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Abstract

The tasks of Rich Semantic Parsing, such
as Abstract Meaning Representation (AMR),
share similar goals with Information Extrac-
tion (IE) to convert natural language texts into
structured semantic representations. To take
advantage of such similarity, we propose a
novel AMR-guided framework for joint in-
formation extraction to discover entities, rela-
tions, and events with the help of a pre-trained
AMR parser. Our framework consists of two
novel components: 1) an AMR based seman-
tic graph aggregator to let the candidate entity
and event trigger nodes collect neighborhood
information from AMR graph for passing mes-
sage among related knowledge elements; 2) an
AMR guided graph decoder to extract knowl-
edge elements based on the order decided by
the hierarchical structures in AMR. Experi-
ments on multiple datasets have shown that
the AMR graph encoder and decoder have pro-
vided significant gains and our approach has
achieved new state-of-the-art performance on
all IE subtasks 1.

1 Introduction

Information extraction (IE) aims to extract struc-
tured knowledge as an information network (Li
et al., 2014) from unstructured natural language
texts, while semantic parsing attempts to construct
a semantic graph to summarize the meaning of the
input text. Since both of them focus on extracting
the main information from a sentence, the output in-
formation networks and semantic graphs have a lot
in common in terms of node and edge semantics. In
an example shown in Figure 1, many knowledge el-
ements in the information network can be perfectly
matched to certain nodes in the semantic graph with
similar semantic meanings. Moreover, these two
types of graphs may also be similar with regard to
network topology. Specifically, the nodes that are

1The programs are publicly available for research purpose
at https://github.com/zhangzx-uiuc/AMR-IE.
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Figure 1: Comparison of the AMR graph generated
from pre-trained AMR parser and information network
from IE for the same sentence from ACE05: Scott Pe-
terson now faces death penalty because of murdering
his wife Laci and their unborn son at their house.

neighbors or connected via a few hops in the seman-
tic graph are also likely to be close to each other in
the corresponding information network. In Figure 1
we can see that “Scott Peterson”, which acts as a
shared argument for two event triggers “murdering”
and “faces”, is also directly linked to two main
predicates murder-01 and face-01 in the semantic
graph. From a global perspective, an information
network can be approximately considered as a sub-
graph of semantic parsing, where the IE nodes are
roughly a subset of the nodes in the semantic graph
while maintaining similar inter-connections.

To further exploit and make use of such simi-
larities for information extraction, we propose an
intuitive and effective framework to utilize informa-
tion from semantic parsing to jointly extract an in-

https://github.com/zhangzx-uiuc/AMR-IE
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formation network composed of entities, relations,
event triggers and their arguments. We adopt Ab-
stract Meaning Representation (AMR) (Banarescu
et al., 2013) which contains rich semantic struc-
tures with fine-grained node and edge types as our
input semantic graphs. Compared with previous IE
models, our proposed model mainly consists of the
following two novel components.

AMR-Guided Graph Encoding. The AMR
graph topology can directly inform the IE model
some global inter-dependencies among knowledge
elements, even if they are located far away in the
original sentence. Such a property makes it easier
for the IE model to capture some non-local long-
distance connections for relation and event argu-
ment role labeling. We design a semantic graph
aggregator based on Graph Attention Networks
(GAT) (Velickovic et al., 2018) to let the candi-
date entity and event trigger nodes to aggregate
neighborhood information from the semantic graph
for passing message among related knowledge el-
ements. The GAT architecture used in our model
is specifically designed to allow interactions be-
tween node and edge features, making it possible
to effectively leverage the rich edge types in AMR.

AMR-Conditioned Graph Decoding. A large
number of nodes in these two types of graphs share
similar meanings, which makes it possible to obtain
a meaningful node alignment between information
networks and semantic graphs. Such an alignment
provides potential opportunities to design a more
organized way in the decoding part of a joint IE
model. Instead of using sequential decoding as
in previous models like OneIE (Lin et al., 2020),
where the types of knowledge elements are deter-
mined in a left-to-right order according to their
positions in the original sentence, we propose a
new hierarchical decoding method. We use AMR
parsing as a condition to decide the order of de-
coding knowledge elements, where the nodes and
edges are determined in a tree-like order based on
the semantic graph hierarchy.

