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Abstract

Understanding how linguistic structure is en-
coded in contextualized embedding could help
explain their impressive performance across
NLP. Existing approaches for probing them
usually call for training classifiers and use
the accuracy, mutual information, or complex-
ity as a proxy for the representation’s good-
ness. In this work, we argue that doing so can
be unreliable because different representations
may need different classifiers. We develop a
heuristic, DIRECTPROBE, that directly stud-
ies the geometry of a representation by build-
ing upon the notion of a version space for a
task. Experiments with several linguistic tasks
and contextualized embeddings show that, even
without training classifiers, DIRECTPROBE can
shine light into how an embedding space repre-
sents labels, and also anticipate classifier per-
formance for the representation.

1 Introduction

Distributed representations of words (e.g., Peters
et al., 2018; Devlin et al., 2019) have propelled
the state-of-the-art across NLP to new heights.
Recently, there is much interest in probing these
opaque representations to understand the informa-
tion they bear (e.g., Kovaleva et al., 2019; Conneau
et al., 2018; Jawahar et al., 2019). The most com-
monly used strategy calls for training classifiers on
them to predict linguistic properties such as syntax,
or cognitive skills like numeracy (e.g. Kassner and
Schütze, 2020; Perone et al., 2018; Yaghoobzadeh
et al., 2019; Krasnowska-Kieraś and Wróblewska,
2019; Wallace et al., 2019; Pruksachatkun et al.,
2020). Using these classifiers, criteria such as accu-
racy or model complexity are used to evaluate the
representation quality for the task (e.g. Goodwin
et al., 2020; Pimentel et al., 2020a; Michael et al.,
2020).

Such classifier-based probes are undoubtedly
useful to estimate a representation’s quality for a

task. However, their ability to reveal the informa-
tion in a representation is occluded by numerous
factors, such as the choice of the optimizer and the
initialization used to train the classifiers. For exam-
ple, in our experiments using the task of preposition
supersense prediction (Schneider et al., 2018), we
found that the accuracies across different training
runs of the same classifier can vary by as much
as ∼ 8%! (Detailed results can be found in Ap-
pendix F.)

Indeed, the very choice of a classifier influences
our estimate of the quality of a representation.
For example, one representation may achieve the
best classification accuracy with a linear model,
whereas another may demand a multi-layer per-
ceptron for its non-linear decision boundaries. Of
course, enumerating every possible classifier for
a task is untenable. A common compromise in-
volves using linear classifiers to probe representa-
tions (Alain and Bengio, 2017; Kulmizev et al.,
2020), but doing so may mischaracterize repre-
sentations that need non-linear separators. Some
work recognizes this problem (Hewitt and Liang,
2019) and proposes to report probing results for at
least logistic regression and a multi-layer percep-
tron (Eger et al., 2019), or to compare the learning
curves between multiple controls (Talmor et al.,
2020). However, the success of these methods still
depends on the choices of classifiers.

In this paper, we pose the question: Can we eval-
uate the quality of a representation for an NLP task
directly without relying on classifiers as a proxy?

Our approach is driven by a characterization of
not one, but all decision boundaries in a represen-
tation that are consistent with a training set for a
task. This set of consistent (or approximately con-
sistent) classifiers constitutes the version space for
the task (Mitchell, 1982), and includes both simple
(e.g., linear) and complex (e.g., non-linear) classi-
fiers for the task. However, perfectly characterizing
the version space for a problem presents compu-



tational challenges. To develop an approximation,
we note that any decision boundary partitions the
underlying feature space into contiguous regions
associated with labels. We present a heuristic ap-
proach called DIRECTPROBE, which builds upon
hierarchical clustering to identify such regions for
a given task and embedding.

The resulting partitions allow us to directly probe
the embeddings via their geometric properties. For
example, distances between these regions correlate
with the difficulty of learning with the representa-
tion: larger distances between regions of different
labels indicates that there are more consistent sep-
arators between them, and imply easier learning,
and better generalization of classifiers. Further,
by assigning test points to their closest partitions,
we have a parameter-free classifier as a side effect,
which can help benchmark representations without
committing to a specific family of classifiers (e.g.,
linear) as probes.

Our experiments study five different NLP tasks
that involve syntactic and semantic phenomena.
We show that our approach allows us to ascertain,
without training a classifier, (a) if a representation
admits a linear separator for a dataset, (b) how
different layers of BERT differ in their represen-
tations for a task, (c) which labels for a task are
more confusable, (d) the expected performance of
the best classifier for the task, and (e) the impact of
fine-tuning.

In summary, the contributions of this work are:

1. We point out that training classifiers as probes
is not reliable, and instead, we should directly
analyze the structure of a representation space.

2. We formalize the problem of evaluating repre-
sentations via the notion of version spaces and
introduce DIRECTPROBE, a heuristic method
to approximate it directly which does not in-
volve training classifiers.

3. Via experiments, we show that our approach
can help identify how good a given represen-
tation will be for a prediction task.1

2 Representations and Learning

In this section, we will first briefly review the rela-
tionship between representations and model learn-
ing. Then, we will introduce the notion of ϵ-version
spaces to characterize representation quality.

1DIRECTPROBE can be downloaded from https://
github.com/utahnlp/DirectProbe.
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Figure 1: An illustration of the total work in a learning
problem, visualized as the distance traveled from the
input bar to the output bar. Different representations Ei

and different classifiers hi provide different effort.

2.1 Two Sub-tasks of a Learning Problem
The problem of training a predictor for a task can
be divided into two sub-problems: (a) representing
data, and (b) learning a predictor (Bengio et al.,
2013). The former involves transforming input
objects x—words, pairs of words, sentences, etc.—
into a representation E(x) ∈ Rn that provides
features for the latter. Model learning builds a clas-
sifier h over E(x) to make a prediction, denoted
by the function composition h(E(x)).

