))
and thus can be thought of as focusing exclusively
on interactions within X. Analyzing this more
carefully, we find that ΣXX,\i,i corresponds to the
statistical dependencies between xi and X\i, which
we might hope captures useful, task-agnostic struc-
tures such as syntactic dependencies.

MLM log-probabilies can recover direct de-
pendencies. Another effect of latent variables
is that many tokens have indirect dependencies
through the latent variables, which poses a chal-
lenge to recovering the direct dependencies among
tokens. We now show that the MLMs can account
for the effect of latent variable.

In the case where there are no latent variables,
we can identify the direct dependencies via con-
ditional MI (Anandkumar et al., 2012) because
any xi and xj that are disconnected in the graph-
ical model will have zero conditional MI, i.e.,
I(xi;xj |X\{i,j}) = 0. One valuable aspect of
MLM is that we can identify direct dependencies
even in the presence of latent variables.

If we naively measure statistical dependency by
mutual information, the coordinates of X would
appear dependent on each other because they are
all connected with Z. However, the MLM objective
resolves this issue by conditioning on X\{i,j}. We
show that latent variables (such as topics) that are

easy to predict from X\{i,j} can be ignored when
considering conditional MI.
Proposition 3. The gap between conditional MI
with and without latent variables is bounded by the
conditional entropy H(Z|X\{i,j}),

I(xi;xj |X\{i,j})− I(xi;xj |Z, X\{i,j})
≤ 2H(Z|X\{i,j}).

This suggests that when the context X\{i,j} cap-
tures enough of the latent information, conditional
MI can remove the confounding effect of the shared
topic Z and extract the direct and sparse dependen-
cies within X (see Appendix C for the proof).

MLM objective encourages capturing condi-
tonal MI. We have now shown that conditional MI
captures direct dependencies among tokens, even in
the presence of latent variables. Next, we will show
that the MLM objective ensures that a LM with low
log-loss accurately captures the conditional MI. We
now show that learning the MLM objective implies
high-quality estimation of conditional MI. Denote
X(i, v) as substituting xi with a new token v,

X(i, v) = 〈x1, . . . , xi−1, v, xi+1, . . . , xL〉.

Conditional MI is defined as the expected pointwise
mutual information (PMI) conditioned on the rest
of the tokens,

Ip = E
xi,xj

[ log p(xi|X\i(j, xj))−log E
xj |xi

p(xi|X\i(j, xj)) ]

where Ip is the abbreviation of Ip(xi;xj |X\{i,j}).
Our main result is that the log-loss MLM objective
directly bounds the gap between the true condi-
tional mutual information from the data distribu-
tion and an estimator that uses the log-probabilities
from the model. More formally,
Proposition 4. Let

Îpθ = E
xi,xj

[log pθ(xi|X\i(j, xj))−log E
xj |xi

pθ(xi|X\i(j, xj))]

be an estimator constructed by the model distribu-
tion pθ. Then we can show,

|Îpθ − Ip| ≤ E
xj
Dkl

(
p(xi|X\i(j, xj))||pθ(xi|X\i(j, xj))

)
,

where Dkl represents the KL-divergence.
Here, the KL-divergence corresponds to the

LMLM objective, up to a constant entropy term that
depends on p. We present the proof in Appendix C.
In other words, the MLM objective is implicitly
encouraging the model to match its implied condi-
tional MI to that of the data. We now use this result
to create an estimator that extracts the conditional
independence structures implied by MLM.
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4.2 Extracting statistical dependencies
implied by MLMs

Our earlier analysis in Proposition 4 suggests that
an MLM with low loss has an accurate approxi-
mation of conditional mutual information. Using
this result, we will now propose a procedure which
estimates Îpθ . The definition of Îpθ shows that if
we can access samples of xi and xj from the true
distribution p, then we can directly estimate the
conditional mutual information by using the log
probabilities from the MLM. Unfortunately, we
cannot draw new samples of xj | X\{i,j}, lead-
ing us to approximate this distribution using Gibbs
sampling on the MLM distribution.