Experiment results on multiple datasets show
that our proposed model significantly outperforms
state-of-the-art on all IE subtasks.

2 Problem Formulation

We focus on extracting entities, relations, event
triggers and their arguments jointly from an input
sentence to form an information network. Note
that the AMR graphs in our model are not required

to be ground-truth but are generated by pretrained
AMR parsers. Therefore, we do not incorporate
additional information and our problem settings are
identical to typical joint information extraction ap-
proaches such as DyGIE++ (Wadden et al., 2019)
and OneIE (Lin et al., 2020). Given an input sen-
tence S = {w1, w2, · · · , wN}, we formulate our
problem of joint information extraction as follows.

Entity Extraction Entity extraction aims to iden-
tify word spans as entity mentions and classify
them into pre-defined entity types. Given the set
of entity types E, the entity extraction task is to
output a collection E of entity mentions:

E = {εi = (ai, bi, ei) | ai 6 bi, ei ∈ E}

where ai, bi ∈ {1, 2, · · · , N} denote the starting
and ending indices of the extracted entity mentions,
and ei represents the entity type in a type set E.
For example, in Figure 1, the entity mention “Scott
Peterson” is represented as (0, 1,PER).

Relation Extraction The task of relation extrac-
tion is to assign a relation type to every possible
ordered pair in the extracted entity mentions. Given
the identified entity mentions E and pre-defined re-
lation types R, the set of relations is extracted as

R =
{
ri = (εi, εj , l

r
ij) | lrij ∈ R, εi, εj ∈ E

}
where εi and εj are entity mentions from E and
i, j ∈ {1, 2, · · · , |E|}. An example relation men-
tion is (“their”,“son”,PER-SOC) in Figure 1.

Event Extraction The task of event extraction
includes extracting event triggers and their argu-
ments. Event trigger extraction is to identify the
words or phrases that most clearly indicate the oc-
currence of a certain type of event from an event
type set T , which can be formulated as:

T = {τi = (pi, qi, ti) | pi 6 qi, ti ∈ T}

where pi, qi ∈ {1, 2, · · · , N} denotes the starting
and ending indices of the extracted event mentions,
and ti represents an event type in T . Given the
pre-defined set of event arguments A, the task of
event argument extraction is to assign each trigger
and entity pair an argument role label to indicate
if an entity mention acts as some certain role of
the event, which is formulated as extracting an
argument set A

A =
{
αi = (τi, εj , l

a
ij) | laij ∈ A, τi ∈ T , εj ∈ E

}



41

where τi and εj are previously extracted event and
entity mentions respectively, and laij denotes the
event argument role label.

Information Network Construction All of
these extracted knowledge elements form an in-
formation network G = (V,E) (an example is
shown in Figure 1). Each node vi ∈ V is an entity
mention or event trigger, and each edge ei ∈ E
indicates a relation or event argument role. Thus
our problem can be formulated as generating an
information network G given an input sentence S.

3 Our Approach

Given an input sentence S, we first use a pre-
trained transformer-based AMR parser (Fernan-
dez Astudillo et al., 2020) to obtain the AMR
graph for S. We then use RoBERTa (Liu et al.,
2019) to encode each sentence to identify entity
mentions and event triggers as candidate nodes.
After that, we map each candidate node to AMR
nodes and enforce message passing using a GAT-
based semantic graph aggregator to capture global
inter-dependency between candidate nodes. All the
candidate nodes and their pairwise edges are then
passed through task-specific feed-forward neural
networks to calculate score vectors. During decod-
ing, we use the hierarchical structure in each AMR
graph as a condition to decide the order in beam
search and find the best candidate graph with the
highest global score.