Figure 1 illustrates the two sub-tasks and their
roles in figuratively “transporting” an input x to-
wards a prediction with a probability of error be-
low a small ϵ. For the representation E1, the best
classifier h1 falls short of this error requirement.
The representation E4 does not need an additional
classifier because it is identical to the label. The
representations E2 and E3 both admit classifiers
h2 and h3 that meet the error threshold. Further,
note, that E3 leaves less work for the classifier than
E2, suggesting that it is a better representation as
far as this task is concerned.

This illustration gives us the guiding principle
for this work2:

The quality of a representation E for a
task is a function of both the performance
and the complexity of the best classifier
h over that representation.

Two observations follow from the above discussion.
First, we cannot enumerate every possible classi-
fier to find the best one. Other recent work, such

2In addition to performance and complexity of the best
classifier, other aspects such as sample complexity, the sta-
bility of learning, etc are also important. We do not consider
them in this work: these aspects are related to optimization and
learnability, and more closely tied to classifier-based probes.

https://github.com/utahnlp/DirectProbe
https://github.com/utahnlp/DirectProbe


as that of Xia et al. (2020) make a similar point.
Instead, we need to resort to an approximation to
evaluate representations. Second, trivially, the best
representation for a task is identical to an accu-
rate classifier; in the illustration in Figure 1, this
is represented by E4. However, such a represen-
tation is over-specialized to one task. In contrast,
learned representations like BERT promise task-
independent representations that support accurate
classifiers.

2.2 ϵ-Version Spaces
Given a classification task, we seek to disentangle
the evaluation of a representation E from the clas-
sifiers h that are trained over it. To do so, the first
step is to characterize all classifiers supported by a
representation.

Classifiers are trained to find a hypothesis (i.e.,
a classifier) that is consistent with a training set.
A representation E admits a set of such hypothe-
ses, and a learner chooses one of them. Consider
the top-left example of Figure 2. There are many
classifiers that separate the two classes; the figure
shows two linear (h1 and h2) and one non-linear
(h3) example. Given a set H of classifiers of in-
terest, the subset of classifiers that are consistent
with a given dataset represents the version space
with respect to H (Mitchell, 1982). To account
for errors or noise in data, we define an ϵ-version
space: the set of hypothesis that can achieve less
than ϵ error on a given dataset.

Let us formalize this definition. Suppose H rep-
resents the whole hypothesis space consisting of
all possible classifiers h of interest. The ϵ-version
space Vϵ(H, E,D) expressed by a representation
E for a labeled dataset D is defined as:

Vϵ (H, E,D) ≜ {h ∈ H | err(h,E,D) ≤ ϵ}
(1)

where err represents training error.
Note that the ϵ-version space Vϵ(H, E,D) is

only a set of functions and does not involve any
learning. However, understanding a representation
requires examining its ϵ-version space—a larger
one would allow for easier learning.

In previous work, the quality of a representation
E for a task represented by a dataset D is measured
via properties of a specific h ∈ Vϵ(H, E,D), typi-
cally a linear probe. Commonly measured proper-
ties include generalization error (Kim et al., 2019),
minimum description length of labels (Voita and
Titov, 2020) and complexity (Whitney et al., 2020).
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Figure 2: Using the piecewise linear functions to mimic
decision boundaries on two different cases. The solid
lines on the left are the real decision boundaries for a
binary classification problem. The dashed lines in the
middle are the piecewise linear functions used to mimic
these decision boundaries. The gray area is the region
that a separator must cross. The connected points in
the right represent the convex regions that the piecewise
linear separators lead to.

Instead, we seek to directly evaluate the ϵ-version
space of a representation for a task, without com-
mitting to a restricted set of probe classifiers.

3 Approximating an ϵ-Version Space

Although the notion of an ϵ-version space is well
defined, finding it for a given representation and
task is impossible because it involves enumerating
all possible classifiers. In this section, we will
describe a heuristic to approximate the ϵ-version
space. We call this approach as DIRECTPROBE.

3.1 Piecewise Linear Approximation

Each classifier in Vϵ(H, E,D) is a decision bound-
ary in the representation space that separates exam-
ples with different labels (see Figure 2, left). The
decisions of a classifier can be mimicked by a set
of piecewise linear functions. Figure 2 (middle)
shows two examples. At the top is the simple case
with linearly separable points. At the bottom is
a more complicated case with a circular separa-
tor. The set of the piecewise linear function that
matches its decisions needs at least three lines.

The ideal piecewise linear separator partitions
training points into groups, each of which contains
points with exactly one label. These groups can
be seen as defining convex regions in the embed-
ding space (see Figure 2, left). Any classifier in
Vϵ(H, E,D) must cross the regions between the
groups with different labels; these are the regions
that separate labels from each other, as shown in



the gray areas in Figure 2 (middle). Inspired by this,
we posit that these regions between groups with dif-
ferent labels, and indeed the partitions themselves,
offer insight into Vϵ(H, E,D).

3.2 Partitioning Training Data

Although finding the set of all decision boundaries
remain hard, finding the regions between convex
groups that these piecewise linear functions splits
the data into is less so. Grouping data points in
this fashion is related to a well-studied problem,
namely clustering, and several recent works have
looked at clustering of contextualized representa-
tions (Reimers et al., 2019; Aharoni and Goldberg,
2020; Gupta et al., 2020). In this work, we have
a new clustering problem with the following crite-
ria: (i) All points in a group have the same label.
We need to ensure we are mimicking the decision
boundaries. (ii) There are no overlaps between
the convex hulls of each group. If convex hulls
of two groups do not overlap, there must exist a
line that can separates them, as guaranteed by the
hyperplane separation theorem. (iii) Minimize the
number of total groups. Otherwise, a simple so-
lution is that each data point becomes a group by
itself.