Our Gibbs sampling procedure is similar to the
one proposed in Wang and Cho (2019). We start
with X0 = X\{i,j}. For the tth iteration, we
draw a sample xti from pθ(xi|Xt−1

\i ), and update
by Xt = Xt−1(i, xti). Then, we draw a sample
xtj from pθ(xj |Xt

\j) and set Xt = Xt(j, xtj). We
repeat and use the samples (x1i , x

1
j ), . . . , (x

t
i, x

t
j)

to compute the expectations for conditional MI.
This procedure relies upon an additional assump-

tion that samples drawn from the MLM are faithful
approximations of the data generating distribution.
However, we show empirically that even this ap-
proximation is sufficient to test the hypothesis that
the conditional independences learned by an MLM
capture syntactic dependencies (Section 5.2).

5 Experiment

We now test two predictions from our analyses.
First, similar to our observation in the case study,
we show that cloze-like masks do not explain
the success of uniform masks on three real-world
datasets. Second, our alternative view of relating
MLM to graphical models suggests that statistical
dependencies learned by MLMs may capture lin-
guistic structures useful for downstream tasks. We
demonstrate this by showing that MLMs’ statistical
dependencies reflect syntactic dependencies.

5.1 Uniform vs Cloze-like Masking
Setup. We now demonstrate that real-world tasks
and MLMs show a gap between task-specific cloze
masks and random masks. We compare the MLM
with random masking to two different control
groups. In the positive control (CLOZE), we pre-
train with only cloze-like masks and in the negative
control (NOCLOZE), we pretrain by explicitly ex-
cluding cloze-like masks. If the success of MLM

can be mostly explained by implicit cloze reduc-
tions, then we should expect CLOZE to have strong
downstream performance while NOCLOZE leads
to a minimal performance gain. We compare pre-
training with the uniform masking strategy used in
BERT (UNIFORM) to these two control groups. If
UNIFORM performs worse than the positive con-
trol and more similar to the negative control, then
we know that uniform masking does not leverage
cloze-like masks effectively.

Simulating Pretraining. Given computational
constraints, we cannot retrain BERT from scratch.
Instead, we approximate the pretraining process by
continuing to update BERT with MLM (Gururan-
gan et al., 2020), which we refer to as second-stage
pretraining. Although this is an approximation to
the actual pretraining process, the second-stage pre-
training shares the same fundamental problem for
pretraining: how can unsupervised training lead to
downstream performance gains?

We study the effectiveness of different masking
strategies by comparing to a BERT model without
second-stage pretraining (VANILLA). We experi-
ment with three text classification datasets: SST-
2 (Socher et al., 2013), Hyperpartisan (Kiesel et al.,
2019), and AGNews (Zhang et al., 2015). SST-
2 classifies movie reviews by binary sentiment;
Hyperpartisan is a binary classification task on
whether a news article takes an extreme partisan
standpoint; and AGNews classifies news articles
into four different topics. On SST-2 and AGNews,
we perform the second-stage pretraining on the
training inputs (not using the labels). On Hyper-
partisan, we use 100k unlabeled news articles that
are released with the dataset. For SST-2 and AG-
News, we study a low-resource setting and set the
number of finetuning examples to be 20. For Hy-
perpartisan, we use the training set, which has 515
labeled examples. All evaluations are performed
by fine-tuning a bert-base-uncased model
(See Appendix A for full details).

Approximating Cloze-like Masking. We can-
not identify the optimal set of cloze-like masks
for an arbitrary downstream task, but these three
tasks have associated lexicons which we can use
to approximate the cloze-like masks. For SST-2,
we take the sentiment lexicon selected by Hu and
Liu (2004); for Hyperpartisan, we take the NRC
word-emotion association lexicon (Mohammad and
Turney, 2013); and for AGNews, we extract topic
words by training a logistic regression classifier and
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Figure 5: Finetuning performance with different masking strategies averaged across twenty random trials and error
bars showing 95% confidence intervals. VANILLA represents a BERT model without any second-stage pretraining.
CLOZE and NOCLOZE represent models train with or without cloze-like masks, respectively. UNIFORM uses the
uniform random masking strategy proposed in Devlin et al. (2019) for second-stage pretraining.

taking the top 1k features to be cloze-like masks.
Results. Figure 5 plots the finetuning perfor-

mance of different masking strategies. We observe
that UNIFORM outperforms VANILLA, which in-
dicates that second-stage pretraining is extracting
useful information and our experiment setup is use-
ful for studying how MLM leads to performance
gains. As expected, CLOZE achieves the best accu-
racy, which confirms that cloze-like masks can be
helpful and validates our cloze approximations.