3.1 AMR Parsing
We employ a transformer based AMR parser (Fer-
nandez Astudillo et al., 2020) pre-trained on
AMR 3.0 annotations2 to generate an AMR graph
Ga = (V a, Ea) with an alignment between AMR
nodes and word spans in an input sentence S. Each
node vai = (ma

i , n
a
i ) ∈ V a represents an AMR

concept or predicate, and we use ma
i and nai to

denote the starting and ending indices of such a
node in the original sentence. For AMR edges, we
use eai,j to denote the specific relation type between
nodes vai and vaj in AMR annotations.

Embeddings for AMR Relation Clusters To
reduce the risk of over-fitting on hundreds of fine-
grained AMR edge types, we only consider the
edge types that are most relevant to IE tasks, and
manually define M = 12 clusters of AMR edge
types as shown in Table 1. Note that each ARGx

2https://catalog.ldc.upenn.edu/LDC2020T02

relation is considered as an individual cluster since
each ARGx indicates a distinct argument role. For
each edge type cluster, we randomly initialize a
dE dimensional embedding and obtain an embed-
ding matrix E ∈ RM×dE , which will be optimized
during the training process.

Categories AMR relation types

Spatial location, destination, path
Temporal year, time, duration, decade, weekday

Means instrument, manner, topic, medium
Modifiers mod, poss
Operators op-X

Prepositions prep-X
Core Roles ARG0, ARG1, ARG2, ARG3, ARG4

Others Other AMR relation types.

Table 1: Manually defined AMR relation clusters for
IE, where each ARGx is treated as an individual cluster.

3.2 Entity and Event Trigger Identification
We first identify the entity mentions and event trig-
gers as candidate nodes from an input sentence.
Similar to (Lin et al., 2020), we adopt feed forward
neural networks constrained by conditional random
fields (CRFs) to identify the word spans for entity
mentions and event triggers.

Contextual Encoder Given an input sentence
S = {w1, w2, · · · , wN} of length N , we first cal-
culate the contextual word representation xi for
each word wi using a pre-trained RoBERTa en-
coder (Liu et al., 2019). If one word is split into
multiple pieces by the RoBERTa tokenizer, we take
the average of the representation vectors for all
word pieces as the final word representation.

CRFs based Sequence Tagging After obtaining
the contextual word representations, we use a feed-
forward neural network FFN to compute a score
vector ŷi = FFN(xi) for each word, where each
element in ŷi represents the score for a certain tag
in the tag set3. The overall score for a tag path
ẑ = {ẑ1, ẑ2, · · · , ẑN} is calculated by

s(ẑ) =

N∑
i=1

ŷi,ẑi +

N+1∑
i=1

Pẑi−1,ẑi ,

where ŷi,ẑi is the ẑi-th element of the score vec-
tor ŷi, and Pẑi−1,ẑi denotes the transition score
from tag ẑi−1 to ẑi from an optimizable matrix P .
Similar to (Chiu and Nichols, 2016), the training

3We use BIO tagging scheme to tag word spans.

https://catalog.ldc.upenn.edu/LDC2020T02
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objective for node identification is to maximize the
log-likelihood LI of the gold tag-path z.

LI = s(z)− log
∑
ẑ∈Z

es(ẑ) (1)

We use separate CRF-based taggers for entity
and event trigger extraction. Note that we do not
use the specific node types predicted by the CRF
taggers as the final output classification results for
entities and triggers, but only keep the identified
entity and trigger spans. The final types of entities
and triggers are jointly decided with relation and ar-
gument extraction in the subsequent decoding step.
Specifically, we will obtain the collections of entity
spans {(ai, bi)}|E|i=1 and trigger spans {(pi, qi)}|T |i=1

during this step, where ai, bi, pi, qi denote the start-
ing and ending indices of the word spans.

3.3 Semantic Graph Aggregator
To make the best use of the shared semantic fea-
tures and topological features from the AMR pars-
ing for the input sentence, we design a semantic
graph aggregator, which enables the candidate en-
tity nodes and event nodes to aggregate information
from their neighbors based on the AMR topology.

Initial Node Representation Each entity node,
trigger node or AMR node is initialized with a
vector representation h0

i by averaging the word
embeddings for all the words in their spans. For
example, given an entity node (ai, bi), its represen-
tation vector is calculated by

h0
i =

1

|bi − ai + 1|

bi∑
k=ai

xk

where xk is the word representation from the
RoBERTa encoder.

