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Abstract

Recent years have seen a flourishing of neural

keyphrase generation (KPG) works, including

the release of several large-scale datasets and a

host of new models to tackle them. Model per-

formance on KPG tasks has increased signif-

icantly with evolving deep learning research.

However, there lacks a comprehensive com-

parison among different model designs, and a

thorough investigation on related factors that

may affect a KPG system’s generalization per-

formance. In this empirical study, we aim

to fill this gap by providing extensive experi-

mental results and analyzing the most crucial

factors impacting the generalizability of KPG

models. We hope this study can help clarify

some of the uncertainties surrounding the KPG

task and facilitate future research on this topic.

1 Introduction

Keyphrases are phrases that summarize and high-

light important information in a piece of text.

Keyphrase generation (KPG) is the task of automat-

ically predicting such keyphrases given the source

text. The task can be (and has often been) easily

misunderstood and trivialized as yet another natural

language generation task like summarization and

translation, failing to recognize one key aspect that

distinguishes KPG: the multiplicity of generation

targets; for each input sequence, a KPG system

is expected to output multiple keyphrases, each a

mini-sequence of multiple word tokens.

Despite this unique nature, KPG has been essen-

tially “brute-forced” into the sequence-to-sequence

(Seq2Seq) (Sutskever et al., 2014) framework in the

existing literature (Meng et al., 2017; Chen et al.,

2018; Ye and Wang, 2018; Chen et al., 2019b; Yuan

et al., 2020; Chan et al., 2019; Zhao and Zhang,

2019; Chen et al., 2019a).The community has ap-

proached the unique challenges with much inge-

nuity in problem formulation, model design, and

evaluation. For example, multiple target phrases

have been reformulated by either splitting into one

phrase per data point or joining into a single se-

quence with delimiters (Figure 1), both allowing

straightforward applications of existing neural tech-

niques such as Seq2Seq. In accordance with the

tremendous success and demonstrated effective-

ness of neural approaches, steady progress has been

made in the past few years — at least empirically —

across various domains, including sub-areas where

it was previously shown to be rather difficult (e.g.,

in generating keyphrases that are not present in the

source text).

Meanwhile, with the myriad of KPG’s unique

challenges comes an ever-growing collection of

studies that, albeit novel and practical, may quickly

proliferate and overwhelm. We are therefore mo-

tivated to present this study as — to the best of

our knowledge — the first systematic investigation

on such challenges as well as the effect of inter-

play among their solutions. We hope this study

can serve as a practical guide to help researchers to

gain a more holistic view on the task, and to profit

from the empirical results of our investigations on

a variety of topics in KPG including model design,

evaluation, and hyper-parameter selection.

The rest of the paper is organized as follows.

We first enumerate specific challenges in KPG due

to the multiplicity of its target, and describe gen-

eral setups for the experiments. We subsequently

present experimental results and discussions to an-

swer three main questions:

1. How well do KPG models generalize to various

testing distributions?

2. Does the order of target keyphrases matter while

training One2Seq?

3. Are larger training data helpful? How to better

make use of them?

2 Unique Challenges in KPG

Due to the multiplicity of the generation targets,

KPG is unique compared to other NLG tasks such
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[Source] Language-specific Models in Multilingual Topic Tracking.…
[Target] <bos> classification <eos>

[Source] Language-specific Models in Multilingual Topic Tracking. Topic tracking is 

complicated when the stories in the stream occur in multiple languages….
[Target] <bos> classification <sep> crosslingual <sep> topic tracking <sep> 

multilingual <eos>

[Source] Language-specific Models in Multilingual Topic Tracking.…
[Target] <bos> crosslingual <eos>

[Source] Language-specific Models in Multilingual Topic Tracking.…
[Target] <bos> topic tracking <eos>

[Source] Language-specific Models in Multilingual Topic Tracking.…
[Target] <bos> multilingual <eos>

multilingual <eos>

topic tracking <eos>

text mining <eos>

latent dirichlet allocation <eos>

…

multiple language <eos>
Beams 

multilingual <sep> topic tracking <sep> crosslingual <eos>

topic tracking <sep> text analysis <sep> text mining <eos>

topic tracking <sep> classification <eos>

topic model <sep> language text multiple <eos>

…

multiple language classification <eos>

(top 5) beam search outputs

topic tracking, multilingual, text mining, multiple language, 

latent dirichlet allocation 

topic tracking, text analysis, text mining, 

multilingual, crosslingual

Low

Ranking

High

(top 5) beam search outputs

topic tracking, classification, 

crosslingual

greedy decoding outputs

topic tracking <sep> classification <sep> crosslingual <eos>

Figure 1: Top: comparison between One2One (left) and One2Seq (right) paradigms on the same data point.

Bottom: demonstration of the decoding process for One2One (left) and One2Seq (mid/right) models. One2Seq

can apply both beam search (mid) and greedy decoding (right).

as summarization and translation. In this section,

we start from providing background knowledge

of the KPG problem setup. Then we enumerate

the unique aspects in KPG model designing and

training that we focus on in this work.

Problem Definition Formally, the task of

keyphrase generation (KPG) is to generate a set

of keyphrases {p1, . . . , pn} given a source text t (a

sequence of words). Semantically, these phrases

summarize and highlight important information

contained in t, while syntactically, each keyphrase

may consist of multiple words. A keyphrase is de-

fined as present if it is a sub-string of the source

text, or as absent otherwise.

Training Paradigms To tackle the unique chal-

lenge of generating multiple targets, existing neural

KPG approaches can be categorized under one of

two training paradigms: One2One (Meng et al.,

2017) or One2Seq (Yuan et al., 2020), both based

on the Seq2Seq framework. Their main difference

lies in how target keyphrase multiplicity is handled

in constructing data points (Figure 1).

Specifically, with multiple target phrases

{p1, . . . , pn}, One2One takes one phrase at a time

and pairs it with the source text t to form n data

points (t, pi)i=1:n. During training, a model learns

a one-to-many mapping from t to pi’s, i.e., the same

source string usually has multiple corresponding

target strings. In contrast, One2Seq concatenates

all ground-truth keyphrases pi into a single string:

P = <bos>p1<sep> · · ·<sep>pn<eos> (i.e.,

prefixed with <bos>, joint with <sep>, and suf-

fixed with <eos>), thus forming a single data point

(t, P ). A system is then trained to predict the con-

catenated sequence P given t. By default, we con-

struct P follow the ordering strategy proposed in

(Yuan et al., 2020). Specifically, we sort present

phrases by their first occurrences in source text, and

append absent keyphrases at the end. This ordering

is denoted as PRES-ABS in §4.

Architecture In this paper, we adopt the archi-

tecture used in both Meng et al. (2017) and Yuan

et al. (2020), using RNN to denote it. RNN is a

GRU-based Seq2Seq model (Cho et al., 2014) with

a copy mechanism (Gu et al., 2016) and a coverage

mechanism (See et al., 2017). We also consider a

more recent architecture, Transformer (Vaswani

et al., 2017), which is widely used in encoder-

decoder language generation literature (Gehrmann

et al., 2018). We replace both the encoder GRU and

decoder GRU in RNN by Transformer blocks, and

denote this architecture variant as TRANS. Both the

RNN and TRANS models can be trained with either

the One2One or One2Seq paradigm.

In recent years, a host of auxiliary designs

and mechanisms have been proposed and devel-

oped based on either One2One or One2Seq (see

§6). In this study, however, we focus only on the

“vanilla” version of them and we show that given

a set of carefully chosen architectures and train-

ing strategies, base models can achieve compara-

ble, if not better performance than state-of-the-art

methods. We assume that KPG systems derived

from either One2One or One2Seq model would

be affected by these factors of model designing in

similar ways.

Decoding Strategies KPG is distinct from other

NLG tasks since it expects a set of multi-word

phrases (rather than a single sequence) as model

predictions. Depending on the preference of po-
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Dataset

Present (F1@O) Present (F1@10) Absent (R@50)

One2One One2Seq One2One One2Seq One2One One2Seq

RNN TRANS RNN TRANS RNN TRANS RNN TRANS RNN TRANS RNN TRANS

D0

KP20K 35.3 37.4 31.2 36.2 27.9 28.9 26.1 29.0 13.1 22.1 3.2 15.0

KRAPIVIN 35.5 33.0 33.5 36.4 27.0 26.4 26.9 28.1 13.7 23.8 3.3 16.6

D0 Average 35.4 35.2 32.3 36.3 27.4 27.7 26.5 28.5 13.4 23.0 3.2 15.8

D1

INSPEC 33.7 32.6 38.8 36.9 32.5 30.8 38.7 36.6 8.2 9.2 3.7 6.7

NUS 43.4 41.1 39.2 42.3 35.9 36.1 36.6 37.3 11.2 18.9 2.9 12.5

SEMEVAL 35.2 35.1 36.2 34.8 34.6 33.0 35.0 34.2 6.1 18.9 1.7 12.5

D1 Average 37.4 36.3 38.1 38.0 34.4 33.3 36.7 36.0 8.5 12.7 2.8 9.2

D2 DUC 13.4 7.8 15.0 11.0 13.7 8.4 16.0 11.4 0.0 0.2 0.0 0.0

All Average 32.8 31.2 32.3 32.9 28.6 27.3 29.9 29.4 8.7 14.0 2.5 9.8

Table 1: Testing scores across different model architectures, training paradigms, and datasets. In which, D0: in-

distribution; D1: out-of-distribution, and D2: out-of-domain. We provide the average score over each category.

tential downstream tasks, a KPG system can uti-

lize different decoding strategies. For applications

that favor high recall (e.g., generating indexing

terms for retrieval systems), a common practice is

to utilize beam search and take predictions from all

beams1. This is applicable in both One2One- and

One2Seq-based models to proliferate the num-

ber of predicted phrases at inference time. In this

work, we use a beam width of 200 and 50 for

One2One and One2Seq, respectively. On the

contrary, some other applications favor high pre-

cision and small number of predictions (e.g., KG

construction), a One2Seq-based model is capable

of decoding greedily, thanks to its nature of gener-

ating multiple keyphrases in a sequential manner.

As an example, we illustrate the two decoding

strategies in Figure 1. Specifically, a One2One

model typically collects output keyphrases from all

beams and use the top k phrases as the model out-

put (k = 5 in the example). In One2Seq, either

beam search or greedy decoding can be applied.

For beam search, we use both the order of phrases

within a beam and the rankings of beams to rank the

outputs. In the shown example, top 5 beam search

outputs are obtained from the 2 beams with highest

rankings. As for greedy decoding, the decoder uses

a beam size of 1, and takes all phrases from the

single beam as outputs. In this way, the One2Seq

model can determine the number of phrases to out-

put by itself conditioned on t.

Evaluation Due to the multiplicity of targets in

KPG task, the evaluation protocols are distinct from

typical NLG tasks. A spectrum of evaluation met-

rics have been used to evaluate KPG systems, in-

cluding metrics that truncate model outputs at a

fixed number such as F1@5 and F1@10 (Meng

et al., 2017); metrics that evaluate a model’s ability

of generating variant number of phrases such as

1This is in contrast to only taking the single top beam as
in typical NLG tasks.

F1@O and F1@M (Yuan et al., 2020); metrics

that evaluate absent keyphrases such as Recall@50

(R@50). Detailed definitions of the metrics are pro-

vided in Appendix A. Due to space limit, we mainly

discuss F1@O, F1@10 and R@50 in the main con-

tent, complete results with all common metrics are

included in Appendix E. We save model check-

points for every 5,000 training steps and report

test performance using checkpoints that produce

the best F1@O or R@50 on the KP20K validation

set.

Datasets A collection of datasets in the do-

main of scientific publication (KP20K, INSPEC,

KRAPIVIN, NUS, and SEMEVAL) and news arti-

cles (DUC) have been widely used to evaluate KPG

task. Following previous work, we train models

using the training set of KP20K since its size is

sufficient to support the training of deep neural net-

works. Evaluation is performed on KP20K’s test

set as well as all other datasets without fine-tuning.

Details of the datasets are shown in Appendix B.

3 Generalizability

In this section, we show and analyze the generaliza-

tion performance of KPG systems from 2 dimen-

sions: model architecture and training paradigm.

Specifically, we compare the two model architec-

tures (i.e., RNN and TRANS) as described in §2.

For each model architecture, we train the KPG

model using either of the training paradigms (i.e.,

One2One or One2Seq) also as described in §2.

To better understand model variants’ general-

ization properties, we categorize the 6 testing sets

into 3 classes according to their distribution simi-

larity with the training data (KP20K), as shown in

Table 1. Concretely, KP20K and KRAPIVIN are

in-distribution test sets (denoted as D0), since they

both contain scientific paper abstracts paired with

keyphrases provided by their authors. INSPEC,

NUS and SEMEVAL are out-of-distribution test sets
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(denoted as D1), they share same type of source

text with D0, but with additionally labeled key-

words by third-party annotators. DUC is a special

test set which uses news articles as its source text.

Because it shares the least domain knowledge and

vocabulary with all the other test sets, we call it

out-of-domain test set (denoted as D2).

Model Architecture: RNN vs TRANS The first

thing to notice is that on present KPG, the mod-

els show consistent trends between F1@10 and

F1@O. We observe that TRANS models signifi-

cantly outperform RNN models when trained with

the One2Seq paradigm on D0 test sets. However,

when test data distribution shift increases, on D1

test sets, RNN models starts to outperform TRANS;

eventually, when dealing with D2 test set, RNN out-

performs TRANS by a large margin. On models

trained with One2One paradigm, we observe a

similar trend. On D0 data, TRANS models achieve

comparable F1@10 and F1@O scores with RNN,

when data distribution shift increases, RNN models

produce better results.

On the contrary, for absent KPG, TRANS outper-

forms RNN by a significant margin in all experiment

settings. This is especially obvious when models

are trained with One2Seq paradigm, where RNN

models barely generalize to any of the testing data

and produce an average R@50 of 2.5. In the same

setting, TRANS models get an average R@50 of

9.8, which is 4× higher than RNN.