The UNIFORM mask is much closer to NO-
CLOZE than CLOZE. This suggests that uniform
masking does not leverage cloze-like masks well
and cloze reductions alone cannot account for the
success of MLM. This view is further supported
by the observation that NOCLOZE outperforms
VANILLA suggesting that generic masks that are
not cloze-like still contain useful inductive biases.

Our results support our earlier view that there
may be an alternative mechanism that allows
generic masks that are not cloze-like to benefit
downstream learning. Next, we will empirically
examine BERT’s learned conditional independence
structure among tokens and show that the statistical
dependencies relate to syntactic dependencies.

5.2 Analysis: Unsupervised Parsing
Our analysis in section 4.1 shows that conditional
MI (which is optimized by the MLM objective) can
extract conditional independences. We will show
that statistical dependencies estimated by condi-
tional MI are related to syntactic dependencies by
using conditional MI for unsupervised parsing.

Background. One might expect that the sta-
tistical dependencies among words are correlated
with syntactic dependencies. Indeed, Futrell et al.
(2019) show that heads and dependents in depen-
dency parse trees have high pointwise mutual in-
formation (PMI) on average. However, previous at-

tempts (Carroll and Charniak, 1992; Paskin, 2002)
show that unsupervised parsing approaches based
on PMI achieve close to random accuracy. Our
analysis suggests that MLMs extract a more fine-
grained notion of statistical dependence (condi-
tional MI) which does not suffer from the exis-
tence of latent variables (Proposition 3). We now
show that the conditional MI captured by MLMs
achieves far better performance, on par with classic
unsupervised parsing baselines.

Baselines. We compare conditional MI to PMI
as well as conditional PMI, an ablation in which
we do not take expectation over possible words.
For all statistical dependency based methods (cond.
MI, PMI, and cond. PMI), we compute pairwise
dependence for each word pair in a sentence and
construct a minimum spanning tree on the negative
values to generate parse trees. To contextualize our
results, we compare against three simple baselines:
RANDOM which draws a random tree on the in-
put sentence, LINEARCHAIN which links adjacent
words in a sentence, and a classic unsupervised
parsing method (Klein and Manning, 2004).

Experimental Setup. We conduct experiments
on the English Penn Treebank using the WSJ cor-
pus and convert the annotated constituency parses
to Stanford Dependency Formalism (de Marneffe
et al., 2006). Following Yang et al. (2020), we
evaluate on sentences of length ≤ 10 in the test
split, which contains 389 sentences (Appendix B.1
describes the same experiment on longer sentences,
which have similar results). We experiment with
the bert-base-cased model (more details in
Appendix A) and evaluate by the undirected unla-
beled attachment score (UUAS).

Results. Table 1 shows a much stronger-than-
random association between conditional MI and
dependency grammar. In fact, the parses extracted
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The above represents a triumph of either apathy or civility .

nsubjdet preconjprep

pobj

det cc

dobj conj

det nsubj preconj

wrong

prep wrongdet

dobj conj

1

Figure 6: An example parse extracted from conditional MI. The black parse tree above the sentence represents
the ground-truth parse and the red parse below is extracted from conditional MI. The correctly predicted edges are
labeled with the annotated relations, and the incorrect ones are labeled as wrong.

Method UUAS

RANDOM 28.50± 0.73
LINEARCHAIN 54.13

Klein and Manning (2004) 55.91± 0.68

PMI 33.94
CONDITIONAL PMI 52.44± 0.19
CONDITIONAL MI 58.74± 0.22

Table 1: Unlabeled Undirected Attachment Score on
WSJ10 test split (section 23). Error bars show standard
deviation across three random seeds.

from conditional MI has better quality than LIN-
EARCHAIN and the classic method (Klein and Man-
ning, 2004). Unlike conditional MI, PMI only has a
close-to-random performance, which is consistent
with prior work. We also see that conditional MI
outperforms conditional PMI, which is consistent
with our theoretical framework that suggests that
conditional MI (and not PMI) recovers the graphi-
cal model structure.