Node Alignment We first try to align each identi-
fied entity node and trigger node to one of the AMR
nodes before conducting message passing. Take
an entity node with its span (ai, bi) as an example.
Given the set of AMR nodes {(ma

i , n
a
i )}
|V a|
i=1 , we

consider bi as the index of the head word of the
entity node, and aim to find (ma

i∗ , n
a
i∗) that covers

bi as the matched AMR node for (ai, bi), that is,
such a node satisfies ma

i∗ 6 bi 6 nai∗ . If no nodes
can be matched to (ai, bi) in this way, we turn to
search for the nearest AMR node:

i∗ = argmin
k

(|bi −mk|+ |bi − nk|) ,
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Figure 2: An illustration for node alignment and mes-
sage passing. For unmatched entity or trigger nodes,
such as hl

5, we add a new node with feature hl
5 and

link this new node to the nearest node of hl
5.

where (ma
i∗ , n

a
i∗) is the AMR node with the shortest

distance to the entity node (ai, bi). We also conduct
alignment for event trigger nodes in the same way.

Heterogeneous Graph Construction After ob-
taining the matched or nearest AMR node for each
identified entity mention and event trigger, we con-
struct a heterogeneous graph with initialized node
and edge features as follows. Given an AMR graph
Ga = (V a, Ea), we consider the following three
cases to initialize feature vectors for each node vai :

• Node vai has been matched to an entity men-
tion or event trigger. We take the representa-
tion vector of the matched node (instead of
vai ) as the initialized feature vector.

• Node vai is not matched to any identified
nodes but labeled as the nearest node for an
entity mention or event trigger, e.g., (ai, bi).
We add a new node in the AMR topology with
the representation vector of (ai, bi), and link
this new node from vai with an edge type Oth-
ers defined in Table 1.

• Node vai is neither matched nor acted as the
nearest node to any entities (triggers). We use
its own node representation as the initialized
feature vector.

For each edge eai,j , we first map it to an AMR
relation cluster according to Table 1 and then look
up for its representation ei,j from the embedding
matrix E. We use h0

i to represent the initial feature
for each node. An illustration for this step is shown
in Figure 2.

Attention Based Message Passing Inspired
from Graph Attention Networks (GATs) (Velick-
ovic et al., 2018), we design an L-layer attention
based message passing mechanism on an AMR
graph topology to enable the entity and trigger
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nodes to aggregate neighbor information. For the
node i in layer l, we first calculate the attention
score for each neighbor j ∈ Ni based on node
features hl

i, h
l
j and edge features eli,j .

αl
i,j =

exp
(
σ
(
f l[Whl

i : Weei,j : Whl
j ]
))∑

k∈Ni
exp

(
σ
(
f l[Whl

i : Weei,k : Whl
k]
))

where W, We are trainable parameters, and f l and
σ(·) are a single layer feed-forward neural network
and LeakyReLU activation function respectively.
Then the neighborhood information h∗ can be cal-
culated by the weighted sum of neighbor features.

h∗ =
∑
j∈Ni

αl
i,jh

l
i

The updated node feature is calculated by a com-
bination of the original node feature and its neigh-
borhood information, where γ controls the level
of message passing between neighbors, and W∗

denotes a trainable linear transformation parameter.

hl+1 = hl + γ ·W∗h∗ (2)

We select the entity and trigger nodes from the
graph and take their feature vectors hL

i from the
final layer as the representation vectors that have
aggregated information from the AMR graph (as
Fig. 2 illustrates). We use he

i and ht
i to denote the

features of each entity and trigger respectively.

3.4 Model Training and Decoding
In this subsection, we introduce how we jointly
decode the output information network given the
identified entity and trigger nodes with their aggre-
gated features he

i and ht
i. We design a hierarchical

decoding method that incorporates the AMR hier-
archy as a condition to decide a more organized
order for decoding knowledge elements.

