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Abstract

Within the context of event modeling and
understanding, we propose a new method
for neural sequence modeling that takes
partially-observed sequences of discrete, ex-
ternal knowledge into account. We construct
a sequential neural variational autoencoder,
which uses Gumbel-Softmax reparametriza-
tion within a carefully defined encoder, to
allow for successful backpropagation during
training. The core idea is to allow semi-
supervised external discrete knowledge to
guide, but not restrict, the variational latent pa-
rameters during training. Our experiments in-
dicate that our approach not only outperforms
multiple baselines and the state-of-the-art in
narrative script induction, but also converges
more quickly.

1 Introduction

Event scripts are a classic way of summarizing
events, participants, and other relevant information
as a way of analyzing complex situations (Schank
and Abelson, 1977). To learn these scripts we
must be able to group similar-events together, learn
common patterns/sequences of events, and learn
to represent an event’s arguments (Minsky, 1974).
While continuous embeddings can be learned for
events and their arguments (Ferraro et al., 2017;
Weber et al., 2018a), the direct inclusion of more
structured, discrete knowledge is helpful in learn-
ing event representations (Ferraro and Van Durme,
2016). Obtaining fully accurate structured knowl-
edge can be difficult, so when the external knowl-
edge is neither sufficiently reliable nor present, a
natural question arises: how can our models use
the knowledge that is present?

Generative probabilistic models provide a frame-
work for doing so: external knowledge is a random
variable, which can be observed or latent, and the
data/observations are generated (explained) from
it. Knowledge that is discrete, sequential, or both—
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Figure 1: An overview of event modeling, where the ob-
served events (black text) are generated via a sequence
of semi-observed random variables. In this case, the
random variables are directed to take on the meaning
of semantic frames that can be helpful to explain the
events. Unobserved frames are in orange and observed
frames are in blue. Some connections are more impor-
tant than others, indicated by the weighted arrows.

such as for script learning—complicates the devel-
opment of neural generative models.

In this paper, we provide a successful approach
for incorporating partially-observed, discrete, se-
quential external knowledge in a neural genera-
tive model. We specifically examine event se-
quence modeling augmented by semantic frames.
Frames (Minsky, 1974, i.a.) are a semantic repre-
sentation designed to capture the common and gen-
eral knowledge we have about events, situations,
and things. They have been effective in providing
crucial information for modeling and understand-
ing the meaning of events (Peng and Roth, 2016;
Ferraro et al., 2017; Padia et al., 2018; Zhang et al.,
2020). Though we focus on semantic frames as our
source of external knowledge, we argue this work
is applicable to other similar types of knowledge.

We examine the problem of modeling observed
event tuples as a partially observed sequence of
semantic frames. Consider the following three
events, preceded by their corresponding bracketed
frames, from Fig. 1:

[EVENT] crash occurred at station.

[IMPACT] train collided with train.

[KILLING] killed passengers and injured.

We can see that even without knowing the
[KILLING] frame, the [EVENT] and [IMPACT]
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frames can help predict the word killed in the third
event; the frames summarize the events and can be
used as guidance for the latent variables to repre-
sent the data. On the other hand, words like crash,
station and killed from the first and third events
play a role in predicting [IMPACT] in the second
event. Overall, to successfully represent events,
beyond capturing the event to event connections,
we propose to consider all the information from the
frames to events and frames to frames.

In this work, we study the effect of tying discrete,
sequential latent variables to partially-observable,
noisy (imperfect) semantic frames. Like Weber
et al. (2018b), our semi-supervised model is a bidi-
rectional auto-encoder, with a structured collection
of latent variables separating the encoder and de-
coder, and attention mechanisms on both the en-
coder and decoder. Rather than applying vector
quantization, we adopt a Gumbel-Softmax (Jang
et al., 2017) ancestral sampling method to easily
switch between the observed frames and latent
ones, where we inject the observed frame infor-
mation on the Gumbel-Softmax parameters before
sampling. Overall, our contributions are:

¢ We demonstrate how to learn a VAE that
contains sequential, discrete, and partially-
observed latent variables.

* We show that adding partially-observed, ex-
ternal, semantic frame knowledge to our struc-
tured, neural generative model leads to im-
provements over the current state-of-the-art
on recent core event modeling tasks. Our ap-
proach leads to faster training convergence.

* We show that our semi-supervised model,
though developed as a generative model, can
effectively predict the labels that it may not
observe. Additionally, we find that our model
outperforms a discriminatively trained model
with full supervision.

2 Related Work

Our work builds on both event modeling and la-
tent generative models. In this section, we outline
relevant background and related work.