We also perform a fine-grained analysis by inves-
tigating relations where conditional MI differs from
LINEARCHAIN. Because the test split is small
and conditional MI does not involve any training,
we perform this analysis on 5,000 sentences from
the training split. Table 2 presents the results and
shows that conditional MI does not simply recover
the linear chain bias. Meanwhile, we also observe a
deviation between conditional MI and dependency
grammar on relations like number and cc. This is
reasonable because certain aspects of dependency
grammar depend on human conventions that do not
necessarily have a consensus (Popel et al., 2013).

Figure 6 illustrates with an example parse ex-
tracted from conditional MI. We observe that con-
ditional MI correctly captures dobj and conj.
Knowing the verb, e.g. represents, limits the range
of objects that can appear in a sentence so intu-
itively we expect a high conditional MI between
the direct object and the verb. Similarly for phrases
like “A and B”, we would expect A and B to be sta-
tistically dependent. However, conditional MI fails

Relation Conditional MI Linear Chain

xcomp 48.18 9.93
conj 43.36 7.58
dobj 58.96 30.33

number 50.55 92.62
quantmod 56.82 72.73

cc 31.39 41.10

Table 2: Six relations on which conditional MI dis-
agrees with LINEARCHAIN under log odds ratio test
with p = 0.05. A comprehensive list is in Appendix A.

to capture cc (between apathy and or). Instead,
it links or with either which certainly has statisti-
cal dependence. This once again suggests that the
‘errors’ incurred by the conditional PMI method
are not simply failures to estimate dependence but
natural differences in the definition of dependence.

6 Discussion and Conclusion

We study how MLM with uniform masking can
learn useful linguistic structures and inductive bi-
ases for downstream tasks. Our work demonstrates
that a substantial part of the performance gains
of MLM pretraining cannot be attributed to task-
specific, cloze-like masks. Instead, learning with
task-agnostic, generic masks encourages the model
to capture direct statistical dependencies among
tokens, and we show through unsupervised parsing
evaluations that this has a close correspondence to
syntactic structures. Existing work has suggested
that statistical and syntactic dependencies are fun-
damentally different, with unsupervised parsing
based on PMI achieving close-to-random perfor-
mance. Our work demonstrates that this is not nec-
essarily the case, and better measures of statistical
dependence (such as those learned by MLMs) can
serve as implicit supervision for learning syntactic
structures. Our findings open new space for future
works on how syntax can be learned in an emergent
way and on how to design masking strategies that
further improve dependency learning.
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I. Beltagy, D. Downey, and N. A. Smith. 2020.
Don’t stop pretraining: Adapt language models to

domains and tasks. In Association for Computa-
tional Linguistics (ACL), pages 8342–8360, Online.
Association for Computational Linguistics.

T. B. Hashimoto, D. Alvarez-Melis, and T. S. Jaakkola.
2016. Word embeddings as metric recovery in se-
mantic spaces. Transactions of the Association for
Computational Linguistics (TACL), 4:273–286.

J. He, G. Neubig, and T. Berg-Kirkpatrick. 2018. Un-
supervised learning of syntactic structure with in-
vertible neural projections. In Empirical Methods
in Natural Language Processing, pages 1292–1302,
Brussels, Belgium. Association for Computational
Linguistics.

J. Hewitt and C.D. Manning. 2019. A structural probe
for finding syntax in word representations. In North
American Association for Computational Linguis-
tics (NAACL), pages 4129–4138, Minneapolis, Min-
nesota. Association for Computational Linguistics.

M. Hu and B. Liu. 2004. Mining and summariz-
ing customer reviews. In International Conference
on Knowledge Discovery and Data Mining (KDD),
KDD ’04, page 168–177, New York, NY, USA. As-
sociation for Computing Machinery.