Note that the criteria do not require all points
of one label to be grouped together. For example,
in Figure 2 (bottom right), points of the circle (i.e.,
◦) class are in three subgroups.

To summarize what we have so far: we trans-
formed the problem of finding the ϵ-version space
into a clustering problem with specific criteria.
Next, let us see a heuristic for partitioning the train-
ing set into clusters based on these criteria.

3.3 A Heuristic for Clustering

To find clusters as described in §3.2, we define a
simple bottom-up heuristic clustering strategy that
forms the basis of DIRECTPROBE (Algorithm 1).
In the beginning, each example xi with label yi in
a training set D is a cluster Ci by itself. In each
iteration, we select the closest pair of clusters with
the same label and merge them (lines 4, 5). If the
convex hull of the new cluster does not overlap
with all other clusters3, we keep this new cluster
(line 9). Otherwise, we flag this pair (line 7) and

3Note that “all other clusters” here means the other clusters
with different labels. There is no need to prohibit overlap
between clusters with the same label since they might be
merged in the next iterations.

choose the next closest pair of clusters. We repeat
these steps till no more clusters can be merged.

Algorithm 1 DIRECTPROBE: Bottom-up Cluster-
ing
Input: A dataset D with labeled examples (xi, yi).
Output: A set of clusters of points C.
1: Initialize Ci as the cluster for each (xi, yi) ∈ D
2: C = {C0, C1, · · · }, B = ∅
3: repeat
4: Select the closest pair (Ci, Cj) ∈ C which have the

same label and is not flagged in B.
5: S ← Ci ∪ Cj

6: if convex hull of S overlaps with other elements of C
then

7: B ← B ∪ {(Ci, Cj)}
8: else
9: Update C by removing Ci, Cj and adding S

10: end if
11: until no more pairs can be merged
12: return C

We define the distance between clusters Ci and
Cj as the Euclidean distance between their cen-
troids. Although Algorithm 1 does not guarantee
the minimization criterion in §3.2 since it is greedy
heuristic, we will see in our experiments that, in
practice, it works well.

Overlaps Between Convex Hulls A key point
of Algorithm 1 is checking if the convex hulls
of two sets of points overlap (line 6). Suppose
we have two sets C = {xC1 , . . . , xCn } and C ′ =
{xC′

1 , . . . , xC
′

m }. We can restate this as the problem
of checking if there is some vector w ∈ ℜn and a
number b ∈ ℜ such that:

∀xCi ∈ C, w⊤E(xCi ) + b ≥ 1,

∀xC′
j ∈ C ′, w⊤E(xC

′
j ) + b ≤ −1.

(2)

where E is the representation under investigation.
We can state this problem as a linear program

that checks for feasibility of the system of inequali-
ties. If the LP problem is feasible, there must exist
a separator between the two sets of points, and they
do not overlap. In our implementation, we use the
Gurobi optimizer (Gurobi Optimization, 2020) to
solve the linear programs.4

3.4 Noise: Controlling ϵ

Clusters with only a small number of points could
be treated as noise. Geometrically, a point in the
neighborhood of other points with different labels

4Algorithm 1 can be made faster by avoiding unnecessary
calls to the solver. Appendix A gives a detailed description
of these techniques, which are also incorporated in the code
release.



could be thought of as noise. Other clusters can not
merge with it because of the no-overlap constraint.
As a result, such clusters will have only a few points
(one or two in practice). If we want zero error
rate on the training data, we can keep these noise
points; if we allow a small error rate ϵ, then we can
remove these noise clusters. In our experiments,
for simplicity, we keep all clusters.

4 Representations, Tasks and Classifiers

Before looking at the analysis offered by the parti-
tions obtained via DIRECTPROBE in §5, let us first
enumerate the English NLP tasks and representa-
tions we will encounter.

4.1 Representations

Our main experiments focus on BERTbase,cased, and
we also show additional analysis on other contex-
tual representations: ELMo (Peters et al., 2018)5,
BERTlarge,cased (Devlin et al., 2019), RoBERTabase
and RoBERTalarge (Liu et al., 2019b). We refer the
reader to the Appendix C for further details about
these embeddings.

We use the average of subword embeddings as
the token vector for the representations that use
subwords. We use the original implementation of
ELMo, and the HuggingFace library (Wolf et al.,
2020) for the others.

4.2 Tasks

We conduct our experiments on five NLP tasks
that cover the varied usages of word representa-
tions (token-based, span-based, and token pairs)
and include both syntactic and semantic prediction
problems. The Appendix D has more details about
the tasks to help with replication.

Preposition supersense disambiguation repre-
sents a pair of tasks, involving classifying a preposi-
tion’s semantic role (SS-role) and semantic func-
tion (SS-func). Following the previous work (Liu
et al., 2019a), we only use the single-token prepo-
sitions in the Streusle v4.2 corpus (Schneider et al.,
2018).

Part-of-speech tagging (POS) is a token level
prediction task. We use the English portion of the
parallel universal dependencies treebank (ud-pud
Nivre et al., 2016).

Semantic relation (SR) is the task of predicting
the semantic relation between pairs of nominals.

5For simplicity, we use the equally weighted three layers
of ELMo in our experiments.

We use the dataset of semeval2010 task 8 (Hen-
drickx et al., 2010). To represent the pair of nomi-
nals, we concatenate their embeddings. Some nom-
inals could be spans instead of individual tokens,
and we represent them via the average embedding
of the tokens in the span.

Dependency relation (DEP) is the task of pre-
dicting the syntactic dependency relation between
a token whead and its modifier wmod. We use the
universal dependency annotation of the English
web treebank (Bies et al., 2012). As with seman-
tic relations, to represent the pair of tokens, we
concatenate their embeddings.