To further study the different generation be-

haviors between RNN and TRANS, we investigate

the average number of unique predictions gener-

ated by either of the models. As shown in Fig-

ure 12 in Appendix D, comparing results of or-

der PRES-ABS in sub-figure a/b (RNN) with sub-

figure c/d (TRANS), we observe that TRANS is con-

sistently generating more unique predictions than

RNN, in both cases of greedy decoding (4.5 vs 4.2)

and beam search (123.3 vs 96.8). We suspect that

generating a more diverse set of keyphrases may

have a stronger effect on in-distribution test data.

The generated outputs during inference are likely to

represent the distribution learned from the training

data, when the test data share the same (or similar)

distribution, a larger set of unique predictions leads

to a higher recall — which further contributes to

their F-scores. In contrast, on test sets which data

distribution is far from training distribution, the

extra predictions may not be as useful, and even

hurts precision. Similarly, because we evaluate ab-
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28.9 29.3 31.0 27.8 30.4 28.3 31.7 29.0 28.5
28.1 27.9 30.1 27.2 30.4 26.8 31.2 28.9 27.1
31.5 31.0 31.9 28.4 31.6 26.9 35.2 31.0 29.4
28.2 27.8 25.8 25.0 24.5 22.2 30.3 26.7 21.0
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(b) Greedy Decoding, Transformer
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25.9 26.1 30.7 26.7 27.5 26.3 31.7 23.6 28.7
29.9 29.5 30.2 30.7 31.3 30.3 34.4 25.7 31.3
25.0 24.9 25.2 23.5 26.7 24.0 27.9 21.1 24.8
23.4 23.3 24.6 23.4 24.4 22.7 26.7 20.2 24.1

Figure 2: Present KPG testing scores (F1@M). Colors

represent the relative performance, normalized per row.

sent KPG by the models’ recall, TRANS models

— produce more unique predictions — can always

outperform RNN models.2

Training Paradigm: One2One vs One2Seq

We observe that on present KPG tasks, models

trained with the One2Seq paradigm outperforms

One2One in most settings, this is particularly clear

on D1 and D2 test sets. We believe this is poten-

tially due to the unique design of the One2Seq

training paradigm where at every generation step,

the model conditions its decision making on all pre-

viously generated tokens (phrases). Compared to

the One2One paradigm where multiple phrases

can only be generated independently by beam

search in parallel, the One2Seq paradigm can

model the dependencies among tokens and the de-

pendencies among phrases more explicitly.

However, on absent KPG, One2One consis-

tently outperforms One2Seq. Furthermore, only

when trained with One2One paradigm, an RNN-

based model can achieve R@50 scores close

to TRANS-based models. This may because a

One2Seq model tends to produce more duplicated

predictions during beam search inference. By de-

sign, every beam is a string that contains multiple

phrases that concatenated by the delimiter <sep>,

there is no guarantee that the phrase will not ap-

pear in multiple beams. In the example shown in

Figure 1, “topic tracking” is such a duplicate pre-

diction that appears in multiple beams. In fact, the

proportion of duplicates in One2Seq predictions

2Our TRANS and RNN models follow Vaswani et al. (2017)
and Meng et al. (2017)’s hyper-parameter settings respectively.
RNN is significantly lighter than TRANS. We conduct exper-
iments with a much larger RNN but only observe marginal
performance boost against Meng et al. (2017)’s setting.
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Figure 3: Present KPG testing scores (top: F1@10, bottom: F1@O). Colors represent the relative performance,

normalized per row.

is more than 90%. This is in contrast with beam

search on One2One models, where each beam

only contains a single keyphrase thus has a much

lower probability of generating duplication.3

4 Does Order Matter in One2Seq?

In the One2One paradigm (as shown in Figure 1),

each data example is split to multiple equally

weighted data pairs, thus it generates phrases with-

out any prior on the order. In contrast, One2Seq

training has the unique capability of generating a

varying number of keyphrases in a single sequence.

This inductive bias enables a model to learn de-

pendencies among keyphrases, and also to implic-

itly estimate the number of target phrases condi-

tioned on the source text. However, the One2Seq

approach introduces a new complication. During

training, the Seq2Seq decoder takes the concate-

nation of multiple target keyphrases as target. As

pointed out by Vinyals et al. (2016), order mat-

ters in sequence modeling tasks; yet the ordering

among the target keyphrases has not been fully in-

vestigated and its effect to the models’ performance

remains unclear. Several studies have noted this

problem (Ye and Wang, 2018; Yuan et al., 2020)

without further exploration.

Ordering Definition To explore along this

direction, we first define nine ordering strategies

for concatenating target phrases.

• RANDOM: Randomly shuffle the target phrases.

3Due to post-processing such as stemming, One2One
model may still produce duplication.

Because of the set generation nature of KPG, we

expect randomly shuffled target sequences help

to learn an order-invariant decoder.

• ORI: Keep phrases in their original order in

the data (e.g., provided by the authors of source

texts). This was used by Ye and Wang (2018).

• ORI-REV: Reversed order of ORI.

• S->L: Phrases sorted by lengths (number of to-

kens, from short to long).

• L->S: Reversed order of S->L.

• ALPHA: Sort phrases by alphabetical order.

• ALPHA-REV: Reversed order of ALPHA.

• PRES-ABS: Sort present phrases by their first

occurrences in source text. Absent phrases are

shuffled and appended to the end of the present

phrase sequence. This was used by (Yuan et al.,

2020).

• ABS-PRES: Similar to PRES-ABS, but

prepending absent phrases to the beginning.

Greedy Decoding In Figure 2, we show the RNN

and TRANS model’s F1@M on present KPG task,

equipped with greedy decoding. In this setting,

the model simply chooses the token with the high-

est probability at every step, and terminates either

upon generating the <eos> token or reaching the

maximum target length limit (40). This means the

model predicts phrases solely relying on its innate

distribution learned from the training data, and thus

this performance could somewhat reflect to which



4990

degree the model fits the training distribution and

understands the task.

Through this set of experiments, we first observe

that each model demonstrates consistent perfor-

mance across all six test datasets, indicating that

ordering strategies play critical roles in training

One2Seq models when greedy decoding is ap-

plied. When using the RNN architecture, RANDOM

consistently yields lower F1@M than other order-

ing strategies on all datasets. This suggests that

a consistent order of the keyphrases is beneficial.

However, TRANS models show a better resistance

against randomly shuffled keyphrases and produce

average tier performance with the RANDOM order-

ing. Meanwhile, we observe that PRES-ABS out-

performs other ordering strategies by significant

margins. A possible explanation is that with this or-

der (of occurrences in the source text), the current

target phrase is always to the right of the previ-

ous one, which can serve as an effective prior for

the attention mechanism throughout the One2Seq

decoding process. We observe similar trends in

greedy decoding models’ F1@O and F1@10, due

to space limit, we refer readers to Figure 9, 10 in

Appendix D.

Beam Search Next, we show results obtained

from the same set of models equipped with beam

search (beam width is 50) in Figure 3 (a/b).

Compared with greedy decoding (Figure 10, Ap-

pendix D), we can clearly observe the overall

F1@10 scores have positive correlation with the

beam width (greedy decoding is a special case

where beam width equals to 1). We observe that

compared to the greedy decoding case, the pattern

among different ordering strategies appears to be

less clear, with the scores distributed more evenly

across different settings (concretely, the absolute

difference between max average score and min av-

erage score is lower).

We suspect that the uniformity among different

ordering strategies with beam search may be due

to the limitation of the evaluation metric F1@10.

The metric F1@10 truncates a model’s predictions

to 10 top-ranked keyphrases. By investigation, we

find that during greedy decoding, the number of

predictions acts as a dominant factor, this num-

ber varies greatly among different ordering. With

greedy decoding, PRES-ABS can generally pre-

dict more phrases than the others, which explains

its performance advantage (Figure 13 (a/c), Ap-

pendix D). However, as the beam width increases,

all models can predict more than 10 phrases (Fig-

ure 13 (b/d), Appendix D). In this case, the F1@10

is contributed more by a model’ ability of gener-

ating more high quality keyphrases within its top-

10 outputs, rather than the amount of predictions.

Therefore, the performance gap among ordering

strategies is gradually narrowed in beam search.

For instance, we observe that the F1@10 difference

between PRES-ABS and S->L produced by RNN

is 3.5/2.0/1.0/0.2 when beam width is 1/10/25/50.

To validate our assumption, we further inves-

tigate the same set of models’ performance on

F1@O, which strictly truncates the generated

keyphrase list by the number of ground-truth

keyphrases O (where in most cases O < 10). Un-

der this harsher criterion, a model is required to

generate more high quality keyphrases within its

top-O outputs. From Figure 3 (c/d), we observe

that the scores are less uniformly distributed, this

indicates a larger difference between different or-

der settings. Among all orders, ORI produces best

average F1@O with RNN, whereas ALPHA-REV

and ORI-REV produce best average F1@O with

TRANS.

In our curated list of order settings, there are 3

pairs of orderings with reversed relationship (i.e.,

S->L vs L->S, ALPHA vs ALPHA-REV, ORI vs

ORI-REV). Interestingly, we observe that when

beam search is applied, these orderings often show

a non-negligible score difference with their coun-

terparts. This also suggests that order matters since

specific model architecture and training paradigm

often has its own preference on the phrase ordering.

It is also worth mentioning that when we manu-

ally check the output sequences in test set produced

by ALPHA ordering, we notice that the model is

actually able to retain alphabetical order among

the predicted keyphrases, hinting that a Seq2Seq

model might be capable of learning simple morpho-

logical dependencies even without access to any

character-level representations.

Ordering in Absent KPG We report the perfor-

mance of the same set of models on the absent por-

tion of data in Figure 11, Appendix D. Although

achieving relatively low R@50 in most settings,

scores produced by various orderings show clear

distinctions, normalized heat maps suggest that

the rankings among different orderings tend to be

consistent across all testing datasets. In general,

PRES-ABS produces better absent keyphrases

across different model architectures. Due to the
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Figure 4: Comparing models trained solely with

KP20K against with additional MAGKP data.

space limit, we encourage readers to check out Ap-

pendix D, which provides an exhaustive set of heat

maps including all experiment settings and metrics

discussed in this section.

5 Training with More Data

In this section, we further explore the possibility

of improving KPG performance by scaling up the

training data. Data size has been shown as one

of the most effective factors for training language

models (Raffel et al., 2019; Ott et al., 2018) but it

has yet been discussed in the context of KPG.

MagKP Dataset We construct a new dataset,

namely MAGKP, on the basis of Microsoft Aca-

demic Graph (Sinha et al., 2015). We filter the orig-

inal MAG v1 dataset (166 million papers, multiple

domains) and only keep papers in Computer Sci-

ence and with at least one keyphrase. This results

in 2.7 million data points (5× larger than KP20K).

This dataset remains noisy despite the stringent fil-

tering criteria, this is because 1) the data is crawled

from the web and 2) some keywords are labeled by

automatic systems rather than humans. This noisy

nature brings many interesting observations.

General Observations The first thing we try

is to train a KPG model with both KP20K and

MAGKP. During training, the two dataset are fed

to the model in an alternate manner, we denote

this data mixing strategy as ALT. In Figure 4, we

compare models’ performance when trained on

both KP20K and MAGKP against solely on KP20K.

We observe the extra MAGKP data brings consis-

tent improvement across most model architecture

and training paradigm variants. This suggests that

Figure 5: A histogram showing the distribution of #(kp

per document) on KP20K, MAGKP and its subsets. Data

points with more than 30 keyphrases are truncated.

model KPG models discussed in this work can

benefit from additional training data. Among all

the settings, F1@O of the TRANS+One2Seq is

boosted by 3 points on present KPG, the resulting

score outperforms other variants by a significant

margin and even surpass a host of state-of-the-art

models (see comparison in Appendix E). Again,

the same setting obtains a 2.3 boost of R@50 score

on the absent KPG task, makes TRANS+One2Seq

the setting that benefits the most from extra data.

In contrast, the extra MAGKP data provide only

marginal improvement to RNN-based models. On

present KPG, RNN+One2Seq even has an F1@O
drop when trained with more data.

As mentioned in §3, the RNN model is signif-

icantly lighter than TRANS. To investigate if an

RNN with more parameters can benefit more from

MAGKP, we conduct experiments which use a GRU

with much larger hidden size (dubbed BIGRNN).

Results (in Appendix E) suggest otherwise, extra

training data leads to negative effect on One2One

and only marginal gain on One2Seq. We thus be-

lieve the architecture difference between TRANS

and RNN is the potential cause, for instance, the

built-in self-attention mechanism may help TRANS

models learning from noisy data.

Learning with Noisy Data To further investi-

gate the performance boost brought by the MAGKP

dataset on TRANS+One2Seq, we are curious to

know which portion of the noisy data helped the

most. As a naturally way to cluster the MAGKP

data, we define the noisiness by the number of

keyphrases per data point. As shown in Figure 5,

the distribution of MAGKP (black border) covers a
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Figure 6: TRANS+One2Seq trained with KP20K and

different subsets of MAGKP, using four data mixing

strategy. Scores are averaged over all 6 test sets.

much wider spectrum on the x-axis compared to

KP20K (red). Because keyphrase labels are pro-

vided by human authors, a majority of its keyphrase

numbers lie in the range of [3, 6]; however, only

less than 20% of the MAGKP data overlaps with this

number distribution.

We thus break MAGKP down into a set of smaller

subset: 1) MAGKP-LN is a considerably Less

Noisy subset that contains data points that have

3~6 phrases. 2) MAGKP-Nlarge is the Noisy

subset in which all data points have more than 10

keyphrases. 3) MAGKP-Nsmall is a randomly

sampled subset of MAGKP-Nlarge with the same

size as MAGKP-LN.

We also define a set of data mixing strategies to

compare against ALT: ONLY: models are trained

solely on a single set (or subset) of data; MX:

KP20K and MAGKP (or its subset) are split into

shards (10k each) and they are randomly sampled

during training; FT: models are pre-trained on

MAGKP (or its subset) and fine-tuned on KP20K.