2.1 Latent Generative Modeling

Generative latent variable models learn a mapping
from the low-dimensional hidden variables f to
the observed data points x, where the hidden rep-
resentation captures the high-level information to

explain the data. Mathematically, the joint proba-
bility p(x, f; 0) factorizes as follows

p(x, £;0) = p(f)p(x|f; 0), (1)

where 0 represents the model parameters. Since
in practice maximizing the log-likelihood is in-
tractable, we approximate the posterior by defining
q(f|x; ¢) and maximize the ELBO (Kingma and
Welling, 2013) as a surrogate objective:

x,f;0

Lop = Ey(t)x¢) log M )
In this paper, we are interested in studying a spe-
cific case; the input x is a sequence of 7" tokens,
we have M sequential discrete latent variables
z = {zm}M_,, where each z,, takes F' discrete
values. While there have been effective proposals
for unsupervised optimization of § and ¢, we focus
on learning partially observed sequences of these
variables. That is, we assume that in the training
phase some values are observed while others are
latent. We incorporate this partially observed, ex-
ternal knowledge to the ¢ parameters to guide the
inference. The inferred latent variables later will
be used to reconstruct to the tokens.

Kingma et al. (2014) generalized VAEs to the
semi-supervised setup, but they assume that the
dataset can be split into observed and unobserved
samples and they have defined separate loss func-
tions for each case; in our work, we allow portions
of a sequence to be latent. Teng et al. (2020) charac-
terized the semi-supervised VAEs via sparse latent
variables; see Mousavi et al. (2019) for an in-depth
study of additional sparse models.

Of the approaches that have been developed
for handling discrete latent variables in a neu-
ral model (Vahdat et al., 2018a,b; Lorberbom
et al., 2019, i.a.), we use the Gumbel-Softmax
reparametrization (Jang et al., 2017; Maddison
et al., 2016). This approximates a discrete draw
with logits 7 as softmax(”%rg), where g is a vec-
tor of Gumbel(0, 1) draws and 7 is an annealing
temperature that allows targeted behavior; its ease,
customizability, and efficacy are big advantages.

2.2 Event Modeling

Sequential event modeling, as in this paper, can
be viewed as a type of script or schema induc-
tion (Schank and Abelson, 1977) via language
modeling techniques. Mooney and DeJong (1985)
provided an early analysis of explanatory schema
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Figure 2: Our encoder (left) and decoder (right). The orange nodes mean that the frame is latent (I,,, = 0), while
the blue nodes indicate observed frames (/,,, is one-hot). In the encoder, the RNN hidden vectors are aligned with
the frames to predict the next frame. The decoder utilizes the inferred frame information in the reconstruction.

generating system to process narratives, and Pi-
chotta and Mooney (2016) applied an LSTM-based
model to predict the event arguments. Modi (2016)
proposed a neural network model to predict ran-
domly missing events, while Rudinger et al. (2015)
showed how neural language modeling can be
used for sequential event prediction. Weber et al.
(2018a) and Ding et al. (2019) used tensor-based
decomposition methods for event representation.
Weber et al. (2020) studied causality in event mod-
eling via a latent neural language model.

Previous work has also examined how to incor-
porate or learn various forms of semantic repre-
sentations while modeling events. Cheung et al.
(2013) introduced an HMM-based model to ex-
plain event sequences via latent frames. Materna
(2012), Chambers (2013) and Bamman et al. (2013)
provided structured graphical models to learn event
models over syntactic dependencies; Ferraro and
Van Durme (2016) unified and generalized these
approaches to capture varying levels of semantic
forms and representation. Kallmeyer et al. (2018)
proposed a Bayesian network based on a hierar-
chical dependency between syntactic dependencies
and frames. Ribeiro et al. (2019) provided an anal-
ysis of clustering predicates and their arguments to
infer semantic frames.

Variational autoencoders and attention networks
(Kingma and Welling, 2013; Bahdanau et al., 2014),
allowed Bisk et al. (2019) to use RNNs with at-
tention to capture the abstract and concrete script
representations. Weber et al. (2018b) came up with
a recurrent autoencoder model (HAQAE), which
used vector-quantization to learn hierarchical de-
pendencies among discrete latent variables and an
observed event sequence. Kiyomaru et al. (2019)
suggested generating next events using a condi-

tional VAE-based model.

In another thread of research, Chen et al. (2018)
utilized labels in conjunction with latent variables,
but unlike Weber et al. (2018b), their model’s latent
variables are conditionally independent and do not
form a hierarchy. Sgnderby et al. (2016) proposed
a sequential latent structure with Gaussian latent
variables. Liévin et al. (2019), similar to our model
structure, provided an analysis of hierarchical re-
laxed categorical sampling but for the unsupervised
settings.