4.3 Classifier Accuracy

The key starting point of this work is that restrict-
ing ourselves to linear probes may be insufficient.
To validate the results of our analysis, we evaluate
a large collection of classifiers—from simple lin-
ear classifiers to two-layers neural networks—for
each task. For each one, we choose the best hyper-
parameters using cross-validation. From these clas-
sifiers, we find the best test accuracy of each task
and representation. All classifiers are trained with
the scikit-learn library (Pedregosa et al., 2011). To
reduce the impact of randomness, we trained each
classifier 10 times with different initializations, and
report their average accuracy. The Appendix E
summarizes the best classifiers we found and their
performance.

5 Experiments and Analysis

DIRECTPROBE helps partition an embedding space
for a task, and thus characterize its ϵ-version space.
Here, we will see that these clusters do indeed
characterize various linguistic properties of the rep-
resentations we consider.

5.1 Number of Clusters

The number of clusters is an indicator of the
linear separability of representations for a task.
The best scenario is when the number of clusters
equals the number of labels. In this case, examples
with the same label are placed close enough by the
representation to form a cluster that is separable
from other clusters. A simple linear multi-class
classifier can fit well in this scenario. In contrast, if
the number of clusters is more than the number of
labels, then some labels are distributed across mul-
tiple clusters (as in Figure 2, bottom). There must
be a non-linear decision boundary. Consequently,



Embedding Linear SVM #ClustersTraining Accuracy

BERTbase,cased 100 17
BERTlarge,cased 100 17
RoBERTabase 100 17
RoBERTalarge 99.97 23
ELMo 100 17

Table 1: Linearity experiments on POS tagging task.
Our POS tagging task has 17 labels in total. Both
linear SVM and the number of clusters suggest that
RoBERTalarge is non-linear while others are all linear,
which means the best classifier for RoBERTalarge is not a
linear model. More details can be found in Appendix E.

this scenario calls for a more complex classifier,
e.g., a multi-layer neural network.

In other words, using the clusters, and without
training a classifier, we can answer the question:
can a linear classifier fit the training set for a task
with a given representation?

To validate our predictions, we use the training
accuracy of a linear SVM (Chang and Lin, 2011)
classifier. If a linear SVM can perfectly fit (100%
accuracy) a training set, then there exist linear de-
cision boundaries that separate the labels. Table 1
shows the linearity experiments on the POS task,
which has 17 labels in total. All representations
except RoBERTalarge have 17 clusters, suggesting a
linearly separable space, which is confirmed by the
SVM accuracy. We conjecture that this may be the
reason why linear models usually work for BERT-
family models. Of course, linear separability does
not mean the task is easy or that the best classifier
is a linear one. We found that, while most repre-
sentations we considered are linearly separable for
most of our tasks, the best classifier is not always
linear. We refer the reader to Appendix E for the
full results.

5.2 Distances between Clusters

As we mentioned in §3.1, a learning process seeks
to find a decision boundary that separates clusters
with different labels. Intuitively, a larger gap be-
tween them would make it easier for a learner to
find a suitable hypothesis h that generalizes better.

We use the distance between convex hulls of
clusters as an indicator of the size of these gaps.
We note that the problem of computing the distance
between convex hulls of clusters is equivalent to
finding the maximum margin separator between
them. To find the distance between two clusters,
we train a linear SVM (Chang and Lin, 2011) that

Figure 3: Here we juxtapose the minimum distances
between clusters and the best classifier accuracy for
all 12 layers. The horizontal axis is the layer index of
BERTbase,cased; the left vertical axis is the best classifier
accuracy and the right vertical axis is the minimum
distance between all pairs of clusters.

separates them and compute its margin. The dis-
tance we seek is twice the margin. For a given
representation, we are interested in the minimum
distance across all pairs of clusters with different
labels.

5.2.1 Minimum Distance of Different Layers

Higher layers usually have larger ϵ-version
spaces. Different layers of BERT play different
roles when encoding liguistic information (Tenney
et al., 2019). To investigate the geometry of dif-
ferent layers of BERT, we apply DIRECTPROBE

to each layer of BERTbase,cased for all five tasks.
Then, we computed the minimum distances among
all pairs of clusters with different labels. By com-
paring the minimum distances of different layers,
we answer the question: how do different layers of
BERT differ in their representations for a task?

Figure 3 shows the results on all tasks. In each
subplot, the horizontal axis is the layer index. For
each layer, the blue circles (left vertical axis) is
the best classifier accuracy, and the red triangles
(right vertical axis) is the minimum distance de-
scribed above. We observe that both best classi-
fier accuracy and minimum distance show similar
trends across different layers: first increasing, then
decreasing. It shows that minimum distance corre-
lates with the best performance for an embedding
space, though it is not a simple linear relation. An-
other interesting observation is the decreasing per-
formance and minimum distance of higher layers,
which is also corroborated by Ethayarajh (2019)
and Liu et al. (2019a).



Task Min Distance Best Acc

SS-role original 0.778 77.51
fine-tuned 4.231 81.62

SS-func original 0.333 86.13
fine-tuned 2.686 88.4

POS original 0.301 93.59
fine-tuned 0.7696 95.95

SR original 0.421 86.85
fine-tuned 4.734 90.03

DEP original 0.345 91.52
fine-tuned 1.075 94.82

Table 2: The best performance and the minimum dis-
tances between all pairs of clusters of the last layer of
BERTbase,cased before and after fine-tuning.