Maximizing Scores with Global Features Sim-
ilar to OneIE (Lin et al., 2020), we use task-specific
feed-forward neural networks to map each node or
node pair into a score vector. Specifically, we cal-
culate four types of score vectors sei , s

t
i, s

r
i,j and

sai,j for entity, trigger, relation, and argument role
extraction tasks respectively, where the dimension
of each score vector is identical to the number of
classes in each task.

sei = FFNe(he
i ), sti = FFNt(ht

i),

sri,j = FFNr([he
i : h

e
j ]),

sai,j = FFNa([ht
i : h

e
j ]).

Therefore, the total score c(G) is formulated as

c(G) =

|E|∑
i=1

se
i +

|T |∑
i=1

st
i +

|E|∑
i=1

|E|∑
i=1

sr
i,j +

|T |∑
i=1

|E|∑
i=1

sa
i,j .

We inherit the approach of using global features
in OneIE (Lin et al., 2020) to enforce the model
to capture more information on global interactions.
The global score g(G) for an information network
G is defined as the sum of local score c(G) and the
contribution of global features fG.

g(G) = c(G) + u · fG (3)

where u is a trainable parameter. The global fea-
ture vector fG is composed of binary values indicat-
ing whether the output graph possesses some inter-
dependencies among knowledge elements (e.g., an
attacker is likely to be a person being arrested). We
use the global feature categories identical to (Lin
et al., 2020) during training, and the overall train-
ing objective is to maximize the identification log-
likelihood, the local score s(G) while minimizing
the gap on the global score between ground-truth
Ĝ and predicted information network G.

max LI + c(Ĝ)− (g(Ĝ)− g(G)).

Hierarchical Ordered Decoding Given the out-
put score vectors for all nodes and their pairwise
edges, the most straightforward way is to out-
put an information network G with the highest
global score g(G). Due to the utilization of global
features, searching through all possible informa-
tion networks could incur exponential complexity,
thus we take a similar approach based on beam
search used in (Lin et al., 2020). Compared with
OneIE (Lin et al., 2020), we creatively incorpo-
rate the AMR hierarchy to decide a more orga-
nized decoding order instead of a simple left-to-
right order based on the word positions in the
original sentence. Specifically, given the nodes
and their alignments with AMR, we sort up these
nodes according to the positions of their aligned
AMR nodes in a top-to-down manner, that is, the
aligned AMR node which is nearest to the AMR
root node needs to be decoded first. We illustrate
the decoding order in Fig. 3 using an example. We
use U = {v1, v2, · · · vK} to denote the sorted iden-
tified trigger and entity nodes, and similar to (Lin
et al., 2020), we add these nodes step by step from
v1 to vK , and in each step, we obtain all possible
subgraphs by enumerating the types of the new
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Figure 3: An illustration of ordered decoding, where τ1
and τ2 are identified triggers while each εi,j is identi-
fied entity. In this example, the order of beam search
decoding is: τ1, τ2, ε1,1, ε2,1, ε1,2, ε2,2, ε2,3.

node and pairwise edges with other existing nodes.
We only keep the top θ subgraphs in each step
as candidate graphs to avoid exponential complex-
ity before finally select the graph with the highest
global score g(G) in step K as the output.

4 Experiments

4.1 Data

ACE-2005 Automatic Content Extraction (ACE)
2005 dataset4 provides fine-grained annotations for
entity, relation, and event extraction. We use the
same preprocessing and data split as in OneIE (Lin
et al., 2020) and DyGIE++ (Wadden et al., 2019)
to obtain the ACE05-E corpus with 18,927 sen-
tences. Following (Lin et al., 2020), we keep 7
entity types, 6 relation types, 33 event types, and
22 event argument roles.

ERE-EN We also adopt another dataset ERE-
EN from the Deep Exploration and Filtering of
Test (DEFT) program, which includes more re-
cent news articles and political reviews. We ex-
tract 17,108 sentences from datasets LDC2015E29,
LDC2015E68, and LDC2015E78. Following (Lin
et al., 2020), we keep 7 entity types, 5 relation
types, 38 event types, and 20 argument roles.