3 Method

Our focus in this paper is modeling sequential event
structure. In this section, we describe our varia-
tional autoencoder model, and demonstrate how
partially-observed external knowledge can be in-
jected into the learning process. We provide an
overview of our joint model in §3.1 and Fig. 2. Our
model operates on sequences of events: it consists
of an encoder (§3.2) that encodes the sequence of
events as a new sequence of frames (higher-level,
more abstract representations), and a decoder (§3.3)
that learns how to reconstruct the original sequence
of events from the representation provided by the
encoder. During training (§3.4), the model can
make use of partially-observed sequential knowl-
edge to enrich the representations produced by the
encoder. In §3.5 we summarize the novel aspects
of our model.

3.1 Model Setup

We define each document as a sequence of M
events. In keeping with previous work on event
representation, each event is represented as a lexi-
calized 4-tuple: the core event predicate (verb), two
main arguments (subject and object), and event
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modifier (if applicable) (Pichotta and Mooney,
2016; Weber et al., 2018b). For simplicity, we
can write each document as a sequence of 1" words
w = {wt}thl, where T = 4M and each w; is
from a vocabulary of size V.! Fig. 1 gives an ex-
ample of 3 events: during learning (but not testing)
our model would have access to some, but not all,
frames to lightly guide training (in this case, the
first two frames but not the third).

While lexically rich, this 4-tuple representation
is limited in the knowledge that can be directly
encoded. Therefore, our model assumes that each
document w can be explained jointly with a collec-
tion of M random variables f,,: f = {fm}}_, .
The joint probability for our model factorizes as

T M
plw, £) = [ [ p(wil £.wr) T ol finer).
t=1 m=1
(3)

For event modeling, each f,, represents a semantic
frame. We assume there are F' unique frames and
let f,,, be a discrete variable indicating which frame,
if any, was triggered by event m.?

In the general case, f is completely unobserved,
and so inference for this model requires marginal-
izing over f: when F' >> 1, optimizing the like-
lihood is intractable. We follow amortized varia-
tional inference (Kingma and Welling, 2013) as
an alternative approach and use an ancestral sam-
pling technique to compute it. We define ¢(f|w)
as the variational distribution over f, which can be
thought of as stochastically encoding w as f.

Our method is semi-supervised, so we follow
Kingma et al. (2014), Chen et al. (2018) and Ye
et al. (2020) and optimize a weighted variant of the
evidence lower bound (ELBO),

KL term
Reconstruction term
L = Eq(ﬂw) logp(w]f) -+ aqEq(ﬂw) log p(f) R
q(f|w)
Supervised classification term
—_———
+  acle(q(flw)),
(4)

where L.(q(f|w)) is a classification objective that
encourages ¢ to predict the frames that actually
were observed, and o, and « are empirically-set
to give different weight to the KL vs. classifica-
tion terms. We define L. in §3.4. The reconstruc-

'Table 4 in the Appendix provides all the notations.

2Our model is theoretically adaptable to making use of
multiple frames, though we assume each event triggers at
most one frame.

tion term learns to generate the observed events w
across all valid encodings f, while the KL term
uses the prior p(f) to regularize q.

Optimizing Eq. (4) is in general intractable, so
we sample S chains of variables f(l), . .,_f(S)
from ¢( f|w) and approximate Eq. (4) as

<L (5) )
L N Z [logp('w|f ) + g log q(f(5)|'w)+

S

aelo(a( £ w)]

®)
As our model is designed to allow the injection
of external knowledge I, we define the variational
distribution as ¢(f|w; I). In our experiments, I,
is a binary vector encoding which (if any) frame is
observed for event m.> For example in Fig. 1, we

have I = 1 and I35 = 0. We define

M

q(flw; I) = H q(fmlfm—1, Im, w). (6)

m=1

We broadly refer to Eq. (6) as our encoder; we
detail this in §3.2. In §3.3 we describe how we
compute the reconstruction term, and in §3.4 we
provide our semi-supervised training procedure.

3.2 Encoder

The reconstruction term relies on the frame samples
given by the encoder. As discussed above though,
we must be able to draw chains of variables f, by
iteratively sampling f,,, ~ q(:|fm—1,w;I), in a
way that allows the external knowledge I to guide,
but not restrict, f. This is a deceptively difficult
task, as the encoder must be able to take the exter-
nal knowledge into account in a way that neither
prevents nor harms back-propagation and learning.
We solve this problem by learning to compute a
good representation -,,, for each event, and sam-
pling the current frame f,,, from a Gumbel-Softmax
distribution (Jang et al., 2017) parametrized by -,,,.

Alg. 1 gives a detailed description of our encoder.
We first run our event sequence through a recurrent
network (like an RNN or bi-LSTM); if w is T to-
kens long, this produces 7" hidden representations,
each of size dj,. Let this collection be H € RT*dn,
Our encoder proceeds iteratively over each of the
M events as follows: given the previous sampled
frame f,,_1, the encoder first computes a weighted
embedding e, _, of this previous frame (line 1).