5.2.2 Impact of Fine-tuning
Fine-tuning expands the ϵ-version space. Past
work (Peters et al., 2019; Arase and Tsujii, 2019;
Merchant et al., 2020) has shown that fine-tuning
pre-trained models on a specific task improves per-
formance, and fine-tuning is now the de facto proce-
dure for using contextualized embeddings. In this
experiment, we try to understand why fine-tuning
can improve performance. Without training classi-
fiers, we answer the question: What changes in the
embedding space after fine-tuning?

We conduct the experiments described in §5.2.1
on the last layer of BERTbase,cased before and after
fine-tuning for all tasks. Table 2 shows the results.
We see that after fine-tuning, both the best classifier
accuracy and minimum distance show a big boost.
It means that fine-tuning pushes the clusters away
from each other in the representation space, which
results in a larger ϵ-version space. As we discussed
in §5.2, a larger ϵ-version space admits more good
classifiers and allows for better generalization.

5.2.3 Label Confusion
Small distances between clusters can confuse a
classifier. By comparing the distances between
clusters, we can answer the question: Which labels
for a task are more confusable?

We compute the distances between all the pairs
of labels based on the last layer of BERTbase,cased.6

Based on an even split of the distances, we parti-
tion all label pairs into three bins: small, medium,
and large. For each task, we use the predictions of
the best classifier to compute the number of mis-

6For all tasks, BERTbase,cased space (last layer) is linearly
separable. So, the number of label pairs equals the number of
cluster pairs.

Task Small Medium Large
Distance Distance Distance

SS-role 97.17% (555) 2.83% (392) 0% (88)
SS-func 96.88% (324) 3.12% (401) 0% (55)
POS 99.19% (102) 0.81% (18) 0% (16)
SR 93.20% (20) 6.80% (20) 0% (5)
DEP 99.97% (928) 0.03% (103) 0% (50)

Table 3: Error distribution based on different distance
bins. The number of label pairs in each bin is shown in
the parentheses.

classified label pairs for each bin. For example, if
the clusters associated with the part of speech tags
ADV and ADJ are close to each other, and the best
classifier misclassified ADV as ADJ, we put this
error pair into the bin of small distance. The distri-
bution of all errors is shown in Table 3. This table
shows that a large majority of the misclassified
labels are concentrated in the small distance bin.
For example, in the supersense role task (SS-role),
97.17% of the errors happened in small distance
bin. The number of label pairs of each bin is shown
in the parentheses. Table 3 shows that small dis-
tances between clusters indeed confuse a classifier
and we can detect it without training classifiers.

5.3 By-product: A Parameter-free Classifier

Figure 4: Comparison between the best classifier accu-
racy, intra-accuracy, and 1-kNN accuracy. The X-axis is
different representation models. BB: BERTbase,cased, BL:
BERTlarge,cased, RB: RoBERTabase, RL: RoBERTalarge,
E: ELMo. The pearson correlation coefficient between
best classifier accuracy and intra-accuracy is shown in
the parentheses alongside each task title. This figure is
best viewed in color.

We can predict the expected performance of
the best classifier. Any h ∈ Vϵ(H, E,D) is a
predictor for the task D on the representation E. As
a by-product of the clusters from DIRECTPROBE,



we can define a predictor. The prediction strategy is
simple: for a test example, we assign it to its closest
cluster.7 Indeed, if the label of the cluster is the
true label of the test point, then we know that there
exists some classifier that allows this example to be
correctly labeled. We can verify the label every test
point and compute the aggregate accuracy to serve
as an indicator of the generalization ability of the
representation at hand. We call this accuracy the
intra-accuracy. In other words, without training
classifiers, we can answer the question: given a
representation, what is the expected performance
of the best classifier for a task?

Figure 4 compares the best classifier accuracy,
and the intra-accuracy of the last layer of different
embeddings. Because our assignment strategy is
similar to nearest neighbor classification (1-kNN),
which assigns the unlabelled test point to its closest
labeled point, the figure also compares to the 1-
kNN accuracy.

First, we observe that intra-accuracy always out-
performs the simple 1-kNN classifier, showing that
DIRECTPROBE can use more information from the
representation space. Second, we see that the intra-
accuracy is close to the best accuracy for some
tasks (Supersense tasks and POS tagging). More-
over, all the pearson correlation coefficients be-
tween best accuracy and intra-accuracy (showed in
the parentheses alongside each task title) suggest a
high linear correlation between best classifier accu-
racy and intra-accuracy. That is, the intra-accuracy
can be a good predictor of the best classifier accu-
racy for a representation. From this, we argue that
intra-accuracy can be interpreted as a benchmark
accuracy of a given representation without actually
training classifiers.

5.4 Case Study: Identifying Difficult
Examples

The distances between a test point and all the clus-
ters from the training set can not only be used to
predict the label but also can be used to identify
difficult examples as per a given representation.
Doing so could lead to re-annotation of the data,
and perhaps lead to cleaner data, or to improved
embeddings. Using the supersense role task, we
show a randomly chosen example of a mismatch

7To find the distance between the convex hull of a cluster
and a test point, we find a max-margin separating hyperplane
by training a linear SVM that separates the point from the clus-
ter. The distance is twice the distance between the hyperplane
and the test point.

between the annotated label and the BERTbase,cased
neighborhood:

. . . our new mobile number is . . .

The data labels the word our as GESTALT, while
the embedding places it in the neighborhood of
POSSESSOR. The annotation guidelines for these
labels (Schneider et al., 2017) notes that GESTALT

is a supercategory of POSSESSOR. The latter is
specifically used to identify cases where the pos-
sessed item is alienable and has monetary value.
From this definition, we see that though the an-
notated label is GESTALT, it could arguably also
be a POSSESSOR if phone numbers are construed
as alienable possessions that have monetary value.
Importantly, it is unclear whether BERTbase,cased
makes this distinction. Other examples we exam-
ined required similarly nuanced analysis. This ex-
ample shows DIRECTPROBE can be used to iden-
tify examples in datasets that are potentially misla-
beled, or at least, require further discussion.