In Figure 6, we observe that none of the

MAGKP subsets can match KP20K’s performance

in the ONLY setting. Because MAGKP-LN and

MAGKP-Nsmall share similar data size with

KP20K, this suggest the distributional shift be-

tween MAGKP and the 6 testing sets is signifi-

cant. In the MX setting where KP20K is mixed

with noisy data, we observe a notable perfor-

mance boost compared to ONLY (yet still lower

than ALT), however, we do not see clear patterns

among the 4 MAGKP subsets in this setting. In the

FT setting, we observe a surge in scores across all

MAGKP subsets. In present KPG, both MAGKP and

MAGKP-Nlarge outperform the score achieved

in the ALT setting; similarly, in absent KPG,

MAGKP, MAGKP-Nlarge and MAGKP-Nsmall

exceeds the ALT score. This is to our surprise that

the subsets considered as noisy provide a greater

performance boost, while they perform poorly if

“ONLY” trained on these subsets.

To sum up, during our investigation on augment-

ing KP20K with the noisy MAGKP data, we obtain

the best performance from a TRANS+One2Seq

model that pre-trained on MAGKP and then fine-

tuned on KP20K, and this performance has outper-

formed current state-or-the-art models. We conjec-

ture that the performance gain may come from data

diversity, because MAGKP contains a much wider

distribution of data compared to the author key-

word distribution as in KP20K. This inspires us to

develop data augmentation techniques to exploit

the diversity in unlabeled data.

6 Related Work

Traditional Keyphrase Extraction Keyphrase

extraction has been studied extensively for decades.

A common approach is to formulate it as a two-

step process. Specifically, a system first heuristi-

cally selects a set of candidate phrases from the

text using some pre-defined features (Witten et al.,

1999; Liu et al., 2011; Wang et al., 2016; Yang

et al., 2017). Subsequently, a ranker is used to

select the top ranked candidates following vari-

ous criteria. The ranker can be bagged decision

trees (Medelyan et al., 2009; Lopez and Romary,

2010), Multi-Layer Perceptron, Support Vector Ma-

chine (Lopez and Romary, 2010) or PageRank (Mi-

halcea and Tarau, 2004; Le et al., 2016; Wan and

Xiao, 2008). Compared to the newly developed

data driven approaches with deep neural networks,

the above approaches suffer from poor performance

and the need of dataset-specific heuristic design.

Neural Keyphrase Extraction On neural

keyphrase extraction task, Zhang et al. (2016);

Luan et al. (2017); Gollapalli et al. (2017) use

sequence labeling approach; Subramanian et al.

(2018) use pointer networks to select spans from

source text; Sun et al. (2019) leverage graph

neural networks. Despite improved over tradition

approaches, the above methods do not have the

capability of predicting absent keyphrases.

Meng et al. (2017) first propose the CopyRNN

model, which both generates words from vocab-
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ulary and points to words from the source text

— overcoming the barrier of predicting absent

keyphrases. Following this idea, Chen et al. (2018);

Zhao and Zhang (2019) leverage the attention

mechanism to help reducing duplication and im-

proving coverage. Ye and Wang (2018) propose

a semi-supervised training strategy. Yuan et al.

(2020) propose One2Seq, which enables a model

to generate variable number of keyphrases. Chen

et al. (2019b); Ye and Wang (2018); Wang et al.

(2019) propose to leverage extra structure infor-

mation (e.g., title, topic) to guide the generation.

Chan et al. (2019) propose an RL model, Swami-

nathan et al. (2020) propose using GAN for KPG.

Chen et al. (2019a) retrieve similar documents

from training data to help producing more accu-

rate keyphrases. Chen et al. (2020) introduce hi-

erarchical decoding and exclusion mechanism to

prevent from generating duplication. Çano and Bo-

jar (2019) also propose to utilize more data, but

their goal is to bridge KPG with summarization.

7 Conclusion and Takeaways

We present an empirical study discussing neural

KPG models from various aspects. Through ex-

tensive experiments and analysis, we answer the

three questions (§1). Results suggest that given a

carefully chosen architecture and training strategy,

a base model can perform comparable with fancy

SOTA models. Further augmented with (noisy)

data in the correct way, a base model can outper-

form SOTA models (Appendix E). We strive to

provide a guideline on how to choose such architec-

tures and training strategies, which hopefully can

be proven valuable and helpful to the community.

We conclude our discussion with the following

takeaways:

1. One2Seq excels at present KPG, while

One2One performs better on absent KPG.

See Section 3.

2. For present KPG, TRANS performs better

on in-distribution data, when distribution or

domain shift increase, RNN can outperform

TRANS. See Section 3.

3. On absent KPG, TRANS is the clear winner.

See Section 3.

4. For One2Seq, target ordering is important in

greedy decoding (with PRES-ABS being an

overall good choice). See Section 4.

5. The effect of target ordering tends to diminish

when beam search is performed. See Sec-

tion 4.

6. Large and noisy data can benefit KPG. Em-

pirically, a decent way to leverage them is to

pre-train on extra data then fine-tune on small

in-domain data. See Section 5.

7. Copy mechanism helps present prediction

while worsening absent performance. See Ap-

pendix C.1.

8. Larger beam width is beneficial, especially for

absent KPG. However, on present KPG tasks,

the benefit is diminished past a certain point

and thus computational efficiency needs to be

carefully considered. See Appendix C.2.
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Contents in Appendices:

• In Appendix A, we provide the formal defini-

tion of all evaluation metrics we used in this

work.

• In Appendix B, we provide detailed statistics

of all datasets used in this work.

• In Appendix C, we provide observation and

analysis on additional factors that can affect a

KPG system’s performance.

• In Appendix D, show the set of heat maps that

are not shown in the main content due to space

limit.

• In Appendix E, we provide a complete set

of numbers containing all results discussed

in this work, compared with a set of SOTA

models in existing literature.

• In Appendix F, we provide implementation de-

tails that helps to reproduce our experiments.

A Evaluation Metric Definition

In this section, we provide definition of the met-

rics we use in this work. All metrics are adopted

from (Meng et al., 2017) and (Yuan et al., 2020).

To make the results easy to reproduce, we sim-

ply report macro-average scores over all the data

examples in a dataset (rather than removing exam-

ples that contain no present/absent phrases). Since

some data examples contain no valid present/absent

phrase and lead to zero scores, this causes our re-

sults can be lower than previously reported results.

Given a data example consisting a source text X
and a list of target keyphrases Y , suppose that a

model predicts a list of unique keyphrases Ŷ =
(ŷ1, . . . , ŷm) ordered by the quality of the predic-

tions ŷi, and that the ground truth keyphrases for

the given source text is the oracle set Y . When only

the top k predictions Ŷ:k = (ŷ1, . . . , ŷmin(k,m)) are

used for evaluation, precision, recall, and F1-score

are consequently conditioned on k and defined as:

P@k =
|Ŷ:k ∩ Y|

|Ŷ:k|
, R@k =

|Ŷ:k ∩ Y|

|Y|
,

F1@k =
2 ∗ P@k ∗ R@k

P@k + R@k
.

(1)

Thus the metrics are defined as:

• F1@5: F1@k when k = 5.

• F1@10: F1@k when k = 10.

• F1@O: O denotes the number of oracle

(ground truth) keyphrases. In this case, k =
|Y|, which means for each data example, the

number of predicted phrases taken for evalua-

tion is the same as the number of ground-truth

keyphrases.

• F1@M: M denotes the number of predicted

keyphrases. In this case, k = |Ŷ| and we

simply take all the predicted phrases for eval-

uation without truncation.

• R@50: R@k when k = 50.

B Statistics of Datasets

We provide details of datasets used in this work.

We use KP20K-train (Meng et al., 2017) and

MAGKP (Sinha et al., 2015) for training keyphrase

generation models, both are built on the basis of

scientific publications in Computer Science do-

main. Nevertheless, their distributions are con-

siderably different, e.g. MAGKP data contains 3

times more keyphrases on average than KP20K.

This is because KP20K is constructed using real au-

thor keywords whereas MAGKP may contain a vast

amount of keyphrases annotated by automatic sys-

tems. Detailed statistics are listed in Table 2. We

also leave out certain amount of data points from

KP20K for validation and testing (KP20K-VALID

and KP20K-TEST).

We also utilize five other datasets for evalua-

tion purposes, as shown in Table 3. All except

DUC come from scientific publications in Com-

puter Science domain. KRAPIVIN uses keywords

provided by the authors as targets, which is the

same as KP20K. INSPEC, NUS, and SEMEVAL

contain author-assigned keywords and additional

keyphrases provided by third-party annotators.

DUC, different from all above, is a keyphrase

dataset based on news articles. Since it represents

a rather different distribution from scientific pub-

lication datasets, hypothetically, obtaining decent

test score on DUC requires extra generalizability.

C Other Model Designing Aspects

Besides the findings we discuss in the paper, there

exist other important factors affect the general per-

formance of KPG models. We provides two addi-
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Dataset #Data #kp #unique kp #(word) per kp

KP20K-train 514K 2.7M 700K 1.92

MAGKP 2.7M 41.6M 6.9M 3.42

MAGKP-LN 522K 2.3M 579K 2.73

MAGKP-Nlarge 1.5M 35.5M 5.8M 3.38

MAGKP-Nsmall 522K 12.2M 2.2M 3.37

Table 2: Statistics of training datasets.

Dataset #Data Avg#kp %Pre

KP20K ≈20K 5.26 63.5%

INSPEC 500 9.83 79.8%

KRAPIVIN 460 5.74 56.5%

NUS 211 11.66 51.2%

SEMEVAL 100 15.07 44.7%

DUC 308 8.06 97.5%

Table 3: Statistics of testing datasets. Avg#kp indi-

cates the average numbers of target keyphrases, %Pre

denotes percentage of present keyphrases.

tional empirical results that we think might be of

interest to certain readers.

C.1 Effect of Copy Mechanism

Copy mechanism (Gu et al., 2016) (also referred to

as Pointer Generator (See et al., 2017) or Pointer

Softmax (Gulcehre et al., 2016)) has demonstrated

to play a critical role in tasks where texts on the

source and target side may overlap, such as sum-

marization (See et al., 2017) and keyphrase gener-

ation (Meng et al., 2017). Basically, it is an addi-

tional loss that enables models to extract informa-

tion from the source side with the help of attentions.

Prior studies (Meng et al., 2017) have shown the im-

portance of copy mechanism with RNN+One2One,

but no further comparison has been made.

In Figure 7, we present the results of four KPG

model variants, equipped with and without copy

mechanism. The results show that copy mechanism

leads to considerable improvements on present

KPG, especially for RNN. TRANS benefits less

from the copy, which may be because its multi-head

attentions behave similarly to the copy mechanism

even without explicit training losses. With regard to

the absent KPG results, copy mechanism only helps

RNN+One2One. This suggests that TRANS can

achieve consistently better abstractiveness (absent

performance) by disabling the copy mechanism at

the cost of weaker extractiveness. This dilemma

cautions researchers to use copy mechanism more

wisely according to specific applications.

C.2 Effect of Beam Width

As discussed in §2, one unique challenge of the

KPG task is due to its multiplicity of target out-

Figure 7: Averaged scores of models with and without

utilizing copy mechanism.

Figure 8: Averaged scores of models using different

widths of Beam Search.

puts. As a result, a common strategy is to take

multiple beams during decoding in order to ob-

tain more phrases (as opposed to greedy decoding).

This choice is at times not only practical but in fact

necessary: under the One2One paradigm, for ex-

ample, it is crucial to have multiple beams in order

to generate multiple keyphrases for a given input.

Generally speaking, KPG and its evaluation met-

rics are in general favors higher recall. It is thus not

totally unexpected that the high precision scores of

greedy decoding are often undermined by notable

disadvantages in recall, which in turn leads to los-

ing by large margins in F-scores when compared

to results of beam search (with multiple beams).

Empirically, as shown in Figure 8, we observe that

beam search can sometimes achieve a relative gain

of more than 10% in present phrase generation ,

and a much larger performance boost in absent

phrase generation, over greedy decoding.

We are also interested in seeing if there exists an

optimal beam width. In Figure 8, we show models’

testing performance when various beam widths are
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used. In present KPG task with One2One (upper

left), beam width of 16 already provides an opti-

mal score, larger beam widths (even 200) do not

show any further advantage. Replacing the training

paradigm with One2Seq (upper right), we observe

a positive correlation between beam width and test-

ing score — larger beam widths lead to marginally

better testing scores. However, the improvement

(from beam size of 10 to 50) is not significant.

On absent KPG task (lower), both One2One

and One2Seq paradigms seem to benefit from

larger beam widths. Testing score shows strong

positive correlation with beam width. We observe

that this trend is consistent across different model

architectures.

Overall, a larger beam width provides better

scores in most settings, but the performance gain

diminishes quickly towards very large beam width.

In addition, it is worth noting that larger beam

width also comes with more intense computing

demands, for both space and time. As an exam-

ple, in Figure 8 (top left), we observe that with

the One2One training paradigm, a beam width of

200 does not show a significant advantage over 16,

however, in terms of computation, beam width of

200 takes about 10× of the resources compared to

16. There clearly exists a trade-off between beam

width and computational efficiency (e.g., carbon

footprint (Strubell et al., 2019)). We thus hope our

results can serve as a reference for researchers, to

help them choose beam width more wisely depend-

ing on specific tasks.

D Does Order Matter in One2Seq? —

Additional Results

In §4, we show models’ performance trained with

the One2Seq paradigm using different target or-

dering strategies. Here we provide the complete set

of heat maps.

In Figure 9, we show present KPG testing scores

in F1@O, when using either greedy decoding or

beam search as decoding strategy.

In Figure 10, we show present KPG testing

scores in F1@10, when using either greedy de-

coding or beam search as decoding strategy.

In Figure 11, we show absent KPG testing scores

in R@50, when using either greedy decoding or

beam search as decoding strategy.

In addition, we shown in Figure 12, 13,

and 14 the number of unique predictions on

all/present/absent KPG tasks.

E Complete Results

In this section, we report the full set of our experi-

mental results.