3If a frame is observed, then I,,, is a one-hot vector where
the index of the observed frame is 1. Otherwise I,,, = O.
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Algorithm 1 Encoder: The following algorithm
shows how we compute the next frame f,,, given
the previous frame f,,,_1. We compute and return
a hidden frame representation -y,,,, and f,, via a
continuous Gumbel-Softmax reparametrization.
Input: previous frame f,,,_1, > fr_1 € RF
current frame observation (Z,,,),
encoder GRU hidden states H € R7 ¥4
Parameters: Wi, € R *de T, € RF¥dn,
frames embeddings Ef" € RF *de
Output: f,,, ~v,,
: €fm_1 = fmflTEF
o~ Softmax(HI/Vine]Tmil) > Attn. Scores
cm — H'a > Context Vector
Y < Wou(tanh(Winey, ) + tanh(cp,))
Y < Ym + [ Yonll I > Observation
q(fm|fm—1) < GumbelSoftmax(~,,)
meQ(fm‘fm—l) Dme]RF

AN S o

Next, it calculates the similarity between ey, | and
RNN hidden representations and all recurrent hid-
den states H (line 2). After deriving the attention
scores, the weighted average of hidden states (c¢,,)
summarizes the role of tokens in influencing the
frame f,,, for the m™ event (line 3). We then com-
bine the previous frame embedding ef,, , and the
current context vector ¢,, to obtain a representation
~! . for the m™ event (line 4).

While «/,, may be an appropriate representation
if no external knowledge is provided, our encoder
needs to be able to inject any provided external
knowledge I,,,. Our model defines a chain of
variables—some of which may be observed and
some of which may be latent—so care must be
taken to preserve the gradient flow within the net-
work. We note that an initial strategy of solely
using I, instead of f,,, (whenever I, is provided)
is not sufficient to ensure gradient flow. Instead,
we incorporate the observed information given by
I, by adding this information to the output of the
encoder logits before drawing f;,, samples (line 5).
This remedy motivates the encoder to softly in-
crease the importance of the observed frames dur-
ing the training. Finally, we draw f,, from the
Gumbel-Softmax distribution (line 7).

For example, in Fig. 1, when the model knows
that [IMPACT] is triggered, it increases the value
of [IMPACT] in «,,, to encourage [IMPACT] to be
sampled, but it does not prevent other frames from
being sampled. On the other hand, when a frame is

not observed in training, such as for the third event
([KILLING]), ,, is not adjusted.

Since each draw f,,, from a Gumbel-Softmax is a
simplex vector, given learnable frame embeddings
EF, we can obtain an aggregate frame represen-
tation e,, by calculating e,,, = fo, ' E¥. This can
be thought of as roughly extracting row m from
EF for low entropy draws f,,, and using many
frames in the representation for high entropy draws.
Via the temperature hyperparameter, the Gumbel-
Softmax allows us to control the entropy.

3.3 Decoder

Our decoder (Alg. 2) must be able to reconstruct
the input event token sequence from the frame rep-
resentations f = (fi,..., far) computed by the
encoder. In contrast to the encoder, the decoder is
relatively simple: we use an auto-regressive (left-
to-right) GRU to produce hidden representations
z; for each token we need to reconstruct, but we
enrich that representation via an attention mecha-
nism over f. Specifically, we use both f and the
same learned frame embeddings Ef" from the en-
coder to compute inferred, contextualized frame
embeddings as EM = fEF ¢ RMx*de  For each
output token (time step ), we align the decoder
GRU hidden state h; with the rows of E (line 1).
After calculating the scores for each frame embed-
ding, we obtain the output context vector c; (line 2),
which is used in conjunction with the hidden state
of the decoder z; to generate the w; token (line 5).
In Fig. 1, the collection of all the three frames and
the tokens from the first event will be used to pre-
dict the Train token from the second event.

3.4 Training Process

We now analyze the different terms in Eq. (5). In
our experiments, we have set the number of sam-
ples S to be 1. From Eq. (6), and using the sam-
pled sequence of frames fi, fo,... fas from our
encoder, we approximate the reconstruction term
as Lo, =Y logp(wi|fi, fa, ... far; 2), where 2z
is the decoder GRU’s hidden representation after
having reconstructed the previous ¢ — 1 words in
the event sequence.