Z. Jiang, F. F. Xu, J. Araki, and G. Neubig. 2020. How
can we know what language models know? Trans-
actions of the Association for Computational Lin-
guistics (TACL), 8:423–438.

J. Kiesel, M. Mestre, R. Shukla, E. Vincent, P. Adineh,
D. Corney, B. Stein, and M. Potthast. 2019.
SemEval-2019 task 4: Hyperpartisan news detection.
In Proceedings of the 13th International Workshop
on Semantic Evaluation, pages 829–839, Minneapo-
lis, Minnesota, USA. Association for Computational
Linguistics.

D. Kingma and J. Ba. 2014. Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980.

D. Klein and C.D. Manning. 2004. Corpus-based
induction of syntactic structure: Models of de-
pendency and constituency. In Association for
Computational Linguistics (ACL), pages 478–485,
Barcelona, Spain.

J. D. Lee, Q. Lei, N. Saunshi, and J. Zhuo. 2020.
Predicting what you already know helps: Prov-
able self-supervised learning. arXiv preprint
arXiv:2008.01064.

O. Levy and Y. Goldberg. 2014. Neural word embed-
ding as implicit matrix factorization. In Advances in
Neural Information Processing Systems, volume 27,
pages 2177–2185. Curran Associates, Inc.

N. F. Liu, M. Gardner, Y. Belinkov, M. E. Peters, and
N. A. Smith. 2019a. Linguistic knowledge and trans-
ferability of contextual representations. In North
American Association for Computational Linguis-
tics (NAACL), pages 1073–1094, Minneapolis, Min-
nesota. Association for Computational Linguistics.



5140

Y. Liu. 2019. Fine-tune BERT for extractive summa-
rization. arXiv preprint arXiv:1903.10318.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi,
D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and
V. Stoyanov. 2019b. RoBERTa: A robustly opti-
mized BERT pretraining approach. arXiv preprint
arXiv:1907.11692.

C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J.
Bethard, and D. McClosky. 2014. The stanford
coreNLP natural language processing toolkit. In
ACL system demonstrations.

N. Meinshausen and P. Bühlmann. 2006. High-
dimensional graphs and variable selection with the
lasso. Annals of Statistics, 34(3):1436–1462.

T. Mikolov, K. Chen, G. Corrado, and Jeffrey. 2013.
Efficient estimation of word representations in vec-
tor space. arXiv preprint arXiv:1301.3781.

S. M. Mohammad and P. D. Turney. 2013. Crowdsourc-
ing a word-emotion association lexicon. Computa-
tional Intelligence, 29(3):436–465.

B. Pang, L. Lee, and S. Vaithyanathan. 2002. Thumbs
up? sentiment classification using machine learn-
ing techniques. In Empirical Methods in Natural
Language Processing, pages 79–86. Association for
Computational Linguistics.

M. A. Paskin. 2002. Grammatical bigrams. In Ad-
vances in Neural Information Processing Systems
(NeurIPS).

J. Pennington, R. Socher, and C. D. Manning. 2014.
GloVe: Global vectors for word representation. In
Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543.

M. Peters, M. Neumann, L. Zettlemoyer, and W. Yih.
2018. Dissecting contextual word embeddings: Ar-
chitecture and representation. In Empirical Methods
in Natural Language Processing, pages 1499–1509,
Brussels, Belgium. Association for Computational
Linguistics.

F. Petroni, T. Rocktäschel, S. Riedel, P. Lewis,
A. Bakhtin, Y. Wu, and A. Miller. 2019. Language
models as knowledge bases? In Empirical Methods
in Natural Language Processing and International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2463–2473, Hong Kong,
China. Association for Computational Linguistics.
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Dataset # Classes # Pretrain # Finetune # Test

SST-2 2 67k 20 1.8k
Hyperpartisan 2 100k 515 130

AGNews 4 113k 20 6.7k

Table 3: Specifications of datasets. For AGNews, we put away 6.7k as a development set.

A Experimental Details

Experimental details for Section 3.2 Our transformers have 2 layers and for each transformer block, the
hidden size and the intermediate size are both 64. We finetune the models for 10 epochs and apply early
stopping based on validation accuracy. We use Adam (Kingma and Ba, 2014) for optimization, using a
learning rate of 1e−3 for pretraining and 1e−4 for finetuning.