GENIA To further prove that our proposed
model is generalizable to other specific domains,
we also evaluate our model on biomedical event
extraction datasets BioNLP Genia 2011 and
2013 (Kim et al., 2011, 2013). We ignore all of
the trigger-trigger links (nested event structures)
and merge all repeated event triggers into unified
information networks to make them compatible for
comparison with previous models. Since the test
sets are blind and not available for merging the
annotations, we evaluate the model performance
on the official development sets instead. Details of
dataset statistics are shown in Table 2.

4https://catalog.ldc.upenn.edu/LDC2006T06

Dataset Split #Sents #Ents #Events #Rels

ACE05-E
Train 17,172 29,006 4,202 4,664
Dev 923 2,451 450 560
Test 832 3,017 403 636

ERE-EN
Train 14,736 39,501 6,208 5,054
Dev 1,209 3,369 525 408
Test 1,163 3,295 551 466

Genia’11 Train 9,583 12,058 5,854 513
Dev 3,499 4,842 1,933 117

Genia’13 Train 2,992 3,794 1,776 46
Dev 3,341 4,542 1,821 34

Table 2: Dataset statistics.

4.2 Experimental Setup

We adopt the most recent joint IE models Dy-
GIE++ (Wadden et al., 2019) and OneIE (Lin et al.,
2020) as baselines in our experiments, and use the
same evaluation metrics as (Zhang et al., 2019b;
Wadden et al., 2019; Lin et al., 2020) to report the
F1-Score for each IE subtask.

Entity: An extracted entity mention is correct
only if both the predicted word span (ai, bi) and
entity type ei match a reference entity mention.

Event Trigger: An event trigger is correctly
identified (Trg-I) if the predicted span (pi, qi)
matches a reference trigger. It is correctly clas-
sified (Trg-C) if the predicted event type ti also
matches the reference trigger.

Event Argument: A predicted event argument
(τi, εj , l

a
i,j) is correctly identified (Arg-I) if (τi, εj)

matches a reference event argument. It is correctly
classified (Arg-C) is the type lai,j also matches the
reference argument role.

Relation: A predicted relation is correct only
if its arguments εi and εj both match a reference
relation mention.

We train our model with Adam (Kingma and
Ba, 2015) on NVIDIA Tesla V100 GPUs for 80
epochs (approximately takes 10 minutes for 1 train-
ing epoch) with a learning rate 1e-5 for RoBERTa
parameters and 5e-3 for other parameters. We take
the level of message passing γ as 0.001, which is
a relatively low level of message passing because
we found that too much message passing will re-
sult in the loss of own features for the nodes. We
use a two-layer semantic graph aggregator and the
feature dimensions are 2048 for nodes and 256 for
edges. For other hyper-parameters, we keep them
strictly identical to (Lin et al., 2020) to enforce fair
comparison. Specifically, the FFNs consist of two
layers with a dropout rate of 0.4, where the num-

https://catalog.ldc.upenn.edu/LDC2006T06
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Dataset ACE05-E ERE-EN
Tasks Ent Trg-I Trg-C Arg-I Arg-C Rel Ent Trg-I Trg-C Arg-I Arg-C Rel

DyGIE++ 89.7 - 69.7 53.0 48.8 - - - - - - -
OneIE 90.2 77.9 74.7 57.9 55.6 61.8 86.3 66.0 57.1 43.7 42.1 52.8

AMR-IE w/o Enc 90.3 77.9 74.8 58.8 56.6 61.8 86.5 66.2 57.1 44.8 43.0 53.0
AMR-IE w/o Dec 91.9 78.1 74.9 59.0 57.8 62.2 87.8 67.6 60.9 45.6 44.1 54.4

AMR-IE (Ours) 92.1 78.1 75.0 60.9 58.6 62.3 87.9 68.0 61.4 46.4 45.0 55.2

Table 3: Overall test F-scores (%) of joint information extraction. AMR-IE w/o Enc and AMR-IE w/o Dec are
model ablation variants where we only keep the ordered decoding and graph encoding respectively.

bers of hidden units are 150 for entity and relation
extraction and 600 for event extraction, and the
beam size is set to 10.