6 Related Work and Discussion

In addition to the classifier based probes described
in the rest of the paper, a complementary line of
work focuses on probing the representations us-
ing a behavior-based methodology. Controlled test
sets (Şenel et al., 2018; Jastrzebski et al., 2017)
are designed and errors are analyzed to reverse-
engineer what information can be encoded by the
model (e.g., Marvin and Linzen, 2018; Ravichander
et al., 2021; Wu et al., 2020). Another line of work
probes the space by “opening up” the representa-
tion space or the model (e.g., Michel et al., 2019;
Voita et al., 2019). There are some efforts to inspect
the space from a geometric perspective (e.g., Etha-
yarajh, 2019; Mimno and Thompson, 2017). Our
work extends this line of work to connect the geo-
metric structure of embedding space with classifier
performance without actually training a classifier.

Recent work (Pimentel et al., 2020b; Voita and
Titov, 2020; Zhu and Rudzicz, 2020) probe repre-
sentations from an information theoretic perspec-
tive. These efforts still need a probability distribu-
tion p(y|x) from a trained classifier. In §5.3, we
use clusters to predict labels. In the same vein,
the conditional probability p(y|x) can be obtained
by treating the negative distances between the test
point x and all clusters as predicted scores and
normalizing via softmax. Our formalization can



fit into the information theoretic analysis and yet
avoid training a classifier.

Our analysis and experiments open new direc-
tions for further research:
Novel pre-training target: The analysis presented
here informs us that larger distance between clus-
ters can improve classifiers. This could guide loss
function design when pre-training representations.
Quality of a representation: In this paper, we
focus on the accuracy of a representation. We could
seek to measure other properties (e.g., complexity)
or proxies for them. These analytical approaches
can be applied to the ϵ-version space to further
analyze the quality of the representation space.
Theory of representation: Learning theory, e.g.
VC-theory (Vapnik, 2013), describes the learnabil-
ity of classifiers; representation learning lacks of
such theoretical analysis. The ideas explored in this
work (ϵ-version spaces, distances between clusters
being critical) could serve as a foundation for an
analogous theory of representations.

7 Conclusion

In this work, we ask the question: what makes a
representation good for a task? We answer it by
developing DIRECTPROBE, a heuristic approach
builds upon hierarchical clustering to approximate
the ϵ-version space. Via experiments with several
contextualized embeddings and linguistic tasks, we
showed that DIRECTPROBE can help us under-
stand the geometry of the embedding space and
ascertain when a representation can successfully
be employed for a task.
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A DIRECTPROBE in Practice

In practice, we apply several techniques to speed
up the probing process. Firstly, we add two caching
strategies:

Black List Suppose we know two clusters A and
B can not be merged, then A′ and B′ cannot be
merged either if A ⊆ A′ and B ⊆ B′

White List Suppose we know two clusters A and
B can be merged, then A′ and B′ can be merged
too if A′ ⊆ A and B′ ⊆ B

These two observations allow us to cache pre-
vious decisions in checking whether two clusters
overlap. Applying these caching strategies can help
us avoid unnecessary checking for overlap, which
is time-consuming.

Secondly, instead of merging from the start to
the end and checking at every step, we directly
keep merging to the end without any overlap check-
ing. After we arrived at the end, we start checking
backwards to see if there is an overlap. If final
clusters have overlaps, we find the step of the first
error, correct it and keep merging. Merging to the
end can also help us avoid plenty of unnecessary
checking because, in most representations, the first
error usually happens only in the final few merges.
Algorithm 2 shows the whole algorithm.

Algorithm 2 DIRECTPROBE in Practice
Input: A dataset D with labeled examples (xi, yi).
Output: A set of clusters of points C.
1: Initialize Ci as the cluster for each (xi, yi) ∈ D
2: C = {C0, C1, · · · }
3: Keep merging the closest pairs who have the same label

in C without overlapping checking.
4: if There are overlappings in C then
5: Find the step k that first overlap happens.
6: Rebuild C from step k − 1
7: Keeping merging the closest pairs who have the same

label in C with overlapping checking.
8: end if
9: return C

Table 4 shows the runtime comparison between
DirectProbe and training classifiers.

B Classifier Training Details

We train 3 different kinds of classifiers in order
to find the best one: Logistic Regression, a one-
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DirectProbe Classifier
Clustering Predict CV Train-Test

SS-role 1 min 7 min 1.5 hours 1 hour
SS-func 1.5 min 5.5 min 1 hour 1 hour
POS 14 min 43 min 3.5 hours 2 hours
SR 10 min 22 min 50 min 1 hour
DEP 3 hours 3 hours 20 hours 11 hours

Table 4: The comparison of running time between DI-
RECTPROBE and training classifiers using the setting
described in Appendix B. The time is computed on the
BERTbase,cased space. DIRECTPROBE and classifiers run
on the same machine.

Representations #Parameters Dimensions

BERTbase,cased 110M 768
BERTlarge,cased 340M 1024
RoBERTabase 125M 768
RoBERTalarge 355M 1024
ELMo 93.6M 1024

Table 5: Statistics of the five representations in our
experiments.

layer neural network with hidden layer size of
(32, 64, 128, 256) and two-layers neural network
with hidden layer sizes of (32, 64, 128, 256) ×
(32, 64, 128, 256). All neural networks use ReLU
as the activation function and optimized by
Adam (Kingma and Ba, 2015). The cross-
validation process chooses the weight of each regu-
larizer of each classifier. The weight range is from
10−7 to 100. We set the maximum iterations to
be 1000. After choosing the best hyperparame-
ters, each specific classifier is trained 10 times with
different initializations.

C Summary of Representations

Table 5 summarizes all the representations in our
experiments.