In Table 4, we report all the testing scores on

present keyphrase generation tasks. For all experi-

ments, we use F1@5, F1@10, F1@O and F1@M
to evaluate a model’s performance. Additionally,

we provide an average score for each of the 4 met-

rics over all datasets (over each row in Table 4).

In Table 5, we report all the testing scores on

absent keyphrase generation tasks. For all exper-

iments, we use R@10 and R@50 to evaluate a

model’s performance. Additionally, we provide

an average score for each of the 2 metrics over all

datasets (over each row in Table 5).

In table 7, we report detailed present test-

ing scores when model trained with One2Seq

paradigm, using different ordering strategies. For

all experiments, we use F1@5, F1@10, F1@O and

F1@M to evaluate a model’s performance.

In table 8, we report detailed absent test-

ing scores when model trained with One2Seq

paradigm, using different ordering strategies. For

all experiments, we use R@10 and R@50 to eval-

uate a model’s performance.

We also provide scores against all ground-truth

phrases (without splitting present/absent) in Table 6

and 9 to avoid the inconsistency in data processing

(present/absent split may vary by ways of tokeniza-

tion).

F Implementation Details

All the code and data have been released at https:

//github.com/memray/OpenNMT-kpg-release,

including the new MAGKP dataset.

We use the concatenation of title and abstract

as the source text. When training with data points

contains more than 8 ground-truth keyphrases, we

randomly sample 8 from the list to build training

target labels. This is to prevent jobs from out-of-

memory issues and speed up the training.

We train RNN models for 100k steps and TRANS

for 300k steps. TRANS generally benefits from

longer training, especially for absent KPG perfor-

mance. For the FT setting, we train models for

additional 100k steps.

During the evaluation phase, we replace all

punctuation marks with whitespace and tokenize

texts/phrases using Python string method split(), in

order to reduce the errors in phrase matching and

present/absent split.
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Average Kp20K Krapivin Inspec NUS SemEval DUC

Model 5 10 O M 5 10 O M 5 10 O M 5 10 O M 5 10 O M 5 10 O M 5 10 O M

One2One variants

RNN-O2O-KP20k 29.7 28.6 32.8 14.9 33.1 27.9 35.3 11.1 32.0 27.0 35.5 11.2 28.5 32.5 33.7 23.1 40.2 35.9 43.4 17.7 32.9 34.6 35.2 16.4 11.4 13.7 13.4 9.7
RNN-O2O-KP20k-nocopy 6.2 6.5 6.1 6.7 8.3 8.5 8.4 8.6 5.5 5.8 5.0 5.8 4.9 5.3 5.3 5.4 10.3 10.9 10.4 11.1 8.4 8.4 7.5 9.0 0.0 0.0 0.0 0.0

RNN-O2O-KP20k+MagKP-ALT 31.1 30.5 34.3 13.1 32.4 27.4 34.7 8.8 32.3 28.1 35.6 9.3 32.2 37.6 38.4 20.6 40.2 38.2 43.5 14.8 35.4 35.4 37.4 16.5 14.3 16.5 16.5 8.8

BIGRNN-O2O-KP20k 31.9 31.0 35.4 13.1 35.5 29.5 38.1 9.0 34.2 29.1 38.8 9.2 31.0 36.2 37.3 20.2 42.6 39.2 45.8 15.1 34.4 36.1 37.1 17.1 13.5 16.2 15.1 8.2
BIGRNN-O2O-magkp20k-ALT 31.5 30.7 34.5 11.8 33.1 27.9 35.3 7.8 32.3 28.1 36.4 8.1 32.2 37.1 37.8 18.6 41.2 38.1 44.9 13.3 35.6 35.7 36.0 15.2 14.4 17.2 16.2 7.8

TF-O2O-KP20k 28.2 27.3 31.2 15.1 34.5 28.9 37.4 11.7 29.5 26.4 33.0 11.2 28.0 30.8 32.6 23.6 37.6 36.1 41.1 17.5 32.9 33.0 35.1 19.3 6.9 8.4 7.8 7.1
TF-O2O-KP20k-nocopy 22.0 20.5 23.9 17.3 28.5 24.0 31.2 18.9 24.7 20.8 28.9 15.9 16.4 18.1 18.4 19.0 33.8 30.2 35.5 23.9 25.3 25.9 25.8 22.0 3.4 4.0 3.7 4.2

TF-O2O-KP20k+MagKP-ALT 29.9 29.0 32.5 13.9 33.8 28.2 36.5 10.0 32.7 27.6 34.9 9.5 28.9 33.5 34.0 22.3 39.3 37.8 41.9 15.7 33.7 34.8 35.7 18.2 10.8 12.1 11.9 7.7

One2Seq variants (trained in PRES-ABS)

RNN-O2S-KP20k 29.6 29.9 32.3 22.2 31.2 26.1 31.2 16.3 30.9 26.9 33.5 18.1 32.8 38.7 38.8 32.5 37.3 36.6 39.2 25.2 33.5 35.0 36.2 26.7 11.9 16.0 15.0 14.5
RNN-O2S-KP20k-nocopy 7.1 7.0 7.5 7.0 10.4 10.2 11.1 10.2 8.1 7.9 9.8 7.9 4.4 4.5 4.5 4.5 11.0 10.6 11.0 10.6 8.8 8.6 8.8 8.6 0.1 0.1 0.1 0.1

RNN-O2S+KP20k+MagKP-ALT 28.1 29.1 31.0 22.0 28.2 23.8 28.2 15.3 28.0 25.8 30.6 17.0 32.9 40.3 39.9 33.4 35.1 33.2 36.4 23.6 30.6 33.1 34.0 26.4 13.5 18.4 17.0 16.2

BIGRNN-O2S-KP20k 28.8 29.0 31.6 22.7 30.2 25.7 30.4 16.7 29.8 26.4 32.4 18.2 31.6 37.5 38.1 32.5 37.4 35.7 39.7 27.0 32.5 33.7 35.3 27.2 11.6 15.0 14.1 14.6
BIGRNN-O2S-KP20k+MagKP-ALT 29.1 29.5 31.5 21.2 28.2 23.7 28.2 15.0 28.9 25.6 30.9 16.9 34.9 41.1 40.1 32.0 35.9 34.3 37.6 24.0 32.0 33.8 34.8 24.0 14.5 18.5 17.4 15.5

TF-O2S-KP20k 30.4 29.4 32.9 25.5 34.6 29.0 36.2 21.5 32.4 28.1 36.4 21.8 31.5 36.6 36.9 34.6 40.1 37.3 42.3 32.0 33.9 34.2 34.8 30.9 10.1 11.4 11.0 11.9
TF-O2S-KP20k-nocopy 25.6 24.5 27.1 23.7 32.3 29.0 33.9 27.9 28.5 25.1 31.5 24.1 23.2 24.6 25.3 24.7 36.9 34.5 37.5 33.5 27.4 28.4 29.5 26.8 5.2 5.1 5.2 5.2

TF-O2S-KP20k+MagKP-ALT 32.7 32.2 35.9 24.9 36.8 30.2 37.7 18.9 35.2 29.9 37.6 20.1 32.2 38.8 39.4 35.6 41.8 39.2 44.1 29.3 35.6 36.5 38.7 29.9 14.8 18.4 17.7 15.8

TRANS+One2Seq (trained in PRES-ABS)

MagKP-LN-ONLY 26.1 26.7 27.6 25.0 28.1 25.1 28.0 20.5 27.8 26.4 28.7 23.8 29.6 34.3 34.3 35.1 33.5 34.0 34.9 31.6 28.9 30.3 30.2 29.1 8.7 10.0 9.6 10.2
MagKP-Nsmall-ONLY 22.3 23.2 23.3 22.5 20.8 19.8 20.9 18.6 25.2 24.3 26.0 23.2 30.8 34.0 33.9 33.1 26.2 27.0 27.0 26.1 24.1 26.2 24.8 26.3 6.9 7.6 7.5 7.7
MagKP-Nlarge-ONLY 21.9 23.1 23.6 22.3 20.4 19.6 21.1 18.2 24.8 23.5 25.6 22.3 32.6 36.2 36.1 35.2 26.0 26.6 28.1 26.2 21.4 25.0 23.3 24.4 6.2 7.7 7.3 7.8

MagKP-ONLY 25.0 26.8 27.3 24.5 25.3 22.3 25.5 18.4 26.2 25.1 28.0 21.7 31.3 38.7 37.2 37.0 29.9 31.0 31.3 28.3 26.5 30.3 29.5 28.4 11.0 13.3 12.5 13.4

MagKP-LN-MX 31.5 30.8 34.4 24.6 35.5 29.3 36.9 19.7 34.2 28.6 37.9 20.2 31.5 38.0 37.8 34.6 41.7 38.7 44.6 29.6 32.7 35.0 34.5 28.9 13.3 15.4 14.8 14.6
MagKP-Nsmall-MX 31.0 30.7 33.5 26.2 35.3 29.2 36.5 21.1 34.1 28.7 37.0 22.7 31.6 38.2 37.2 37.0 40.6 38.5 42.6 32.6 33.4 36.2 35.5 30.6 11.1 13.3 12.4 13.3
MagKP-Nlarge-MX 31.8 31.0 34.7 26.2 36.3 30.0 37.1 20.7 34.9 29.7 36.9 23.0 31.8 37.8 38.3 37.7 41.9 39.5 44.8 31.4 34.4 35.2 37.6 30.5 11.3 13.8 13.3 13.6

MagKP-MX 32.2 32.0 34.9 26.4 36.3 29.8 37.4 19.7 35.0 30.0 37.3 22.5 32.0 39.8 38.7 38.1 41.4 39.8 44.6 31.0 34.8 36.7 36.9 31.2 13.5 16.0 14.8 16.0

MagKP-LN-FT 32.0 31.3 34.6 25.7 36.2 29.8 37.7 20.8 34.9 29.6 36.2 21.2 32.1 38.0 38.2 36.4 41.4 39.4 44.9 30.6 35.4 36.2 36.8 30.9 11.9 14.9 14.1 14.4
MagKP-Nsmall-FT 32.6 31.8 35.7 26.2 36.4 30.1 37.7 20.4 35.7 30.5 39.4 22.1 32.6 38.4 38.8 37.1 43.0 39.5 45.6 30.9 34.9 35.6 37.4 30.9 13.3 16.5 15.3 16.0
MagKP-Nlarge-FT 33.5 32.8 36.6 25.8 37.0 30.4 37.9 19.6 36.6 30.6 38.9 21.7 33.3 39.5 39.8 36.5 44.0 40.2 47.9 29.9 34.3 36.4 35.9 30.9 16.0 19.6 19.2 16.1

MagKP-FT 33.6 32.3 36.3 26.5 37.1 30.5 38.3 20.4 36.1 30.6 38.4 22.5 32.4 38.1 38.5 36.0 43.9 40.1 46.0 32.4 36.6 37.0 39.2 31.8 15.1 17.5 17.5 15.7

Abstractive Neural Generation

CopyRNN (Meng et al.) - - - - 32.8 25.5 - - 30.2 25.2 - - 29.2 33.6 - - 34.2 31.7 - - 29.1 29.6 - - - - - -
CopyRNN* (Yuan et al.) - - - - 31.7 27.3 33.5 - 30.5 26.6 32.5 - 24.4 28.9 29.0 - 37.6 35.2 40.6 - 31.8 31.8 31.7 - - - - -
CorrRNN (Chen et al.) - - - - - - - - 31.8 27.8 - - - - - - 35.8 33.0 - - 32.0 32.0 - - - - - -

ParaNetT +CoAtt (Zhao and Zhang) - - - - 36.0 28.9 - - 32.9 28.2 - - 29.6 35.7 - - 36.0 35.0 - - 31.1 31.2 - - - - - -

catSeqTG-2RF1† (Chan et al.) - - - - 32.1 - - - 30.0 - - - 25.3 - - - 37.5 - - - 28.7 - - - - - - -

KG-KE-KR-M† (Chen et al.) - - - - 31.7 28.2 - - 27.2 25.0 - - 25.7 28.4 - - 28.9 28.6 - - 20.2 22.3 - - - - - -
CatSeq (Yuan et al.) - - - - 31.4 27.3 31.9 - 30.7 27.4 32.4 - 29.0 30.0 30.7 - 35.9 34.9 38.3 - 30.2 30.6 31.0 - - - - -

CatSeqD (Yuan et al.) - - - - 34.8 29.8 35.7 - 32.5 28.5 37.1 - 27.6 33.3 33.1 - 37.4 36.6 40.6 - 32.7 35.2 35.7 - - - - -

Table 4: Detailed performance (F1-score) of present keyphrase prediction on six datasets. Best checkpoints are selected by present F1@O scores on KP20K-VALID. Bold-

face/Underline text indicates the best/2nd-best performance in corresponding columns.
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Average Kp20K Inspec Krapivin NUS SemEval DUC

Model 10 50 M 10 50 M 10 50 M 10 50 M 10 50 M 10 50 M 10 50 M

One2One variants

RNN-O2O-KP20k 4.3 8.7 13.6 6.7 13.1 19.6 7.8 13.7 20.7 4.2 8.2 13.6 4.7 11.2 17.5 2.4 6.1 10.0 0.0 0.0 0.3
RNN-O2O-KP20k-nocopy 1.2 3.6 6.2 2.4 5.8 9.8 1.2 4.0 8.4 1.5 2.4 3.4 1.5 5.5 9.7 0.4 3.7 6.1 0.0 0.0 0.0

RNN-O2O-KP20k+MagKP-ALT 5.0 9.6 14.7 6.5 13.1 19.3 8.2 16.1 23.7 5.1 9.1 15.8 7.0 13.8 18.7 3.2 5.2 10.0 0.0 0.1 0.8

BIGRNN-O2O-KP20k 7.4 13.9 19.2 11.4 20.2 27.8 12.7 22.5 31.7 5.6 11.3 16.8 10.1 18.6 24.8 4.3 10.1 13.7 0.1 0.4 0.4
BIGRNN-O2O-magkp20k-ALT 6.4 11.9 17.6 9.0 16.5 23.3 12.3 20.7 28.9 6.2 10.8 16.9 7.6 15.1 23.4 3.6 8.2 12.8 0.0 0.0 0.1