Experimental details for Section 5.1 Table 3 summarizes the dataset statistics of three real-world
datasets we studied. For second stage pretraining, we update the BERT model for 10 epochs. Following
the suggestion in Zhang et al. (2020), we finetune the pretrained BERT models for 400 steps, using a
batch size of 16 and a learning rate of 1e−5. We apply linear learning rate warmup for the first 10% of
finetuning and linear learning rate decay for the rest. For SST-2 and AGNews, we average the results over
20 random trials. For Hyperpartisan, because the test set is small and the variation is larger, we average
the results over 50 random trials and evaluate on the union the development set and the test set for more
stable results.

Experimental details for Section 5.2 We convert the annotated constituency parses using the Stanford
CoreNLP package (Manning et al., 2014). We compute conditional MI and conditional PMI using the
bert-base-cased model and run Gibbs sampling for 2000 steps. BERT’s tokenization may split
a word into multiple word pieces. We aggregate the dependencies between a word and multiple word
pieces by taking the maximum value. We compute the PMI statistics and train the K&M model (Klein
and Manning, 2004) on sentences of length ≤ 10 in the WSJ train split (section 2-21). For DMV, we train
with the annotated POS tags using a public implementation released by (He et al., 2018). Results are
averaged over three runs when applicable.

B Additional Results

B.1 Additional Results in Section 5.2
We conduct an additional experiment on the English Penn Treebank to verify that conditional MI can
extract parses for sentences longer than ten words. To expedite experimentation, we subsample 200 out
of 2416 sentences from the test split of English Penn Treebank and the average sentence length of our
subsampled dataset is 24.1 words. When applicable, we average over three random seeds and report
standard deviations. Table 4 presents the UUAS of conditional MI and other methods. We draw similar
conclusions as in Section 5.2, observing that the parses drawn by conditional MI have higher quality than
those of other baselines.

Table 5 presents a comprehensive list of relations on which Conditional MI disagrees with LIN-
EARCHINA under a log odds ratio test with p = 0.05.
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Method UUAS

RANDOM 9.14± 0.42
LINEARCHAIN 47.69

Klein and Manning (2004) 48.76± 0.24

PMI 28.05
CONDITIONAL PMI 44.75± 0.09
CONDITIONAL MI 50.62± 0.38

Table 4: Unlabeled Undirected Attachment Score on subsampled WSJ test split (section 23). Error bars show
standard deviation across three random seeds.

Relation Conditional MI Linear Chain

xcomp 48.18 9.93
conj 43.36 7.58

nsubjpass 33.81 0.47
dobj 58.96 30.33
mark 30.71 9.45
poss 58.63 40.96
ccomp 20.92 4.18
vmod 55.32 41.84
tmod 39.25 27.68
dep 50.15 40.03
pobj 48.68 40.79
nsub 55.87 48.69

number 50.55 92.62
possessive 72.00 97.78

pcomp 60.00 77.00
quantmod 56.82 72.73
appos 55.56 70.59
num 65.11 76.49
cc 31.39 41.10
prep 56.41 66.12

auxpass 75.00 83.26
nn 72.97 77.88
aux 55.49 59.66

Table 5: All relations on which Conditional MI disagree with LINEARCHINA under a log odds ratio test with
p = 0.05.
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C Proofs

Proof of Proposition 2 We first recall our statement.

Proposition 2. Let λk be the kth eigenvalue of AΣZZA
> and λXX,k+1 be the k+1th eigenvalue of ΣXX

and V be the first k eigenvectors of Cov(X). Assuming λk > λXX,k+1, we have

EX ‖AZ−XPCA‖2 ≤ √
2 ‖ΣXX‖op

λk − λXX,k+1
(‖AZ‖2 +

√
tr(ΣXX)) +

∥∥∥AA>
∥∥∥
op

√
tr(ΣXX),

where ‖·‖op is the operator norm and tr(·) is the trace.

Proof
We will use the Davis-Kahan Theorem for our proof.