D Summary of Tasks

In this work, we conduct experiments on 5 tasks,
which is designed to cover different usages of rep-
resentations. Table 6 summarizes these tasks.

E Classifier Results v.s. DIRECTPROBE
Results

Table 8 summarizes the results of the best classifier
for each representation and task. The meanings of
each column are as follows:

• Embedding: The name of representation.

• Best classification: The accuracy of the best
classifier among 21 different classifiers. Each
classifier run 10 times with different starting
points. The final accuracy is the average accu-
racy of these 10 runs.

• Intra-accuracy: The prediction accuracy by
assigning test examples to their closest clus-
ters.

• Type: The type of the best classifier. e.g.
(256, ) means one-layer neural network with
hidden size 256 and (256, 128) means two-
layer neural network with hidden sizes 256
and 128 respectively.

• Parameters: The number of parameters of
the best classifier.

• Linear SVM: Training accuracy of a linear
SVM classifier.

• #Clusters: The number of final clusters after
probing.

F Detailed Classification Results

Table 7 shows the detailed classification results on
Supersense-role task using the same settings de-
scribed in Appendix B. In this table, we record
the difference between the minimum and maxi-
mum test accuracy of the 10 runs of each classifier.
The maximum difference for each representation
is highlighted by the underlines. The best perfor-
mance of each representation is highlighted by the
bold numbers. From this table, we observe: (i) the
difference between different runs of the same clas-
sifier can be as large as 4-7%, which can not be
ignored; (ii) different representation requires dif-
ferent model architecture to achieve its best perfor-
mance.

G Cluster Number Revision

We discovered a bug in the implementation of DI-
RECTPROBE which causes the merging to stop
early while the remaining clusters are still merge-
able. The main paper (Table 1 and Table 8) has
been updated to report the correct results. Table 9
shows the original results.

This bug does not change the natural of the lin-
earity of datasets and representations. All the find-
ings from original experiments remain the same.



Task #Training #Test Token-based Span-based Pair-wise Semantic Syntax

Supersense-role 4282 457
√ √

Supersense-function 4282 457
√ √

POS 16,860 4323
√ √

Dependency Relation 42,081 4846
√ √

Semantic Relation 8000 2717
√ √ √

Table 6: Statistics of the five tasks with their different characteristics.

Model Specific BERTbase,cased BERTlarge,cased RoBERTabase RoBERTalarge ELMo
Family Model Min Max Diff Min Max Diff Min Max Diff Min Max Diff Min Max Diff

Linear LR 75.93 76.59 0.66 72.21 72.43 0.22 79.65 80.09 0.44 77.46 77.90 0.44 76.37 77.02 0.65

One-layer

(32,) 75.27 78.56 3.29 70.24 73.09 2.85 77.9 79.87 1.97 74.84 78.34 3.5 74.4 75.93 1.53
(64,) 76.37 78.56 2.19 71.33 72.87 1.54 78.56 80.74 2.18 76.59 77.68 1.09 73.74 75.93 2.19
(128,) 75.71 77.9 2.19 70.46 73.3 2.84 77.9 80.53 2.63 75.71 77.46 1.75 73.52 76.15 2.63
(256,) 75.27 78.12 2.85 70.68 73.96 3.28 78.34 80.96 2.62 74.84 77.9 3.06 73.96 76.81 2.85

Two-layers

(32,32) 71.99 76.81 4.82 67.4 70.68 3.28 75.71 79.43 3.72 70.68 74.62 3.94 70.24 73.96 3.72
(32,64) 73.3 75.49 2.19 68.49 73.3 4.81 76.15 78.99 2.84 72.21 76.37 4.16 71.33 76.81 5.48
(32,128) 73.74 75.27 1.53 67.61 72.65 5.04 76.15 80.09 3.94 72.65 76.81 4.16 70.02 74.4 4.38
(32,256) 73.52 76.15 2.63 67.18 70.68 3.5 74.18 77.46 3.28 71.77 74.84 3.07 72.43 74.62 2.19
(64,32) 73.52 76.59 3.07 67.61 72.87 5.26 75.93 78.56 2.63 71.33 75.93 4.6 71.99 75.49 3.5
(64,64) 72.87 76.59 3.72 68.05 71.77 3.72 76.81 79.21 2.4 73.74 75.49 1.75 73.52 75.49 1.97
(64,128) 73.09 76.81 3.72 69.37 72.43 3.06 76.81 79.21 2.4 72.65 75.49 2.84 72.87 75.27 2.4
(64,256) 73.96 76.59 2.63 68.49 71.55 3.06 76.59 78.77 2.18 73.52 76.37 2.85 73.3 76.59 3.29
(128,32) 72.65 77.24 4.59 70.02 72.43 2.41 76.59 80.53 3.94 73.74 75.93 2.19 72.43 75.93 3.5
(128,64) 73.74 77.02 3.28 68.93 73.3 4.37 76.59 79.87 3.28 72.65 75.93 3.28 72.21 76.37 4.16
(128,128) 74.84 77.24 2.4 69.37 72.43 3.06 77.46 79.21 1.75 72.87 75.71 2.84 73.52 76.15 2.63
(128,256) 73.74 77.24 3.5 64.33 72.21 7.88 77.02 80.74 3.72 72.87 76.15 3.28 73.09 76.59 3.5
(256,32) 73.74 78.12 4.38 68.05 73.3 5.25 77.68 80.31 2.63 73.74 75.93 2.19 72.87 75.71 2.84
(256,64) 75.49 78.77 3.28 68.93 72.43 3.5 77.68 80.09 2.41 73.74 75.71 1.97 72.87 76.15 3.28
(256,128) 75.27 78.77 3.5 70.46 73.96 3.5 77.9 80.74 2.84 73.74 77.02 3.28 73.96 76.37 2.41
(256,256) 75.71 78.34 2.63 66.74 73.52 6.78 78.12 81.18 3.06 74.84 76.37 1.53 73.3 75.71 2.41

Table 7: Classification results on Supersense role task. Each specific classifier is trained ten times with different
initializations. We record the minimum and maximum performance of these ten runs. Diff is the difference between
the minimum and maximum performance. Bold number highlights the best performance of each representation.
Underlines highlights the maximum difference between ten runs. See Appendix F for a discussion.