TF-O2O-KP20k 7.4 14.0 20.4 12.6 22.1 30.8 12.8 23.8 33.0 4.1 9.2 15.8 10.1 18.9 27.0 4.8 9.9 15.7 0.0 0.2 0.2
TF-O2O-KP20k-nocopy 8.8 15.4 22.3 14.0 24.4 33.5 14.9 25.7 38.9 4.7 9.9 13.4 13.2 22.0 30.9 6.1 10.7 17.2 0.0 0.0 0.1

TF-O2O-KP20k+MagKP-ALT 8.0 14.5 21.1 12.4 21.6 30.2 13.0 23.7 34.5 5.2 11.6 18.5 11.4 20.0 27.1 6.1 10.1 16.1 0.1 0.2 0.2

One2Seq variants (trained in PRES-ABS)

RNN-O2S-KP20k 2.2 2.5 2.5 2.7 3.2 3.3 2.8 3.3 3.3 3.3 3.7 3.7 2.6 2.9 3.0 1.6 1.7 1.7 0.0 0.0 0.0
RNN-O2S-KP20k-nocopy 3.1 4.1 4.2 4.9 6.7 6.8 4.6 6.3 6.4 1.8 2.1 2.1 4.5 6.2 6.2 2.6 3.6 3.6 0.0 0.0 0.0

RNN-O2S+KP20k+MagKP-ALT 2.0 2.6 2.7 2.6 3.1 3.3 2.4 3.3 3.5 3.4 4.8 4.8 1.4 2.5 2.6 2.0 2.0 2.1 0.0 0.0 0.0

BIGRNN-O2S-KP20k 1.6 1.7 1.7 1.9 2.0 2.0 2.6 2.6 2.6 1.9 2.1 2.1 2.2 2.3 2.3 1.0 1.0 1.0 0.0 0.0 0.0
BIGRNN-O2S-KP20k+MagKP-ALT 2.6 3.0 3.0 3.2 3.7 3.8 4.6 5.2 5.2 3.3 3.5 3.5 2.9 3.7 3.7 1.8 1.9 1.9 0.0 0.0 0.0

TF-O2S-KP20k 7.0 9.8 10.2 11.1 15.0 15.5 12.1 16.6 17.5 4.2 6.7 7.1 9.0 12.5 12.7 5.9 8.3 8.4 0.0 0.0 0.0
TF-O2S-KP20k-nocopy 7.9 11.0 11.5 13.2 18.1 18.5 14.3 19.8 20.9 4.5 6.4 6.5 10.5 15.1 15.8 5.2 6.9 7.2 0.0 0.0 0.0

TF-O2S-KP20k+MagKP-ALT 9.4 12.1 12.8 13.7 16.3 16.9 15.7 19.1 20.5 9.3 14.1 14.5 12.1 15.2 16.3 5.4 7.4 8.1 0.1 0.3 0.3

TRANS+One2Seq +MAGKP (trained in PRES-ABS)

MagKP-LN-ONLY 4.0 5.8 7.2 6.6 8.9 10.1 6.9 10.9 13.1 2.2 3.8 5.4 6.1 8.0 10.1 2.4 3.0 4.2 0.0 0.0 0.0
MagKP-Nsmall-ONLY 2.7 3.9 4.6 3.7 4.7 5.3 6.3 8.8 9.7 4.0 5.7 6.3 1.0 2.5 3.3 1.5 1.6 2.5 0.0 0.0 0.3
MagKP-Nlarge-ONLY 3.3 4.3 4.7 3.4 4.6 5.0 8.3 10.2 11.0 4.2 5.8 6.5 2.2 2.9 3.2 1.6 2.1 2.7 0.0 0.0 0.0

MagKP-ONLY 4.2 5.4 6.7 4.7 6.0 7.6 8.8 11.6 13.5 6.0 7.8 9.7 2.9 3.9 5.3 2.6 3.3 3.8 0.1 0.1 0.1

MagKP-LN-MX 8.6 11.4 12.1 12.9 16.7 17.2 15.0 19.2 19.7 5.5 8.6 9.7 12.1 15.6 17.2 6.3 8.1 8.4 0.0 0.0 0.1
MagKP-Nsmall-MX 8.6 11.3 12.4 13.0 16.7 17.9 15.1 18.5 20.6 6.7 11.0 12.8 12.2 15.2 16.2 4.3 6.1 6.9 0.1 0.1 0.1
MagKP-Nlarge-MX 8.9 10.8 11.7 13.2 15.6 16.5 15.5 19.0 21.3 7.6 10.7 11.9 11.6 13.8 14.5 5.2 5.7 6.1 0.0 0.0 0.0

MagKP-MX 8.8 10.4 11.6 12.3 14.3 15.2 15.7 17.3 19.7 8.9 12.1 13.7 10.6 12.5 13.7 5.2 6.2 6.7 0.2 0.3 0.3

MagKP-LN-FT 8.0 10.7 11.1 12.9 16.3 16.8 13.6 16.7 17.7 5.8 9.4 9.8 10.2 14.4 14.6 5.4 7.3 7.8 0.0 0.0 0.0
MagKP-Nsmall-FT 9.7 12.4 13.9 14.2 18.0 19.3 16.8 19.9 22.8 9.0 13.1 14.4 11.9 15.5 17.4 6.0 7.9 9.2 0.2 0.2 0.2
MagKP-Nlarge-FT 9.9 13.2 14.2 15.0 19.0 20.3 17.2 21.2 23.6 9.4 13.3 14.1 11.2 16.7 17.5 6.6 8.8 9.5 0.3 0.3 0.4

MagKP-FT 9.6 12.9 13.7 14.8 18.9 19.8 17.2 21.4 23.1 7.9 12.3 13.6 11.5 16.2 16.9 6.3 8.5 8.8 0.2 0.2 0.2

Table 5: Detailed performance (recall scores) of absent keyphrase prediction on six datasets. Best checkpoints are selected by absent R@50 scores on KP20K-VALID.

Boldface/Underline text indicates the best/2nd-best performance in corresponding columns.
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Average Kp20K Krapivin Inspec NUS SemEval DUC

Model 5 10 O M 5 10 O M 5 10 O M 5 10 O M 5 10 O M 5 10 O M 5 10 O M

One2One variants

RNN-O2O-KP20k 23.0 23.6 25.4 2.3 27.8 24.9 28.9 1.5 25.2 23.4 27.0 1.6 25.1 28.2 29.9 3.1 28.8 28.6 31.1 2.5 19.3 23.9 23.2 2.8 11.5 12.7 12.3 2.0
RNN-O2O-KP20k-nocopy 1.6 1.8 1.8 0.4 2.4 2.6 2.5 0.4 2.0 2.0 1.9 0.3 1.0 1.1 1.1 0.2 2.8 3.4 3.2 0.7 1.4 1.9 1.8 0.6 0.0 0.0 0.0 0.0

RNN-O2O-KP20k+MagKP-ALT 24.2 25.2 27.0 2.5 27.2 24.5 28.3 1.6 26.2 24.3 27.9 1.7 27.6 32.8 34.2 3.4 28.9 29.7 31.0 2.6 21.3 23.8 24.4 2.9 13.8 16.1 16.2 2.5

BIGRNN-O2O-KP20k 24.8 25.9 27.9 2.6 29.9 26.7 31.0 1.7 27.9 26.1 29.9 1.9 27.1 32.0 33.8 3.5 30.0 30.6 33.3 2.8 20.7 24.5 24.8 3.2 13.1 15.5 14.5 2.6
BIGRNN-O2O-magkp20k-ALT 24.5 25.6 27.3 2.6 28.0 25.2 29.0 1.7 26.2 24.7 28.1 1.8 28.1 32.8 34.4 3.6 29.3 29.6 31.4 2.8 21.6 24.4 25.0 3.2 14.0 16.8 15.9 2.6

TF-O2O-KP20k 21.3 21.6 23.3 2.2 28.8 25.8 30.0 1.7 25.0 23.4 26.3 1.7 22.0 24.7 26.5 2.9 27.2 27.0 28.9 2.6 18.3 21.8 21.6 2.9 6.3 7.1 6.9 1.2
TF-O2O-KP20k-nocopy 14.4 13.8 15.0 1.4 21.3 19.0 22.2 1.5 18.6 16.6 19.2 1.4 10.4 10.4 11.1 1.2 20.8 21.0 21.9 2.2 14.0 14.7 14.7 2.1 1.2 1.1 1.2 0.2

TF-O2O-KP20k+MagKP-ALT 23.1 23.3 25.4 2.4 28.9 26.0 30.1 1.7 25.9 24.0 27.4 1.8 24.7 27.7 29.9 3.3 28.5 28.4 31.2 2.8 19.7 22.9 22.8 3.1 10.5 11.2 10.6 1.5

One2Seq variants (trained in PRES-ABS)

RNN-O2S-KP20k 22.9 24.7 26.2 8.9 26.2 23.3 26.8 6.7 25.0 23.1 27.3 7.1 28.9 34.7 35.9 13.6 26.4 27.8 28.2 9.7 19.5 24.1 24.2 10.2 11.2 15.0 14.4 6.1
RNN-O2S-KP20k-nocopy 3.7 3.6 3.9 2.3 5.3 4.8 5.6 3.0 4.9 4.5 5.2 2.6 2.4 2.3 2.5 1.5 5.5 5.8 6.3 4.2 3.7 4.1 4.0 2.7 0.0 0.0 0.0 0.0

RNN-O2S+KP20k+MagKP-ALT 21.8 23.9 25.2 9.3 23.7 21.2 24.3 7.0 22.7 22.1 24.8 7.0 28.9 35.7 36.9 14.4 24.8 25.2 25.9 9.0 18.1 22.7 23.2 10.1 12.6 16.7 15.9 8.0

BIGRNN-O2S-KP20k 22.3 23.9 25.5 17.5 25.4 22.9 26.1 13.5 24.0 22.8 26.1 14.4 27.9 33.6 35.0 26.1 26.3 27.4 29.3 20.2 19.5 22.9 23.4 19.0 10.6 14.0 13.3 11.6
BIGRNN-O2S-KP20k+MagKP-ALT 22.4 24.3 25.3 11.9 23.7 21.1 24.1 8.9 23.3 22.0 25.0 8.9 30.1 36.2 36.9 18.0 25.0 26.3 26.8 13.1 18.9 22.9 22.7 12.7 13.6 17.2 16.5 9.5

TF-O2S-KP20k 22.6 23.0 24.6 6.7 28.9 25.8 30.0 6.4 26.3 24.4 28.0 5.9 25.3 28.5 29.7 9.6 27.2 27.6 29.4 8.1 19.2 22.2 21.2 7.3 8.9 9.3 9.4 2.5
TF-O2S-KP20k-nocopy 17.6 16.9 18.6 6.6 25.0 21.9 26.0 7.7 22.6 20.1 23.4 6.9 15.6 15.4 16.6 6.7 24.7 24.0 26.1 9.4 15.3 17.4 16.8 8.2 2.3 2.4 2.4 1.1

TF-O2S-KP20k+MagKP-ALT 25.4 26.5 28.3 6.0 31.3 27.8 32.2 5.2 29.1 26.9 30.8 4.7 27.1 32.4 33.6 9.8 29.8 30.4 31.9 6.3 21.3 24.3 24.7 5.6 14.1 17.1 16.7 4.5

TRANS+One2Seq (trained in PRES-ABS)

MagKP-LN-ONLY 18.6 19.9 20.4 4.3 22.2 20.9 22.4 3.4 20.7 20.1 21.3 3.8 23.2 25.9 27.1 6.2 22.1 24.9 24.9 5.2 15.6 19.2 18.3 5.2 7.9 8.7 8.6 1.9
MagKP-Nsmall-ONLY 16.1 16.9 17.5 7.7 16.4 15.3 16.5 6.6 18.9 18.4 20.1 7.7 24.4 26.0 27.4 12.3 16.9 17.6 17.8 8.1 13.5 16.8 15.9 8.4 6.4 7.2 7.4 3.0
MagKP-Nlarge-ONLY 16.7 17.5 18.1 8.3 16.9 15.7 17.0 7.0 18.9 18.1 19.8 7.6 27.4 29.5 31.2 14.0 18.0 18.6 18.1 8.9 13.6 17.6 17.1 8.9 5.3 5.7 5.6 3.5

MagKP-ONLY 17.0 18.1 18.7 6.0 18.9 17.5 19.1 5.4 19.9 18.8 21.2 5.1 23.0 26.9 27.0 10.6 18.1 19.2 19.4 5.9 13.4 16.4 15.7 5.7 8.7 9.6 9.8 3.2

MagKP-LN-MX 24.1 24.8 26.7 10.1 30.0 26.6 30.9 8.9 27.7 25.4 29.5 8.9 26.7 30.8 32.7 14.3 28.4 29.1 30.3 11.5 19.4 22.7 23.1 10.8 12.1 13.9 13.5 6.5
MagKP-Nsmall-MX 24.2 24.7 26.6 6.5 30.1 26.7 31.0 5.9 28.2 25.2 29.9 5.7 26.8 31.2 32.6 10.3 29.6 29.6 31.0 7.2 19.8 23.5 22.9 6.7 10.7 12.2 12.4 3.3
MagKP-Nlarge-MX 24.3 25.1 26.7 7.5 30.7 27.5 31.6 6.5 28.5 26.7 30.4 6.7 26.3 30.5 32.0 11.9 29.9 29.8 31.3 9.2 19.6 23.5 22.9 7.4 10.9 12.6 12.3 3.2

MagKP-MX 24.7 26.1 27.5 6.0 30.7 27.3 31.6 5.0 28.9 27.1 31.1 5.1 27.2 32.7 33.8 9.4 29.1 30.9 31.3 6.8 20.5 24.6 24.7 5.6 11.6 13.9 12.6 4.1

MagKP-LN-FT 24.9 25.6 27.6 6.6 30.5 27.1 31.6 5.8 29.2 26.3 30.2 5.1 27.0 31.3 32.8 10.0 29.9 30.5 32.0 7.1 20.0 23.2 24.0 6.2 12.7 15.5 15.0 5.3
MagKP-Nsmall-FT 25.4 26.4 28.5 6.2 30.7 27.2 31.5 5.3 29.5 26.5 30.5 4.9 27.9 33.1 35.0 9.8 30.4 30.0 32.7 6.5 20.0 24.0 24.1 5.1 14.2 17.3 17.0 5.5
MagKP-Nlarge-FT 25.8 26.9 29.2 6.2 31.4 27.9 32.2 5.0 30.3 27.6 32.7 4.8 27.4 31.9 33.8 9.2 30.8 31.5 33.6 6.4 20.0 23.9 24.8 5.7 14.9 18.6 18.2 6.0

MagKP-FT 25.7 26.1 28.3 5.9 31.3 27.8 32.2 4.8 29.4 27.1 31.6 5.2 26.9 31.2 32.8 8.7 31.7 30.8 33.5 5.9 21.4 24.2 24.1 5.4 13.7 15.7 15.3 5.2

Table 6: Detailed performance (F1-score) of all (present+absent) keyphrase prediction on six datasets. Best checkpoints are selected by F1@O scores on KP20K-VALID.