4.3 Overall Performance

We report the performance of our AMR-IE model
and compare it with previous methods in Table 3
and Table 4. In general, our AMR guided method
greatly outperforms the baselines on all IE subtasks
including entity, event, and relation extraction. The
performance improvement is particularly signifi-
cant on edge classification tasks such as relation
extraction and event argument role labeling, be-
cause the model can better understand the relations
between knowledge elements with the help of exter-
nal AMR graph structures. To further show the help
of each individual part in our model, we introduce
two variants of our model for ablation study and
show the results in Table 3. In AMR-IE w/o Enc,
we remove the semantic graph aggregator and only
keep the ordered decoding, while in AMR-IE w/o
Dec, we keep the semantic graph aggregator but
use a flat left-to-right decoding order. From the re-
sults, we can see that only incorporating the graph
encoder is already able to substantially improve the
performance on all IE subtasks, because the iden-
tified nodes can capture some global interactions
through message passing on the AMR topology.
Moreover, using an AMR-guided decoding order
could further boost the performance especially on
the task of event argument extraction.

4.4 Influence of Message Passing

We also conduct parameter sensitivity analysis to
study the influence of γ defined in Eq. (2), which
controls how much information to aggregate from
the neighbor nodes in the AMR graph. We change
this parameter from 10−5 to 101 and show the
performance trends of IE subtasks on ACE-05E
dataset in Fig. 4. We can discover that for each
subtask, the model performance experiences an in-

Dataset Model Ent Trg-C Arg-C Rel

Genia’11 OneIE 81.8 56.9 57.0 63.1
AMR-IE 82.2 61.5 59.8 65.2

Genia’13 OneIE 71.5 57.3 51.4 39.3
AMR-IE 78.4 63.8 58.0 42.4

Table 4: Dev set F-scores (%) for joint information ex-
traction on BioNLP Genia 2011 and 2013 datasets.
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Figure 4: Performance on ACE05-E dataset changes
with the level of message passing.

crease as the level of message passing goes stronger.
However, when γ continually increases higher than
10−2, the performance of all of the subtasks will
undergo a clear decrease. Such a phenomenon fol-
lows our intuition since the identified nodes can
collect useful information from their AMR neigh-
bors by message passing. However, if the nodes
focus too much on their neighborhood information,
they will lose some of their own inherent semantic
features which results in a performance decrease.
In addition, we can also see that compared with en-
tity and trigger extraction tasks, the performance of
relation and argument extraction tasks varies more
drastically with γ. This is because edge type pre-
diction requires high-quality embeddings for both
of the involved nodes, which makes the edge type
prediction tasks more sensitive to message passing.
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Sentence AMR Parsing OneIE outputs AMR-IE outputs

If the resolution is not passed, Washington would
likely want to use the airspace for strikes against Iraq
and for airlifting troops to northern Iraq.

airlift-01

“Washington”
troop

north

Iraq

“airlifting”

“Washington”
“troop”

“Iraq”

Artifact

Place

Movement:Transport
“airlifting”

“Washington”
“troop”

“Iraq”

Artifact

Place

Movement:Transport

Agent

A Pakistani court in central Punjab province has
sentenced a Christian man to life imprisonment for
a blasphemy conviction, police said Sunday.

sentence-01

court
manprovince

convict-01

cause-01

blasphemy

“sentenced”

“court”
“province”

Justice:
Sentence

Adjunctator

“conviction”

Justice:
Convict

“man”

Defendant

Defendant
Adjunctator

“sentenced”

“court”
“province”

Place

Justice:
Sentence

Adjunctator

“conviction”

Justice:
Convict

“man”

Defendant

Defendant

Russian President Vladimir Putin’s summit with
the leaders of Germany and France may have been a
failure that proves there can be no long-term "peace
camp" alliance following the end of war in Iraq.

summit

“Vladimir Putin”

“Iraq”

prove-01

fail-01

…lead-01

“Germany” “France”
“Vladimir
Putin”

“summit”
Contact:Meet

“leaders”

Entity

“Iraq”

Entity
Place

“Vladimir
Putin”

“summit”
Contact:Meet

“leaders”

Entity

“Iraq”

Entity

Major US insurance group AIG is in the final stage
of talks to take over General Electric’s Japanese
life insurance arm in a deal to create Japan’s sixth
largest life insurer, reports said Wednesday.