Theorem (Davis-Kahan (Stewart and Sun, 1990)). Let σ be the eigengap between the kth and the k+1th
eigenvalue of two positive semidefinite symmetric matrices Σ and Σ′. Also, let V and V ′ be the first k
eigenvectors of Σ and Σ′ respectively. Then we have,

1√
2

∥∥∥V V > − V ′V ′>∥∥∥
op
≤
‖Σ− Σ‖op

σ
.

That is, we can bound the error in the subspace projection in terms of the matrix perturbation.

In our setting, we choose Σ = AΣZZA
> + ΣXX and Σ′ = AΣZZA

>. We know the eigengap of Σ′

is λk because Σ′ only has k nonzero eigenvalues. By Weyl’s inequality, the kth eigenvalue is at most
perturbed by λXX,k+1, which is the k+1 eigenvalue of ΣXX. Let V be the top k eigenvectors of Σ′ and
assuming λk > λXX,k+1, we have,

1√
2

∥∥∥AA> − V V >∥∥∥
op
≤
‖Σ− Σ′‖op
λk − λXX,k+1

=
‖ΣXX‖op

λk − λXX,k+1
.

Turning this operator norm bound into approximation bound, we have

EX ‖AZ−XPCA‖2 =EX

∥∥∥AA>AZ− V V >X∥∥∥
2

=EX

∥∥∥AA>AZ− V V >AZ + V V >AZ− V V >X
∥∥∥
2

≤EX

∥∥∥AA>AZ− V V >AZ∥∥∥
2

+
∥∥∥V V >AZ− V V >X∥∥∥

2

≤EX

∥∥∥AA>AZ− V V >AZ∥∥∥
2

+
∥∥∥V V >(AZ−X)

∥∥∥
2

≤EX

∥∥∥AA> − V V >∥∥∥
op
· ‖AZ‖2 +

∥∥∥V V >∥∥∥
op
‖AZ−X‖2 .

=EX

∥∥∥AA> − V V >∥∥∥
op
· ‖AZ‖2 +

∥∥∥AA> + V V > −AA
∥∥∥
op
‖AZ−X‖2

≤EX

∥∥∥AA> − V V >∥∥∥
op
· ‖AZ‖2 + (

∥∥∥AA>∥∥∥
op

+
∥∥∥V V > −AA∥∥∥

op
) ‖AZ−X‖2

=EX

∥∥∥AA> − V V >∥∥∥
op
· (‖AZ‖2 + ‖AZ−X‖2) +

∥∥∥AA>∥∥∥
op
‖AZ−X‖2 .

We use the fact that EX,Z ‖AZ−X‖22 = tr(ΣXX) and Jensen’s inequality to bound,

EX ‖AZ−X‖2 ≤
√

tr(ΣXX).
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Combining these inequalities, we have

EX ‖AZ−XPCA‖2

≤
√

2 ‖ΣXX‖op
λk − λXX,k+1

· (‖AZ‖2 +
√

tr(ΣXX)) +
∥∥∥AA>∥∥∥

op

√
tr(ΣXX)

Proof of Proposition 1 We first recall our statement.

Proposition 1. Assuming that ΣXX is full rank,

xmask,i = β2SLS,iX\i +O(
∥∥ΣXX,\i,i

∥∥
2
),

Proof Let A\i ∈ Rd−1×k be the matrix where we omit the ith row of A and Ai ∈ Rk be the ith row
of A. Let ΣXX,\i,\i ∈ Rd−1×d−1 be the matrix where we omit the ith row and ith column of ΣXX,
and ΣXX,\i,i ∈ Rd−1 be the vector formed by dropping the ith row and taking the ith column of ΣXX.
Similarly, denote X\i ∈ Rd−1 be the vector where we omit the i coordinate of X .

We start by writing down the expression of β2SLS,i. Recall that the Least Squares regression between
two zero-mean Gaussian variables X and Y can be written as

β = Cov(X,Y)Cov(X,X)−1,

where Cov(X,X) is the covariance matrix of X and we assume it is full rank. Since Cov(X\i,Z) is
A\iΣZZ, we can write the coefficient of regression from X\i to Z as

βX\i→Z = ΣZZA
>
\i(A\iΣZZA

>
\i + ΣXX,\i,\i)

−1

and by assumption we have βZ→xi = Ai. So we can write down

β2SLS,i = AiΣZZA
>
\i(A\iΣZZA

>
\i + ΣXX,\i,\i)

−1.