Boldface/Underline text indicates the best/2nd-best performance in corresponding columns.
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Average Kp20K Krapivin Inspec NUS SemEval DUC

Model 5 10 O M 5 10 O M 5 10 O M 5 10 O M 5 10 O M 5 10 O M 5 10 O M

RNN Greedy

RANDOM 21.5 21.5 21.4 21.5 28.5 28.5 28.5 28.5 27.1 27.1 26.9 27.1 17.6 17.6 17.6 17.6 29.4 29.4 28.9 29.4 21.0 21.0 21.2 21.0 5.5 5.5 5.5 5.5
ALPHA 24.6 24.6 23.8 24.6 28.9 28.9 27.2 28.9 28.2 28.1 26.0 28.1 22.5 22.6 22.3 22.6 31.6 31.5 30.5 31.5 28.2 28.2 28.2 28.2 8.2 8.2 8.2 8.2

ALPHA-REV 24.4 24.4 23.3 24.4 29.3 29.3 27.4 29.3 27.8 27.9 25.5 27.9 22.3 22.3 21.9 22.3 31.0 31.0 30.6 31.0 27.8 27.8 26.4 27.8 8.2 8.3 8.3 8.3
S->L 24.0 24.0 23.8 24.0 31.0 31.0 29.7 31.0 30.1 30.1 29.2 30.1 19.6 19.6 19.4 19.6 31.9 31.9 33.0 31.9 25.8 25.8 26.0 25.8 5.7 5.7 5.7 5.7
L->S 23.3 23.3 22.9 23.3 27.8 27.8 26.9 27.8 27.2 27.2 26.1 27.2 21.4 21.4 21.5 21.4 28.4 28.4 28.3 28.4 25.0 25.0 24.7 25.0 9.8 9.8 9.8 9.8
ORI 24.3 24.3 24.4 24.3 30.4 30.4 30.6 30.4 30.4 30.4 30.8 30.4 21.8 21.8 21.7 21.8 31.6 31.6 31.5 31.6 24.5 24.5 24.6 24.5 7.3 7.3 7.3 7.3

ORI-REV 21.4 21.4 21.2 21.4 28.3 28.3 27.6 28.3 26.8 26.8 26.0 26.8 18.0 18.0 18.0 18.0 26.9 26.9 27.0 26.9 22.2 22.2 22.4 22.2 6.2 6.2 6.2 6.2
PRES-ABS 26.8 26.9 26.7 26.9 31.8 31.7 31.3 31.7 31.2 31.2 31.3 31.2 24.8 24.9 24.8 24.9 35.1 35.2 34.7 35.2 30.2 30.3 29.9 30.3 8.1 8.1 8.1 8.1
ABS-PRES 24.2 24.2 24.2 24.2 29.0 29.0 28.2 29.0 28.9 28.9 29.2 28.9 22.2 22.2 22.2 22.2 31.0 31.0 30.8 31.0 26.7 26.7 26.8 26.7 7.7 7.7 7.7 7.7

TRANS Greedy

RANDOM 24.1 24.1 24.3 24.1 33.3 33.3 33.1 33.3 28.7 28.7 29.5 28.7 20.6 20.6 20.7 20.6 31.3 31.3 31.5 31.3 24.8 24.8 25.0 24.8 6.0 6.0 6.0 6.0
ALPHA 23.4 23.4 22.4 23.4 32.7 32.9 29.8 32.9 25.9 25.9 24.2 25.9 21.7 21.7 21.7 21.7 29.9 29.9 28.6 29.9 24.9 25.0 24.8 25.0 5.1 5.1 5.1 5.1

ALPHA-REV 23.3 23.3 22.7 23.3 30.9 30.9 29.1 30.9 26.1 26.1 24.4 26.1 22.4 22.4 22.4 22.4 29.5 29.5 29.8 29.5 25.0 24.9 24.8 24.9 6.0 6.0 6.0 6.0
S->L 24.6 24.6 24.2 24.6 33.3 33.3 31.9 33.3 30.7 30.7 29.9 30.7 21.8 21.8 21.8 21.8 30.2 30.2 30.7 30.2 25.2 25.2 24.7 25.2 6.3 6.3 6.3 6.3
L->S 23.4 23.4 23.3 23.4 29.7 29.7 28.9 29.7 26.7 26.7 26.1 26.7 23.1 23.1 23.1 23.1 30.7 30.7 31.4 30.7 23.5 23.5 23.8 23.5 6.3 6.3 6.3 6.3
ORI 24.4 24.4 24.6 24.4 32.8 32.8 33.4 32.8 27.5 27.5 27.6 27.5 22.2 22.2 22.1 22.2 31.3 31.3 31.6 31.3 26.7 26.7 27.1 26.7 5.8 5.9 5.9 5.9

ORI-REV 22.7 22.7 22.4 22.7 30.5 30.5 29.5 30.5 26.3 26.3 25.8 26.3 19.6 19.6 19.7 19.6 30.3 30.3 30.5 30.3 24.0 24.0 23.7 24.0 5.3 5.3 5.3 5.3
PRES-ABS 26.7 26.7 27.4 26.7 34.0 34.0 34.7 34.0 31.7 31.7 33.7 31.7 25.6 25.6 25.6 25.6 34.3 34.4 35.3 34.4 27.9 27.9 28.3 27.9 6.9 6.9 6.9 6.9
ABS-PRES 20.2 20.2 20.3 20.2 31.2 31.2 31.0 31.2 23.7 23.6 24.1 23.6 16.0 16.0 16.0 16.0 25.7 25.7 25.5 25.7 21.1 21.1 21.2 21.1 3.6 3.6 3.6 3.6

RNN beam50

RANDOM 30.3 29.2 33.0 24.3 31.9 25.9 33.9 19.5 31.9 26.7 34.2 20.4 31.9 36.2 37.2 32.9 39.1 35.3 42.6 28.7 34.3 35.8 35.9 29.7 12.6 15.4 14.5 14.4
ALPHA 30.8 30.2 33.1 22.4 32.6 27.1 33.5 17.2 33.0 28.0 34.3 18.7 31.6 37.5 37.4 31.0 39.5 37.3 42.5 26.3 34.4 35.1 35.5 26.8 13.5 15.8 15.4 14.2

ALPHA-REV 30.1 29.7 32.8 23.6 32.5 27.3 32.9 18.6 31.9 27.5 34.7 19.6 30.7 35.9 36.5 32.1 38.9 37.1 41.1 28.0 33.3 34.2 36.2 28.5 13.4 15.9 15.6 14.6
S->L 30.7 29.5 33.3 21.1 32.6 26.5 33.6 16.8 33.3 27.3 34.6 18.1 32.2 36.4 37.4 29.1 38.3 35.2 40.0 24.1 33.7 34.7 37.2 25.1 14.0 17.0 16.6 13.4
L->S 31.3 30.6 33.5 27.6 32.4 27.4 32.8 22.6 33.4 28.2 34.5 23.8 33.2 38.0 38.5 36.0 38.4 37.4 41.7 32.9 35.5 34.6 36.5 33.3 15.1 17.9 17.2 17.3
ORI 31.5 30.3 34.3 22.9 32.4 26.2 34.4 16.9 32.9 27.9 36.4 18.8 34.4 39.5 40.7 33.7 39.9 36.2 41.8 26.4 35.5 35.4 36.3 27.2 14.1 16.8 15.9 14.5

ORI-REV 31.0 29.5 33.0 26.6 32.0 26.9 33.6 22.8 32.2 27.4 34.5 23.5 32.6 35.4 36.9 32.4 39.2 36.2 40.6 32.7 35.0 33.9 35.7 31.6 14.8 17.0 16.7 16.6
PRES-ABS 29.6 29.9 32.3 22.2 31.2 26.1 31.2 16.3 30.9 26.9 33.5 18.1 32.8 38.7 38.8 32.5 37.3 36.6 39.2 25.2 33.5 35.0 36.2 26.7 11.9 16.0 15.0 14.5
ABS-PRES 29.0 29.8 32.2 19.4 31.7 27.0 32.7 13.7 30.8 27.6 34.3 15.2 31.5 37.0 37.6 29.6 38.2 37.5 41.0 22.3 31.5 35.2 34.6 23.1 10.5 14.6 12.9 12.8

TRANS beam50

RANDOM 30.3 28.8 32.1 25.3 34.4 28.1 35.8 22.7 33.8 28.9 34.7 23.6 31.2 34.7 35.4 32.7 38.8 36.8 41.1 32.2 34.1 33.4 35.7 29.8 9.3 10.6 10.0 10.8
ALPHA 30.4 28.9 31.8 25.2 34.7 29.2 35.2 22.8 33.2 27.5 34.1 21.4 30.9 34.3 35.0 33.1 39.8 37.2 41.9 32.3 33.7 33.9 33.9 30.5 9.8 11.2 10.9 11.1

ALPHA-REV 30.2 29.7 33.2 25.4 34.7 29.0 35.5 21.8 32.7 27.4 36.4 21.6 30.3 36.0 35.6 34.0 40.3 37.5 44.5 31.3 31.5 34.9 34.1 30.7 11.8 13.5 13.0 12.7
S->L 30.3 29.3 32.0 25.5 34.4 28.5 34.9 22.1 33.6 28.4 34.6 23.4 31.1 35.5 35.9 33.0 40.4 37.8 41.5 32.2 32.5 34.1 33.7 31.3 9.8 11.4 11.4 11.3
L->S 30.7 29.8 32.7 25.8 34.7 29.0 35.5 22.5 33.3 28.9 34.7 22.5 31.6 35.4 36.2 33.5 40.6 38.2 42.4 32.4 33.4 34.1 35.3 31.3 10.7 13.0 12.2 12.7
ORI 30.1 29.3 32.3 25.2 34.4 28.5 36.1 21.8 33.4 29.0 34.1 23.0 31.6 36.5 36.1 34.0 38.4 37.4 41.5 31.7 34.3 34.2 36.7 30.0 8.7 10.2 9.5 10.7

ORI-REV 30.9 30.1 33.1 27.1 34.6 28.9 35.5 24.1 33.8 28.6 35.5 24.4 32.7 36.3 37.4 33.7 40.0 38.1 42.5 34.2 32.5 34.9 34.4 32.3 11.9 13.8 13.4 13.6
PRES-ABS 30.4 29.4 32.9 25.5 34.6 29.0 36.2 21.5 32.4 28.1 36.4 21.8 31.5 36.6 36.9 34.6 40.1 37.3 42.3 32.0 33.9 34.2 34.8 30.9 10.1 11.4 11.0 11.9
ABS-PRES 29.7 29.3 32.0 22.2 34.3 28.9 35.4 17.9 32.5 28.0 35.9 17.9 30.6 34.8 34.7 32.4 38.5 38.3 40.8 26.9 33.0 34.5 34.5 28.0 9.4 11.3 10.5 10.3

Table 7: Detailed present keyphrase prediction performance (F1-score) of One2Seq trained with different orders. Best checkpoints are selected by present F1@O scores on

KP20K-VALID.
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Model 10 50 M 10 50 M 10 50 M 10 50 M 10 50 M 10 50 M 10 50 M

RNN Greedy

RANDOM 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.0 0.0 0.0
ALPHA 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.0 0.0 0.7 0.7 0.7 0.0 0.0 0.0

ALPHA-REV 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.0 0.0 0.0
S->L 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.0 0.0 0.0
L->S 0.2 0.2 0.2 0.2 0.2 0.2 0.6 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.6 0.6 0.0 0.0 0.0
ORI 0.3 0.3 0.3 0.2 0.2 0.2 0.6 0.6 0.6 0.1 0.1 0.1 0.2 0.2 0.2 0.5 0.5 0.5 0.0 0.0 0.0

ORI-REV 0.1 0.1 0.1 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.3 0.0 0.0 0.0
PRES-ABS 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.5 0.5 0.3 0.3 0.3 0.2 0.2 0.2 0.3 0.3 0.3 0.0 0.0 0.0
ABS-PRES 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.4 0.4 0.4 0.0 0.0 0.0

TRANS Greedy

RANDOM 1.8 1.8 1.8 2.8 2.8 2.8 2.2 2.2 2.2 0.8 0.8 0.8 3.1 3.1 3.1 2.1 2.1 2.1 0.0 0.0 0.0
ALPHA 1.5 1.5 1.5 3.0 3.0 3.0 3.4 3.4 3.4 0.9 0.9 0.9 0.9 0.9 0.9 1.1 1.1 1.1 0.0 0.0 0.0