Looking at the KL-term, we define the prior
frame-to-frame distribution as p(fu|fm-1) =
1/F, and let the variational distribution capture
the dependency between the frames. A simi-
lar type of strategy has been exploited success-
fully by Chen et al. (2018) to make computa-
tion simpler. We see the computational benefits
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Algorithm 2 Decoder: To (re)generate each token
in the event sequence, we compute an attention
& over the sequence of frame random variables f
(from Alg. 1). This attention weights each frame’s
contribution to generating the current word.
Input: EM ¢ RM*de (computed as fEF)
decoder’s current hidden state z; € R%

Parameters: W, € R%*d T/, € RV*de EF
Output: wy

1: &+ Softmax(EMVAVinzt)
¢ +— EM T& > Context Vector
g+ Wout(tanh(ﬁ/inzt) + tanh(¢;))
p(welf; zt) o exp(g)
we ~ p(we| f; 2t)

> Attn. Scores

of a uniform prior: splitting the KL term into
Eq(flw) 10gp(f) — Eq(fw) log q(f|w) allows us
to neglect the first term. For the second term,
we normalize the Gumbel-Softmax logits -,,,, i.e.,
Y = Softmax(+y,,), and compute

Ly = —Eq(tjw)logq(flw) ~ =>4, log,,.

L, encourages the entropy of the variational dis-
tribution to be high which makes it hard for the
encoder to distinguish the true frames from the
wrong ones. We add a fixed and constant regular-
ization coefficient oy, to decrease the effect of this
term (Bowman et al., 2015). We define the classifi-
cation loss as £, = — Elm>0 ImT log~,,, to en-
courage ¢ to be good at predicting any frames that
were actually observed. We weight £, by a fixed
coefficient .. Summing these losses together, we
arrive at our objective function:

L=Ly+ogLly+ L. (7

3.5 Relation to prior event modeling

A number of efforts have leveraged frame induction
for event modeling (Cheung et al., 2013; Chambers,
2013; Ferraro and Van Durme, 2016; Kallmeyer
et al., 2018; Ribeiro et al., 2019). These meth-
ods are restricted to explicit connections between
events and their corresponding frames; they do not
capture all the possible connections between the ob-
served events and frames. Weber et al. (2018b) pro-
posed a hierarchical unsupervised attention struc-
ture (HAQAE) that corrects for this. HAQAE uses
vector quantization (Van Den Oord et al., 2017) to
capture sequential event structure via tree-based
latent variables.

Our model is related to HAQAE (Weber et al.,
2018b), though with important differences. While
HAQAE relies on unsupervised deterministic infer-
ence, we aim to incorporate the frame information
in a softer, guided fashion. The core differences are:
our model supports partially-observed frame se-
quences (i.e., semi-supervised learning); the linear-
chain connection among the event variables in our
model is simpler than the tree-based structure in
HAQAE; while both works use attention mech-
anisms in the encoder and decoder, our attention
mechanism is based on addition rather than concate-
nation; and our handling of latent discrete variables
is based on the Gumbel-Softmax reparametrization,
rather than vector quantization. We discuss these
differences further in Appendix C.1.

4 Experimental Results

We test the performance of our model on a
portion of the Concretely Annotated Wikipedia
dataset (Ferraro et al., 2014), which is a dump of
English Wikipedia that has been annotated with the
outputs of more than a dozen NLP analytics; we
use this as it has readily-available FrameNet an-
notations provided via SemaFor (Das et al., 2014).
Our training data has 457k documents, our valida-
tion set has 16k documents, and our test set has
21k documents. More than 99% of the frames are
concentrated in the first 500 most common frames,
so we set ' = 500. Nearly 15% of the events
did not have any frame, many of which were due
to auxiliary/modal verb structures; as a result, we
did not include them. For all the experiments, the
vocabulary size (V) is set as 40k and the number
of events (M) is 5; this is to maintain compara-
bility with HAQAE. For the documents that had
more than 5 events, we extracted the first 5 events
that had frames. For both the validation and test
datasets, we have set I,,, = 0 for all the events;
frames are only observed during training.
Documents are fed to the model as a sequence
of events with verb, subj, object and modifier ele-
ments. The events are separated with a special sep-
arating <TUP> token and the missing elements are
represented with a special NONE token. In order to
facilitate semi-supervised training and examine the
impact of frame knowledge, we introduce a user-
set value e: in each document, for event m, the true
value of the frame is preserved in I,,, with probabil-
ity €, while with probability 1 — € we set I,,, = 0.
This € is set and fixed prior to each experiment. For
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PPL Inv Narr Cloze
Model € Valid Test Model € Wiki NYT
RNNLM - 6134 +£2.05 | 61.80 £4.81 Valid Test Valid Test
RNNLM+ROLE | - 66.07 +0.40 | 60.99 +2.11 RNNLM 20.33 £0.56 | 21.37 +£0.98 | 18.11 £0.41 | 17.86 40.80
HAQAE | 24395046 | 21382025 FREHROLE | o | pasat13s | 2054151 | 2211 040
77777777777 “nn A1 190 L neca | Tagcmo 1L =4 - . o . e lsl . . . .