Task Embedding Best classification Intra-accuracy Type Parameters Linear SVM #cluster

SS-role

BERTbase,cased 77.48 ± 0.92 76.58 (256,128) 235,264 100 46
BERTlarge,cased 72.25 ± 0.09 71.55 linear 47,104 100 46
RoBERTabase 79.85 ± 0.15 78.56 linear 35,328 100 46
RoBERTalarge 77.7 ± 0.18 74.18 linear 47,104 100 46
ELMo 76.7 ± 0.24 74.18 linear 47,104 100 46

SS-func

BERTbase,cased 86.3 ± 0.44 86.21 (128,) 103,424 100 40
BERTlarge,cased 82.84 ± 0.73 80.53 (256,) 272,384 100 40
RoBERTabase 89.87 ± 0.51 88.18 (256,) 206,848 100 40
RoBERTalarge 87.72 ± 0.56 84.03 (256,128) 300,032 100 40
ELMo 86.87 ± 0.31 84.03 linear 40,960 100 40

POS

BERTbase,cased 94.11 ± 0.14 93.59 (256,256) 266,496 100 17
BERTlarge,cased 89.54 ± 0.34 87.69 (128,256) 168,192 100 17
RoBERTabase 95 ± 0.09 94.26 (128,256) 135,424 100 17
RoBERTalarge 94.25 ± 0.19 92.92 (128,) 133,248 99.97 23
ELMo 95.08 ± 0.1 94.93 (256,) 266,496 100 17

Semantic Relation

BERTbase,cased 86.43 ± 0.28 80.27 (256,) 395,776 100 10
BERTlarge,cased 84.71 ± 0.27 76.41 (128,256) 297,472 100 10
RoBERTabase 85.55 ± 0.28 78.58 (256,32) 401,728 100 10
RoBERTalarge 85.04 ± 0.23 76.26 (256,) 526,848 100 10
ELMo 83.47 ± 0.28 78.06 (128,128) 279,808 100 10

Dependency

BERTbase,cased 91.52 ± 0.25 87.49 (256,) 405,248 100 47
BERTlarge,cased 88.9 ± 0.38 83.06 (256,) 536,320 100 47
RoBERTabase 92.24 ± 0.03 87.99 linear 72,192 100 47
RoBERTalarge 91.18 ± 0.04 85.06 linear 96,256 100 47
ELMo 92.21 ± 0.25 88.05 (256,) 536,320 100 47

Table 8: Intra-accuracy results on 5 tasks, compared against the best classifier results. See Appendix E for details
about each column.



This bug only affects the number of clusters when
the representation is non-linear for a given task.



Task Embedding Best classification Intra-accuracy Type Parameters Linear SVM #cluster

SS-role

BERTbase,cased 77.48 ± 0.92 76.58 (256,128) 235,264 100 46
BERTlarge,cased 72.25 ± 0.09 71.55 linear 47,104 100 46
RoBERTabase 79.85 ± 0.15 78.56 linear 35,328 100 46
RoBERTalarge 77.7 ± 0.18 74.18 linear 47,104 100 46
ELMo 76.7 ± 0.24 74.18 linear 47,104 100 46

SS-func

BERTbase,cased 86.3 ± 0.44 86.21 (128,) 103,424 100 40
BERTlarge,cased 82.84 ± 0.73 80.53 (256,) 272,384 100 40
RoBERTabase 89.87 ± 0.51 88.18 (256,) 206,848 100 40
RoBERTalarge 87.72 ± 0.56 84.03 (256,128) 300,032 100 40
ELMo 86.87 ± 0.31 84.03 linear 40,960 100 40

POS

BERTbase,cased 94.11 ± 0.14 93.59 (256,256) 266,496 100 17
BERTlarge,cased 89.54 ± 0.34 87.69 (128,256) 168,192 100 17
RoBERTabase 95 ± 0.09 94.26 (128,256) 135,424 100 17
RoBERTalarge 94.25 ± 0.19 92.92 (128,) 133,248 99.97 1487
ELMo 95.08 ± 0.1 94.93 (256,) 266,496 100 17

Semantic Relation

BERTbase,cased 86.43 ± 0.28 80.27 (256,) 395,776 100 10
BERTlarge,cased 84.71 ± 0.27 76.41 (128,256) 297,472 100 10
RoBERTabase 85.55 ± 0.28 78.58 (256,32) 401,728 100 10
RoBERTalarge 85.04 ± 0.23 76.26 (256,) 526,848 100 10
ELMo 83.47 ± 0.28 78.06 (128,128) 279,808 100 10

Dependency

BERTbase,cased 91.52 ± 0.25 87.49 (256,) 405,248 100 47
BERTlarge,cased 88.9 ± 0.38 83.06 (256,) 536,320 100 47
RoBERTabase 92.24 ± 0.03 87.99 linear 72,192 100 47
RoBERTalarge 91.18 ± 0.04 85.06 linear 96,256 100 47
ELMo 92.21 ± 0.25 88.05 (256,) 536,320 100 47

Table 9: Original intra-accuracy results on 5 tasks, compared against the best classifier results. These results were
in the original version of the paper before we found a bug in the implementation of DIRECTPROBE. The updated
results are in Table 8. See Appendix E for details about each column.