ALPHA-REV 1.6 1.6 1.6 2.5 2.5 2.5 3.9 3.9 3.9 1.0 1.0 1.0 1.4 1.4 1.4 0.7 0.7 0.7 0.0 0.0 0.0
S->L 1.4 1.4 1.4 2.8 2.8 2.8 2.5 2.5 2.5 0.3 0.3 0.3 1.8 1.8 1.8 1.3 1.3 1.3 0.0 0.0 0.0
L->S 1.3 1.3 1.3 2.4 2.4 2.4 2.4 2.4 2.4 0.6 0.6 0.6 1.6 1.6 1.6 0.8 0.8 0.8 0.0 0.0 0.0
ORI 1.5 1.5 1.5 2.5 2.5 2.5 3.1 3.1 3.1 1.1 1.1 1.1 1.2 1.2 1.2 0.9 0.9 0.9 0.1 0.1 0.1

ORI-REV 1.1 1.1 1.1 2.5 2.5 2.5 2.0 2.0 2.0 0.5 0.5 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.0 0.0 0.0
PRES-ABS 1.3 1.3 1.3 2.3 2.3 2.3 2.7 2.7 2.7 0.9 0.9 0.9 1.0 1.0 1.0 1.2 1.2 1.2 0.0 0.0 0.0
ABS-PRES 1.8 1.8 1.8 2.8 2.8 2.8 3.8 3.8 3.8 0.6 0.6 0.6 2.0 2.0 2.0 1.6 1.6 1.6 0.0 0.0 0.0

RNN beam50

RANDOM 1.8 2.0 2.0 2.3 2.7 2.7 2.4 2.7 2.7 3.0 3.2 3.2 1.5 1.9 1.9 1.5 1.6 1.6 0.0 0.0 0.0
ALPHA 2.1 2.3 2.3 2.6 2.8 2.8 2.9 3.2 3.3 2.9 3.3 3.3 2.3 2.6 2.6 1.8 2.0 2.0 0.0 0.0 0.0

ALPHA-REV 1.3 1.4 1.4 2.0 2.0 2.0 1.8 1.9 1.9 1.4 1.5 1.5 2.1 2.2 2.2 0.6 0.8 0.8 0.0 0.0 0.
S->L 1.6 1.8 1.8 2.1 2.2 2.2 2.1 2.2 2.2 2.3 2.9 2.9 1.3 1.4 1.4 1.9 2.0 2.0 0.0 0.0 0.2
L->S 1.4 1.4 1.4 1.8 1.8 1.8 2.1 2.1 2.1 2.5 2.5 2.5 1.1 1.1 1.1 0.8 0.8 0.8 0.0 0.0 0.0
ORI 1.9 2.3 2.3 2.3 2.7 2.7 2.7 3.2 3.2 2.6 3.3 3.3 2.3 2.8 2.8 1.2 1.9 1.9 0.0 0.0 0.0

ORI-REV 1.5 1.5 1.5 1.9 1.9 1.9 2.0 2.0 2.0 2.3 2.3 2.3 1.3 1.4 1.4 1.5 1.6 1.6 0.0 0.0 0.0
PRES-ABS 2.2 2.5 2.5 2.7 3.2 3.3 2.8 3.3 3.3 3.3 3.7 3.7 2.6 2.9 3.0 1.6 1.7 1.7 0.0 0.0 0.0
ABS-PRES 1.1 1.1 1.1 1.3 1.3 1.3 1.6 1.6 1.6 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0

TRANS beam50

RANDOM 6.6 7.9 8.2 10.2 12.5 12.7 11.3 12.9 13.1 3.5 5.4 5.5 10.0 11.2 11.5 4.9 5.7 6.0 0.1 0.1 0.1
ALPHA 6.5 9.0 9.3 10.9 14.6 14.8 12.3 16.6 16.9 3.9 5.5 6.1 7.3 10.6 10.8 4.7 6.8 7.1 0.0 0.0 0.0

ALPHA-REV 6.7 9.4 9.6 10.5 14.7 15.0 10.9 14.8 15.0 2.8 5.7 6.1 11.2 14.6 15.0 4.6 6.5 6.6 0.0 0.0 0.2
S->L 6.3 8.3 8.4 10.2 13.0 13.2 10.8 14.0 14.0 3.1 5.2 5.2 9.0 11.0 11.3 5.0 6.6 6.9 0.0 0.0 0.0
L->S 6.7 9.4 9.7 11.0 15.2 15.6 11.4 14.9 15.4 3.9 6.4 7.0 9.2 12.7 12.8 4.9 7.1 7.2 0.0 0.0 0.0
ORI 6.9 9.7 9.9 11.0 14.7 15.1 11.7 16.5 16.7 5.0 7.4 7.6 8.9 12.2 12.6 4.6 7.3 7.5 0.1 0.1 0.1

ORI-REV 7.2 10.3 10.7 11.2 15.9 16.5 12.0 16.7 17.1 4.7 7.0 7.7 9.8 13.7 14.3 5.3 8.2 8.4 0.0 0.0 0.0
PRES-ABS 7.0 9.8 10.2 11.1 15.0 15.5 12.1 16.6 17.5 4.2 6.7 7.1 9.0 12.5 12.7 5.9 8.3 8.4 0.0 0.0 0.0
ABS-PRES 6.1 6.9 6.9 10.2 11.3 11.4 10.3 11.1 11.1 3.8 5.0 5.0 7.4 7.8 7.8 4.9 6.0 6.0 0.0 0.0 0.0

Table 8: Detailed absent keyphrase prediction performance (recall scores) of One2Seq trained with different orders. Best checkpoints are selected by absent R@50 scores on

KP20K-VALID.
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Average Kp20K Krapivin Inspec NUS SemEval DUC

Model 5 10 O M 5 10 O M 5 10 O M 5 10 O M 5 10 O M 5 10 O M 5 10 O M

RNN Greedy

RANDOM 13.9 13.9 14.0 13.9 19.3 19.3 19.6 19.3 17.5 17.4 17.6 17.4 13.9 13.9 13.9 13.9 17.5 17.5 17.5 17.5 10.3 10.3 10.3 10.3 4.9 4.9 4.9 4.9
ALPHA 17.0 16.5 16.9 16.5 21.3 20.4 21.6 20.4 20.1 19.6 20.2 19.6 18.2 17.7 18.0 17.7 20.1 19.4 19.8 19.4 14.9 14.5 14.5 14.5 7.5 7.5 7.5 7.5

ALPHA-REV 16.8 16.6 16.8 16.6 21.6 21.3 21.8 21.3 19.5 19.1 19.7 19.1 18.2 18.0 18.0 18.0 20.3 20.1 20.2 20.1 14.4 14.3 14.3 14.3 6.8 6.9 6.8 6.9
S->L 15.7 15.7 15.8 15.7 22.1 22.1 22.3 22.1 19.7 19.7 20.1 19.7 15.6 15.6 15.4 15.6 19.1 19.1 19.4 19.1 12.6 12.6 12.6 12.6 5.1 5.1 5.1 5.1
L->S 15.9 15.6 16.0 15.6 19.9 19.6 20.4 19.6 18.3 18.0 18.6 18.0 17.7 17.5 17.7 17.5 16.8 16.4 17.0 16.4 13.0 12.9 12.9 12.9 9.6 9.4 9.4 9.4
ORI 16.6 16.6 16.7 16.6 21.7 21.7 22.0 21.7 20.9 20.8 21.3 20.8 17.5 17.5 17.5 17.5 20.2 20.2 20.2 20.2 12.6 12.6 12.6 12.6 6.6 6.6 6.6 6.6

ORI-REV 13.9 13.9 14.0 13.9 19.2 19.0 19.4 19.0 17.2 17.1 17.4 17.1 14.1 14.0 14.1 14.0 16.6 16.5 16.7 16.5 11.0 11.0 11.0 11.0 5.5 5.5 5.5 5.5
PRES-ABS 18.8 18.6 18.9 18.6 23.7 23.4 24.3 23.4 22.0 21.7 22.4 21.7 20.4 20.2 20.6 20.2 22.6 22.2 22.2 22.2 16.2 16.3 16.3 16.3 7.7 7.7 7.7 7.7
ABS-PRES 16.6 16.4 16.6 16.4 20.9 20.7 21.2 20.7 19.9 19.7 20.2 19.7 18.1 17.9 17.9 17.9 19.5 19.3 19.3 19.3 14.1 14.1 14.1 14.1 7.1 7.1 7.1 7.1

TRANS Greedy

RANDOM 17.0 16.8 17.0 16.8 26.3 26.3 26.3 26.3 20.0 19.6 20.3 19.6 16.4 16.3 16.4 16.3 20.5 20.4 20.6 20.4 13.4 13.2 13.2 13.2 5.3 5.1 5.1 5.1
ALPHA 16.7 16.5 16.5 16.5 26.3 26.5 25.8 26.5 18.3 17.5 18.1 17.5 17.4 17.0 17.2 17.0 19.8 19.3 19.6 19.3 13.9 13.8 13.8 13.8 4.6 4.6 4.6 4.6

ALPHA-REV 16.3 16.0 16.2 16.0 23.0 22.5 23.2 22.5 18.8 18.4 18.9 18.4 17.9 17.7 18.0 17.7 18.9 18.5 18.6 18.5 13.5 13.4 13.4 13.4 5.5 5.4 5.4 5.4
S->L 16.4 16.3 16.1 16.3 25.4 25.4 25.2 25.4 19.4 19.1 18.6 19.1 15.5 15.4 15.2 15.4 19.8 19.6 19.5 19.6 13.7 13.7 13.7 13.7 4.4 4.4 4.4 4.4
L->S 16.6 16.4 16.7 16.4 22.3 21.9 22.8 21.9 19.0 18.7 19.2 18.7 18.3 18.1 18.2 18.1 20.6 20.4 21.1 20.4 13.5 13.3 13.3 13.3 5.8 5.7 5.7 5.7
ORI 17.3 17.2 17.6 17.2 26.2 26.2 26.4 26.2 19.8 19.6 20.5 19.6 17.8 17.7 17.8 17.7 20.2 20.1 20.8 20.1 14.5 14.5 14.5 14.5 5.4 5.4 5.4 5.4

ORI-REV 16.1 15.9 16.1 15.9 22.6 22.2 22.9 22.2 19.6 19.3 19.7 19.3 16.3 16.1 16.3 16.1 19.9 19.6 19.8 19.6 13.3 13.3 13.3 13.3 4.6 4.5 4.5 4.5
PRES-ABS 19.1 18.9 19.4 18.9 25.6 25.3 26.5 25.3 23.5 23.2 24.4 23.2 20.8 20.5 20.8 20.5 22.8 22.8 23.1 22.8 15.7 15.6 15.6 15.6 6.3 6.2 6.2 6.2
ABS-PRES 14.2 14.1 14.3 14.1 24.7 24.7 24.8 24.7 16.6 16.2 16.9 16.2 12.8 12.7 12.7 12.7 16.5 16.4 16.8 16.4 11.7 11.6 11.6 11.6 3.1 3.1 3.1 3.1

RNN beam50

RANDOM 24.0 24.4 25.9 11.0 27.2 23.1 27.9 9.2 25.8 23.6 27.4 9.2 28.7 32.4 33.7 16.1 28.3 27.4 28.9 12.2 20.7 23.8 22.6 12.5 13.2 15.8 15.1 7.0
ALPHA 23.7 24.9 26.4 10.1 27.5 24.4 28.1 8.3 26.6 24.2 28.4 8.1 27.6 32.9 33.9 14.5 27.2 28.4 30.0 11.2 19.9 23.9 23.4 11.5 13.4 15.3 14.8 6.9

ALPHA-REV 23.4 24.3 26.0 15.2 27.3 24.2 27.9 12.7 25.7 23.8 27.6 12.9 26.9 31.7 33.3 21.9 28.0 28.5 30.1 17.7 19.5 22.2 22.5 17.1 12.7 15.2 14.2 8.9
S->L 24.1 24.6 25.9 9.0 27.7 24.0 28.2 7.7 26.5 23.8 27.8 7.4 28.6 32.2 33.3 13.3 27.7 27.7 28.0 10.0 20.8 23.8 22.6 10.2 13.5 15.9 15.5 5.5
L->S 24.2 25.2 26.9 22.6 27.1 24.3 27.9 19.5 26.9 24.2 28.2 20.1 28.9 33.7 35.0 31.2 27.2 28.5 29.9 25.5 21.0 23.5 23.9 23.6 14.3 16.8 16.4 15.8
ORI 24.3 24.9 26.7 10.5 27.2 23.3 28.0 8.1 26.6 24.1 28.9 8.8 29.9 34.6 35.9 16.6 28.2 27.9 29.2 11.6 21.0 24.0 23.4 11.1 13.0 15.8 15.1 6.6

ORI-REV 24.1 24.5 26.0 20.4 27.3 23.9 27.9 18.0 26.3 24.2 27.7 18.6 28.8 32.4 32.9 27.9 28.0 27.3 29.4 23.2 20.6 23.1 22.4 21.0 13.7 16.3 15.9 13.8
PRES-ABS 22.9 24.7 26.2 8.9 26.2 23.3 26.8 6.7 25.0 23.1 27.3 7.1 28.9 34.7 35.9 13.6 26.4 27.8 28.2 9.7 19.5 24.1 24.2 10.2 11.2 15.0 14.4 6.1
ABS-PRES 22.8 24.7 26.3 11.0 26.8 24.3 27.6 8.0 25.0 24.2 27.5 8.4 27.2 32.9 35.4 18.3 27.4 28.5 30.2 12.3 20.0 24.2 24.8 12.0 10.1 14.2 12.4 7.0

TRANS beam50

RANDOM 22.8 22.2 23.8 11.3 28.7 24.7 29.4 11.5 27.3 24.2 28.1 10.8 25.4 27.9 28.5 15.2 27.3 26.7 28.2 13.7 20.1 21.6 20.5 12.3 7.9 8.2 8.2 4.0
ALPHA 22.5 22.7 24.4 12.1 28.8 26.0 29.7 11.9 26.9 24.1 27.5 11.3 24.4 27.1 28.6 16.0 27.4 27.8 29.7 15.6 19.2 22.5 21.8 13.9 8.3 9.1 9.0 4.0

ALPHA-REV 23.2 23.7 25.6 13.0 28.9 25.9 29.9 11.8 26.4 24.0 27.9 10.8 26.5 29.1 30.7 17.4 27.7 27.3 29.4 15.8 18.2 23.4 23.4 15.8 11.4 12.2 12.1 6.6
S->L 22.5 22.8 24.6 6.9 28.6 25.5 29.2 6.6 27.0 24.6 28.8 6.2 24.9 27.8 29.2 9.7 27.5 28.0 28.8 8.4 18.8 21.9 22.0 8.5 8.4 9.1 9.3 2.2
L->S 23.2 23.6 25.2 11.8 29.1 25.8 29.9 11.5 26.4 25.1 27.9 10.0 25.9 29.0 29.8 15.8 28.4 28.1 30.3 14.0 19.4 22.4 22.1 12.9 9.7 11.0 10.9 6.5
ORI 22.2 22.4 23.8 12.6 28.7 25.2 29.4 12.1 26.7 24.4 27.2 12.2 25.1 27.4 29.1 17.3 26.4 27.6 29.0 15.8 19.5 22.2 21.4 14.4 7.0 7.4 7.0 3.5

ORI-REV 23.0 23.3 24.8 14.7 28.7 25.6 29.4 14.6 26.8 24.8 28.8 13.9 25.4 28.5 29.7 18.8 27.7 28.2 29.7 18.9 19.8 22.5 20.7 15.9 9.4 10.2 10.4 5.9
PRES-ABS 22.6 23.0 24.6 6.7 28.9 25.8 30.0 6.4 26.3 24.4 28.0 5.9 25.3 28.5 29.7 9.6 27.2 27.6 29.4 8.1 19.2 22.2 21.2 7.3 8.9 9.3 9.4 2.5
ABS-PRES 22.7 23.4 25.1 11.5 28.8 26.0 29.8 10.2 26.9 25.2 28.8 10.1 25.7 28.2 29.7 17.4 26.8 28.6 29.5 14.1 19.6 22.6 23.4 14.0 8.3 9.8 9.4 3.2

Table 9: Detailed keyphrase prediction performance all phrases (present+absent) of One2Seq trained with different orders. Best checkpoints are selected by F1@O scores on

KP20K-VALID.