Ours 0.0 41.18 £0.69 | 36.28 £0.74 ¢y == - - [0.0 [ 43.80 £2.03 [ 4575 £3.47 | 2940 £1.17 | 28.63 £0.37
Ours 0.2 ) 38524083 | 3331 +0.63 Ours 02 | 4578 £1.53 | 44.38 £2.10 | 29.50 £1.13 | 29.30 +1.45
Ours 0.4 | 37.79 +£0.52 | 33.12 +0.54 Ours 0.4 | 47.65 +3.40 | 47.88 +3.59 | 30.01 £1.27 | 30.61 +0.37
Ours 0.5 | 35.84 +£0.66 | 31.11 £0.85 Ours 0.5 | 42.38 £2.41 | 40.18 £0.90 | 29.36 £1.58 | 29.95 £0.97
Ours 0.7 | 2420 £1.07 | 21.19 £0.76 Ours 0.7 | 3840 £1.20 | 39.08 £1.55 | 29.15 +0.95 | 30.13 £0.66
Ours 0.8 | 23.68 £0.75 | 20.77 +£0.73 Ours 0.8 | 39.48 £3.02 | 38.96 +2.75 | 29.50 +£0.30 | 30.33 £0.81
Ours 0.9 | 22.5240.62 | 19.84 +0.52 Ours 0.9 | 35.61 £0.62 | 35.56 +£1.70 | 28.41 £0.29 | 29.01 +0.84

(a) Validation and test per-word perplexities (lower (b) Inverse Narrative Cloze scores (higher is better), averaged across 3
is better). We always outperform RNNLM and runs, with standard deviation reported. Some frame observation (¢ = 0.4)
RNNLM+ROLE, and outperform HAQAE when au- is most effective across Wikipedia and NYT, though we outperform our
tomatically extracted frames are sufficiently available baselines, including the SOTA, at any level of frame observation. For the

during training (¢ € {0.7,0.8,0.9}).

NYT dataset, we first trained the model on the Wikipedia dataset and then

did the tests on the NYT valid and test inverse narrative cloze datasets.

Table 1: Validation and test results for per-word perplexity (Table la: lower is better) and inverse narrative cloze
accuracy (Table 1b: higher is better). Recall that € is the (average) percent of frames observed during training

though during evaluation no frames are observed.

all the experiments we set ay and o as 0.1, found
empirically on the validation data.

Setup We represent words by their pretrained
Glove 300 embeddings and used gradient clipping
at 5.0 to prevent exploding gradients. We use a two
layer of bi-directional GRU for the encoder, and
a two layer uni-directional GRU for the decoder
(with a hidden dimension of 512 for both). See
Appendix B for additional computational details.*

Baselines In our experiments, we compare our
proposed methods against the following methods:

* RNNLM: We report the performance of a se-
quence to sequence language model with the
same structure used in our own model. A Bi-
directional GRU cell with two layers, hidden
dimension of 512, gradient clipping at 5 and
Glove 300 embeddings to represent words.

e RNNLM+ROLE (Pichotta and Mooney,
2016): This model has the same structure as
RNNLM, but the role for each token (verb,
subject, object, modifier) as a learnable em-
bedding vector is concatenated to the token
embeddings and then it is fed to the model.
The embedding dimension for roles is 300.

* HAQAE (Weber et al., 2018b) This work is
the most similar to ours. For fairness, we seed
HAQAE with the same dimension GRUs and
pretrained embeddings.

*nttps://github.com/mmrezaee/SSDVAE

4.1 Evaluations

To measure the effectiveness of our proposed model
for event representation, we first report the perplex-
ity and Inverse Narrative Cloze metrics.

Perplexity We summarize our per-word perplex-
ity results in Table 1a, which compares our event
chain model, with varying e values, to the three
baselines.’ Recall that e refers to the (average) per-
cent of frames observed during training. During
evaluation no frames are observed; this ensures a
fair comparison to our baselines.

As clearly seen, our model outperforms other
baselines across both the validation and test
datasets. We find that increasing the observation
probability € consistently yields performance im-
provement. For any value of ¢ we outperform
RNNLM and RNNLM+ROLE. HAQAE outper-
forms our model for € < (.5, while we outperform
HAQAE for € € {0.7,0.8,0.9}. This suggests that
while the tree-based latent structure can be helpful
when external, semantic knowledge is not suffi-
ciently available during training, a simpler linear
structure can be successfully guided by that knowl-
edge when it is available. Finally, recall that the
external frame annotations are automatically pro-
vided, without human curation: this suggests that
our model does not require perfectly, curated anno-
tations. These observations support the hypothesis
that frame observations, in conjunction with latent
variables, provide a benefit to event modeling.