Now we consider masked regression for the ith coordinate, xi,

βX\i→xi = (AiΣZZA
>
\i + ΣXX,\i,i)(A\iΣZZA

>
\i + ΣXX,\i,\i)

−1.

Comparing β2SLS and βX\i→xi , we observe that the second term is the same and the key is to bound
the first term. Consider the error term between the coefficients,∥∥∥ΣXX,\i,i(A\iΣZZA

>
\i + ΣXX,\i,\i)

−1
∥∥∥
2

≤
∥∥ΣXX,\i,i

∥∥
2

∥∥∥(A\iΣZZA
>
\i + ΣXX,\i,\i)

−1
∥∥∥
op

≤
∥∥ΣXX,\i,i

∥∥
2

∥∥∥(AΣZZA
> + ΣXX)−1

∥∥∥
op
.

That is, the error term scales with the off-diagonal terms
∥∥ΣXX,\i,i

∥∥
2
.

Converting our bound on the error term into an approximation bound, we have

xmask,i = β2SLS,iX +O(
∥∥ΣXX,\i,i

∥∥
2
).
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Proof for Proposition 3.
Proposition 3. The gap between conditional MI with and without latent variables is bounded by the
conditional entropy H(Z|X\{i,j}),

I(xi;xj |X\{i,j})− I(xi;xj |Z, X\{i,j})
≤ 2H(Z|X\{i,j}).

Proof The proof follows from the definition of conditional mutual information. Denote H(·) as the
entropy function.

We start by observing that

I(xi;xj |Z, X\{i,j}) = I(xi;xj |X\{i,j})− I(xi;Z|X\{i,j}) + I(xi;Z|xj , X\{i,j})
(Through chain rule of mutual information.)

= I(xi;xj |X\{i,j}) +H(Z|xi, X\{i,j})−H(Z|X\{i,j})
+H(Z|xj , X\{i,j})−H(Z|xi, xj , X\{i,j}).

Then we have,

I(xi;xj |X\{i,j})− I(xi;xj |Z, X\{i,j})
= −H(Z|xi, X\{i,j}) +H(Z|X\{i,j})−H(Z|xj , X\{i,j}) +H(Z|xi, xj , X\{i,j})
≤ H(Z|X\{i,j}) +H(Z|xi, xj , X\{i,j})
≤ 2 ·H(Z|X\{i,j}).

Proposition 4. Let
Îpθ = E

xi,xj
[log pθ(xi|X\i(j, xj))− log E

xj |xi
pθ(xi|X\i(j, xj))]

be an estimator constructed by the model distribution pθ. Then we can show,

|Îpθ − Ip| ≤ E
xj
Dkl

(
p(xi|X\i(j, xj))||pθ(xi|X\i(j, xj))

)
,

where Dkl represents the KL-divergence.

Proof Expanding the definition of mutual information, we write

I(xi;xj |X\{i,j})− Îθ(xi;xj |X\{i,j}) = Exj [Dkl

(
p(xi|xj , X\{i,j})||pθ(xi|xj , X\{i,j})

)
]−

Dkl

(
Exjp(xi|xj , X\{i,j})||Exjpθ(xi|xj , X\{i,j})

)
.

Dropping the the second term, we have

Îθ(xi;xj |X\{i,j})− I(xi;xj |X\{i,j}) ≥ −Exj [Dkl

(
p(xi|xj , X\{i,j})||pθ(xi|xj , X\{i,j})

)
].

Dropping the the first term, we have

I(xi;xj |X\{i,j})− Îθ(xi;xj |X\{i,j})
≤ Dkl

(
Exjp(xi|xj , X\{i,j})||Exjpθ(xi|xj , X\{i,j})

)
≤ ExjDkl

(
p(xi|xj , X\{i,j})||pθ(xi|xj , X\{i,j})

)
,

which uses the convexity of KL-divergence and Jensen’s inequality.