“AIG”

“Japan”

person

create-01

insure-01

ARG1-of

“AIG”

“create”
Business:Start-Org

“Japan”

Agent

“insurer” “AIG”

“create”
Business:Start-Org

“Japan”

Agent

“insurer”

Place
Org

Table 5: Examples from ACE05-E test set that illustrates how AMR parsing can improve the performance of joint
IE. Note that due to the limitation of space, we only show a subset of each ARM graph that are most relevant for
generating the correct IE outputs.

4.5 Qualitative Analysis

In order to further understand how our proposed
AMR guided encoding and AMR conditioned de-
coding method help to improve the performance,
we select typical examples from the output of our
AMR-IE model for illustration in Table 5.

5 Related Work

Some recent efforts have incorporated dependency
parsing trees into neural networks for event extrac-
tion (Li et al., 2019) and relation extraction (Miwa
and Bansal, 2016; Pouran Ben Veyseh et al., 2020).
For semantic role labeling (SRL), (Stanovsky and
Dagan, 2016) manages to exploit the similarity
between SRL and open domain IE by creating a
mapping between two tasks. (Huang et al., 2016,
2018) employ AMR as a more concise input for-
mat for their IE models, but they decompose each
AMR into triples to capture the local contextual
information between nodes and edges, while the
node information is not disseminated in a global
graph topology. (Rao et al., 2017) proposes a sub-
graph matching based method to extract biomedical
events from AMR graphs, while (Li et al., 2020)
uses an additional GCN based encoder for obtain-
ing better word representations.

Besides, graph neural networks are also widely

used for event extraction (Liu et al., 2018; Vey-
seh et al., 2020; Balali et al., 2020; Zhang et al.,
2021) and relation and entity extraction (Zhang
et al., 2018; Fu et al., 2019; Guo et al., 2019; Sun
et al., 2020). Graph neural networks also demon-
strate effectiveness to encode other types of in-
trinsic structures of a sentence, such as knowl-
edge graph (Zhang et al., 2019a; Huang et al.,
2020), document-level relations (Sahu et al., 2019;
Lockard et al., 2020; Zeng et al., 2020), and self-
constructed graphs (Kim and Lee, 2012; Zhu et al.,
2019; Qian et al., 2019; Sahu et al., 2020). How-
ever, all these approaches focus on single IE tasks
while can not scale to extracting a joint information
network with entities, relations, and events.

There are some recent efforts that focus on build-
ing joint neural models for performing multiple
IE tasks simultaneously, such as joint entity and
relation extraction (Li and Ji, 2014; Katiyar and
Cardie, 2017; Zheng et al., 2017; Bekoulis et al.,
2018; Sun et al., 2019; Luan et al., 2019) and joint
event and entity extraction (Yang and Mitchell,
2016). DyGIE++ (Wadden et al., 2019) designs
a joint model to extract entities, events, and re-
lations based on span graph propagation, while
OneIE (Lin et al., 2020) further makes exploits
global features to facilitate the model to capture
more global interactions. Compared with the flat



47

encoder in OneIE, our proposed framework lever-
ages a semantic graph aggregator to incorporate
information from fine-grained AMR semantics and
enforce global interactions in the encoding phase.
In addition, instead of a simple left-to-right sequen-
tial decoder, we creatively use the AMR hierarchy
to decide the decoding order of knowledge ele-
ments. Both the AMR-guided graph encoder and
decoder are proven highly effective compared to
their flat counterparts.

6 Conclusions and Future Work

AMR parsing and IE share the same goal of con-
structing semantic graphs from unstructured text.
IE focuses more on a target ontology, and thus
its output can be considered as a subset of AMR
graph. In this paper, we present two intuitive and
effective ways to leverage guidance from AMR
parsing to improve IE, during both encoding and
decoding phases. In the future, we plan to integrate
AMR graph with entity coreference graph so our
IE framework can be extended to document level.
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