5In our case, perplexity provides an indication of the
model’s ability to predict the next event and arguments.
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Bene (Frames Given Tokens)

kills KILLING DEATH HUNTING_SUCCESS_OR_FAILURE HIT_TARGET ATTACK
paper SUBMITTING_DOCUMENTS ~ SUMMARIZING SIGN DECIDING  EXPLAINING_THE_FACTS
business COMMERCE_PAY COMMERCE_BUY EXPENSIVENESS RENTING REPORTING
Frames Buec (Tokens Given Frames)

" CAusATION [T raise rendered caused  induced  brought
PERSONAL_RELATIONSHIP dated dating married divorced widowed
FINISH_COMPETITION lost compete won competed competes

Table 2: Results for the outputs of the attention layer, the upper table shows the (e and the bottom table shows
the Bgec, When € = 0.7. Each row shows the top 5 words for each clustering. See Table 9 in the Appendix for more

examples.

Inverse Narrative Cloze This task has been pro-
posed by Weber et al. (2018b) to evaluate the abil-
ity of models to classify the legitimate sequence
of events over detractor sequences. For this task,
we have created two Wiki-based datasets from our
validation and test datasets, each with 2k samples.
Each sample has 6 options in which the first events
are the same and only one of the options represents
the actual sequence of events. All the options have
a fixed size of 6 events and the one that has the low-
est perplexity is selected as the correct one. We also
consider two NYT inverse narrative cloze datasets
that are publicly available.® All the models are
trained on the Wiki dataset and then classifications
are done on the NYT dataset (no NYT training data
was publicly available).

Table 1b presents the results for this task. Our
method tends to achieve a superior classification
score over all the baselines, even for small e. Our
model also yields performance improvements on
the NYT validation and test datasets. We observe
that the inverse narrative cloze scores for the NYT
datasets is almost independent from the €. We sus-
pect this due to the different domains between train-
ing (Wikipedia) and testing (newswire).

Note that while our model’s perplexity improved
monotonically as € increased, we do not see mono-
tonic changes, with respect to €, for this task. By
examining computed quantities from our model,
we observed both that a high e resulted in very
low entropy attention and that frames very often
attended to the verb of the event—it learned this
association despite never being explicitly directly
to. While this is a benefit to localized next word
prediction (i.e., perplexity), it is detrimental to in-
verse narrative cloze. On the other hand, lower €
resulted in slightly higher attention entropy, sug-
gesting that less peaky attention allows the model
to capture more of the entire event sequence and
improve global coherence.

*https://git.io/Jkm46

4.2 Qualitative Analysis of Attention

To illustrate the effectiveness of our proposed at-
tention mechanism, in Table 2 we show the most
likely frames given tokens (Senc) , and tokens given
frames (Buec). We define fene = Woy tanh(H )

and Syec = Wou tanh(EM T) where Bene € RFXT
provides a contextual token-to-frame soft cluster-
ing matrix for each document and analogously
Baee € RV*M provides a frame-to-word soft-
clustering contextualized in part based on the in-
ferred frames. We argue that these clusters are
useful for analyzing and interpreting the model and
its predictions. Our experiments demonstrate that
the frames in the encoder (Table 2, top) mostly at-
tend to the verbs and similarly the decoder utilizes
expected and reasonable frames to predict the next
verb. Note that we have not restricted the frames
and tokens connection: the attention mechanism
makes the ultimate decision for these connections.

We note that these clusters are a result of our
attention mechanisms. Recall that in both the en-
coder and decoder algorithms, after computing the
context vectors, we use the addition of two tanh(-)
functions with the goal of separating the GRU hid-
den states and frame embeddings (line 3). This is a
different computation from the bi-linear attention
mechanism (Luong et al., 2015) that applies the
tanh(-) function over concatenation. Our additive
approach was inspired by the neural topic modeling
method from Dieng et al. (2016), which similarly
uses additive factors to learn an expressive and pre-
dictive neural component and the classic “topics”
(distributions/clusters over words) that traditional
topic models excel at finding. While theoretical
guarantees are beyond our scope, qualitative anal-
yses suggests that our additive attention lets the
model learn reasonable soft clusters of tokens into
frame-based “topics.” See Table 6 in the Appendix
for an empirical comparison and validation of our
use of addition rather than concatenation in the
attention mechanisms.
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Valid Test

Model ¢ Acc | Prec fl Acc | Prec fl

RNNLM - 0.89 | 0.73 | 0.66 | 0.88 | 0.71 | 0.65
RNNLM + ROLE - 0.89 | 0.75 | 0.69 | 0.88 | 0.74 | 0.68

“Ours | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00

Ours 0.20 | 0.59 | 0.27 | 0.28 | 0.58 | 0.27 | 0.28
Ours 0.40 | 0.77 | 0.49 | 0.50 | 0.77 | 0.49 | 0.50
Ours 0.50 | 0.79 | 0.51 | 0.48 | 0.79 | 0.50 | 0.48
Ours 0.70 | 0.85 | 0.69 | 0.65 | 0.84 | 0.69 | 0.65
Ours 0.80 | 0.86 | 0.77 | 0.74 | 0.85 | 0.76 | 0.74
Ours 0.90 | 0.87 | 0.81 | 0.78 | 0.86 | 0.81 | 0.79

Table 3: Accuracy and macro precision and F1-score,
averaged across three different runs. We present stan-
dard deviations in Table 5.