5005

(a) Greedy Decoding, RNN
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6.2 6.1 3.7 6.7 4.7 3.8 5.9 5.4 3.3
17.2 16.8 14.2 15.8 15.6 12.1 19.3 16.3 12.1
25.6 25.7 26.8 24.3 27.5 23.4 29.7 25.8 24.1
24.3 23.4 26.2 23.2 27.4 22.1 29.3 26.4 22.7
25.0 24.8 26.5 22.0 24.7 19.9 28.9 24.4 21.3
22.3 20.6 19.6 18.1 17.9 15.6 24.0 20.3 14.5
20.1 19.6 19.5 18.4 19.6 16.2 22.8 19.8 16.3

(b) Beam Size 50, RNN

15.4 15.6 16.6 17.2 15.9 16.7 15.0 12.9 14.5
37.4 36.5 37.4 38.5 40.7 36.9 38.8 37.6 37.2
33.5 32.9 33.6 32.8 34.4 33.6 31.2 32.7 33.9
34.3 34.7 34.6 34.5 36.4 34.5 33.5 34.3 34.2
42.5 41.1 40.0 41.7 41.8 40.6 39.2 41.0 42.6
35.5 36.2 37.2 36.5 36.3 35.7 36.2 34.6 35.9
33.1 32.8 33.3 33.5 34.3 33.0 32.3 32.2 33.0

Alpha Alpha-RevS-->L L-->S Ori Ori-Rev Pres-AbsAbs-PresRandom
(c) Greedy Decoding, Transformer
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3.7 4.2 4.6 4.6 4.1 3.4 5.1 2.5 4.1
16.4 17.0 16.5 17.0 16.6 13.9 19.8 11.3 15.2
28.6 27.2 30.3 26.6 31.9 26.2 33.1 29.2 30.7
22.6 22.7 27.7 23.8 25.9 22.9 32.3 21.7 26.7
23.1 24.4 24.6 25.3 26.4 23.4 29.5 20.0 25.1
18.9 19.2 18.4 18.2 21.2 16.8 21.9 15.4 18.5
18.9 19.1 20.3 19.3 21.0 17.8 23.6 16.7 20.1

Alpha Alpha-RevS-->L L-->S Ori Ori-Rev Pres-AbsAbs-PresRandom
(d) Beam Size 50, Transformer

10.9 13.0 11.4 12.2 9.5 13.4 11.0 10.5 10.0
35.0 35.6 35.9 36.2 36.1 37.4 36.9 34.7 35.4
35.2 35.5 34.9 35.5 36.1 35.5 36.2 35.4 35.8
34.1 36.4 34.6 34.7 34.1 35.5 36.4 35.9 34.7
41.9 44.5 41.5 42.4 41.5 42.5 42.3 40.8 41.1
33.9 34.1 33.7 35.3 36.7 34.4 34.8 34.5 35.7
31.8 33.2 32.0 32.7 32.3 33.1 32.9 32.0 32.1

Figure 9: Present keyphrase generation testing scores (F1@O). Colors represent the relative performance, normal-

ized per row.
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5.1 5.0 2.9 5.6 3.7 3.1 4.9 4.4 2.7
13.1 12.6 10.5 11.4 11.3 8.7 14.9 12.1 8.6
13.9 13.8 13.2 11.7 12.6 10.5 15.6 12.7 10.5
13.3 12.8 12.1 11.1 12.1 9.5 14.8 12.2 9.3
17.2 17.0 15.9 14.2 15.3 12.2 19.4 15.5 13.2
16.3 16.3 13.7 13.2 12.9 11.0 18.1 14.7 10.4
13.1 12.9 11.4 11.2 11.3 9.2 14.6 11.9 9.1

(b) Beam Size 50, RNN

15.8 15.9 17.0 17.9 16.8 17.0 16.0 14.6 15.4
37.5 35.9 36.4 38.0 39.5 35.4 38.7 37.0 36.2
27.1 27.3 26.5 27.4 26.2 26.9 26.1 27.0 25.9
28.0 27.5 27.3 28.2 27.9 27.4 26.9 27.6 26.7
37.3 37.1 35.2 37.4 36.2 36.2 36.6 37.5 35.3
35.1 34.2 34.7 34.6 35.4 33.9 35.0 35.2 35.8
30.2 29.7 29.5 30.6 30.3 29.5 29.9 29.8 29.2

Alpha Alpha-RevS-->L L-->S Ori Ori-Rev Pres-AbsAbs-PresRandom
(c) Greedy Decoding, Transformer
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3.1 3.5 3.7 3.7 3.5 2.8 4.3 2.0 3.3
12.5 12.7 12.2 12.5 12.7 10.0 15.1 8.4 11.2
16.9 14.6 16.2 13.1 16.1 12.4 17.0 15.0 15.1
11.8 12.4 13.1 11.5 12.6 10.3 15.5 9.3 12.0
16.4 15.9 15.6 16.0 17.1 14.6 19.5 12.9 15.9
14.1 14.0 13.9 13.0 15.4 12.5 16.2 11.0 13.3
12.5 12.2 12.4 11.6 12.9 10.4 14.6 9.8 11.8

Alpha Alpha-RevS-->L L-->S Ori Ori-Rev Pres-AbsAbs-PresRandom
(d) Beam Size 50, Transformer

11.2 13.5 11.4 13.0 10.2 13.8 11.4 11.3 10.6
34.3 36.0 35.5 35.4 36.5 36.3 36.6 34.8 34.7
29.2 29.0 28.5 29.0 28.5 28.9 29.0 28.9 28.1
27.5 27.4 28.4 28.9 29.0 28.6 28.1 28.0 28.9
37.2 37.5 37.8 38.2 37.4 38.1 37.3 38.3 36.8
33.9 34.9 34.1 34.1 34.2 34.9 34.2 34.5 33.4
28.9 29.7 29.3 29.8 29.3 30.1 29.4 29.3 28.8

Figure 10: Present keyphrase generation testing scores (F1@10). Colors represent the relative performance, nor-

malized per row.
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(a) Greedy Decoding, RNN
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.3 0.1 0.0 0.0 0.1 0.0 0.3 0.3 0.1
0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2
0.3 0.4 0.1 0.6 0.6 0.0 0.5 0.3 0.4
0.0 0.1 0.0 0.0 0.2 0.0 0.2 0.1 0.2
0.7 0.3 0.2 0.6 0.5 0.3 0.3 0.4 0.3
0.3 0.2 0.1 0.2 0.3 0.1 0.2 0.2 0.2

(b) Beam Size 50, RNN

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3.3 1.5 2.9 2.5 3.3 2.3 3.7 1.4 3.2
2.8 2.0 2.2 1.8 2.7 1.9 3.2 1.3 2.7
3.2 1.9 2.2 2.1 3.2 2.0 3.3 1.6 2.7
2.6 2.2 1.4 1.1 2.8 1.4 2.9 1.0 1.9
2.0 0.8 2.0 0.8 1.9 1.6 1.7 1.0 1.6
2.3 1.4 1.8 1.4 2.3 1.5 2.5 1.1 2.0

Alpha Alpha-RevS-->L L-->S Ori Ori-Rev Pres-AbsAbs-PresRandom
(c) Greedy Decoding, Transformer
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0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
0.9 1.0 0.3 0.6 1.1 0.5 0.9 0.6 0.8
3.0 2.5 2.8 2.4 2.5 2.5 2.3 2.8 2.8
3.4 3.9 2.5 2.4 3.1 2.0 2.7 3.8 2.2
0.9 1.4 1.8 1.6 1.2 0.8 1.0 2.0 3.1
1.1 0.7 1.3 0.8 0.9 0.8 1.2 1.6 2.1
1.5 1.6 1.4 1.3 1.5 1.1 1.3 1.8 1.8

Alpha Alpha-RevS-->L L-->S Ori Ori-Rev Pres-AbsAbs-PresRandom
(d) Beam Size 50, Transformer

0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1
5.5 5.7 5.2 6.4 7.4 7.0 6.7 5.0 5.4

14.6 14.7 13.0 15.2 14.7 15.9 15.0 11.3 12.5
16.6 14.8 14.0 14.9 16.5 16.7 16.6 11.1 12.9
10.6 14.6 11.0 12.7 12.2 13.7 12.5 7.8 11.2
6.8 6.5 6.6 7.1 7.3 8.2 8.3 6.0 5.7
9.0 9.4 8.3 9.4 9.7 10.3 9.8 6.9 7.9

Figure 11: Absent keyphrase generation testing scores on R@50. Colors represent the relative performance, nor-

malized per row.
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4.3 4.2 2.3 3.4 2.4 2.7 4.0 3.7 2.1
4.7 4.1 3.2 3.8 3.1 2.9 4.2 3.6 2.8
4.8 4.3 3.3 3.9 3.2 3.1 4.3 3.8 2.8
4.6 4.3 3.1 3.8 2.9 2.8 4.2 3.5 2.7
4.8 4.3 3.2 4.0 3.0 2.8 4.2 3.5 2.9
4.8 4.3 3.3 3.8 2.9 3.0 4.5 3.6 2.5
4.7 4.3 3.1 3.8 2.9 2.9 4.2 3.6 2.6

(b) Beam Size 50, RNN

98.3 52.9 95.4 26.3 95.8 27.1 112.1 104.0 70.3
66.8 38.8 69.1 20.9 67.3 20.0 90.3 60.9 39.5
61.4 36.9 64.0 20.9 70.7 20.6 91.4 66.8 38.8
67.7 37.2 71.1 20.0 72.8 19.8 95.3 68.0 42.4
67.8 36.8 71.5 19.2 72.6 19.1 97.2 66.7 45.7
64.1 37.1 69.4 19.9 77.6 20.2 94.3 67.8 44.9
71.0 40.0 73.4 21.2 76.1 21.1 96.8 72.4 46.9

Alpha Alpha-RevS-->L L-->S Ori Ori-Rev Pres-AbsAbs-PresRandom
(c) Greedy Decoding, Transformer
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4.3 4.2 3.8 4.2 3.8 2.6 4.4 3.8 3.4
4.5 4.3 3.8 3.9 4.0 3.3 4.5 3.7 3.9
4.1 4.6 3.6 4.2 3.8 3.5 4.6 3.7 3.1
5.0 4.7 3.9 4.2 4.1 3.4 4.7 4.2 4.0
4.7 4.8 3.7 4.0 4.1 3.3 4.4 3.9 3.7
4.5 4.2 3.8 3.9 4.1 3.3 4.4 3.8 3.7
4.5 4.5 3.8 4.1 4.0 3.2 4.5 3.8 3.6

Alpha Alpha-RevS-->L L-->S Ori Ori-Rev Pres-AbsAbs-PresRandom
(d) Beam Size 50, Transformer

81.4 56.9 156.8 75.8 81.0 37.6 158.4 109.1 93.8
53.5 42.1 102.9 61.2 47.9 31.6 109.9 57.4 56.6
48.2 41.1 93.3 57.3 46.2 29.5 107.8 59.2 50.9
51.6 43.8 110.2 68.1 48.7 29.3 122.3 64.1 60.1
46.6 42.1 104.1 69.9 48.0 28.6 119.0 58.8 57.4
49.9 46.0 100.8 66.6 51.2 30.2 122.4 60.4 57.1
55.2 45.3 111.3 66.5 53.8 31.1 123.3 68.2 62.6

Figure 12: Unique number of keyphrases generated during test. Colors represent the relative performance, normal-

ized per row. Best checkpoints are selected by F1@O scores on KP20K-VALID.
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(b) Beam Size 50, RNN
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21.7 20.3 20.6 15.8 22.1 13.7 23.5 32.5 18.3
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(c) Greedy Decoding, Transformer
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(d) Beam Size 50, Transformer
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Figure 13: Unique number of present keyphrases generated during test. Colors represent the relative performance,

normalized per row. Best checkpoints are selected by F1@O scores on KP20K-VALID.
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(c) Greedy Decoding, Transformer
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Figure 14: Unique number of absent keyphrases generated during test. Colors represent the relative performance,

normalized per row. Best checkpoints are selected by R@50 scores on KP20K-VALID.