4.3 How Discriminative Is A Latent Node?

Though we develop a generative model, we want
to make sure the latent nodes are capable of lever-
aging the frame information in the decoder. We
examine this assessing the ability of one single la-
tent node to classify the frame for an event. We re-
purpose the Wikipedia language modeling dataset
into a new training data set with 1,643,656 samples,
validation with 57,261 samples and test with 75903
samples. We used 500 frame labels. Each sample is
a single event. We fixed the number of latent nodes
to be one. We use RNNLM and RNNLM+ROLE as
baselines, adding a linear classifier layer followed
by the softplus function on top of the bidirectional
GRU last hidden vectors and a dropout of 0.15 on
the logits. We trained all the models with the afore-
mentioned training dataset, and tuned the hyper
parameters on the validation dataset.

We trained the RNNLM and RNNLM+ROLE
baselines in a purely supervised way, whereas our
model mixed supervised (discriminative) and un-
supervised (generative) training. The baselines ob-
served all of the frame labels in the training set; our
model only observed frame values in training with
probability e, which it predicted from ~y,,,. The
parameters leading to the highest accuracy were
chosen to evaluate the classification on the test
dataset. The results for this task are summarized in
Table 3. Our method is an attention based model
which captures all the dependencies in each event
to construct the latent representation, but the base-
lines are autoregressive models. Our encoder acts
like a discriminative classifier to predict the frames,
where they will later be used in the decoder to con-
struct the events. We expect the model performance
to be comparable to RNNLM and RNNLM+ROLE
in terms of classification when € is high. Our model
with larger € tends to achieve better performance in
terms of macro precision and macro F1-score.

\ Model

6 - HAQAE
A Ours (€=0.2)
Z
. 5 - t = Ours (€=0.7)
S v,
= '-.}AA‘ Ours (€=0.9)
=, W

- \‘ " .
.
'; = L) L)
10000 20000
Epoch

Figure 3: Validation NLL during training of our model
with e € {0.2,0.7,0.9} and HAQAE (the red curve).
Epochs are displayed with a square root transform.

4.4 Training Speed

Our experiments show that our proposed approach
converges faster than the existing HAQAE model.
For fairness, we have used the same data-loader,
batch size as 100, learning rate as 10~3 and Adam
optimizer. In Fig. 3, on average each iteration takes
0.2951 seconds for HAQAE and 0.2958 seconds
for our model. From Fig. 3 we can see that for
sufficiently high values of € our model is converg-
ing both better, in terms of negative log-likelihood
(NLL), and faster—though for small €, our model
still converges much faster. The reasons for this can
be boiled down to utilizing Gumbel-Softmax rather
than VQ-VAE, and also injection information in
the form of frames jointly.

5 Conclusion

We showed how to learn a semi-supervised VAE
with partially observed, sequential, discrete latent
variables. We used Gumbel-Softmax and a modi-
fied attention to learn a highly effective event lan-
guage model (low perplexity), predictor of how
an initial event may progress (improved inverse
narrative cloze), and a task-based classifier (outper-
forming fully supervised systems). We believe that
future work could extend our method by incorpo-
rating other sources or types of knowledge (such
as entity or “commonsense” knowledge), and by
using other forms of a prior distribution, such as
“plug-and-play” priors (Guo et al., 2019; Moham-
madi et al., 2021; Laumont et al., 2021).
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A Table of Notation

Symbol Description Dimension
F Frames vocabulary size N
Vv Tokens vocabulary size N
M Number of events, per sequence N
T Number of words, per sequence (4M) N
de Frame emb. dim. N
dp, RNN hidden state dim. N
ET Learned frame emb. R de
EM Embeddings of sampled frames (B = fET) RMxde
Iy Observed frame (external one-hot) RF
fm Sampled frame (simplex) RT
H RNN hidden states from the encoder RT*dn
2 RNN hidden state from the decoder R
Win Learned frames-to-hidden-states weights (Encoder) RInxde
I/V,“ Learned hidden-states-to-frames weights (Decoder) Rexdn
Wout Contextualized frame emb. (Encoder) RF>dn
Wout Learned frames-to-words weights (Decoder) RV *de
« Attention scores over hidden states (Encoder) RT
& Attention scores over frame emb. (Decoder) RM
[ Context vector (Encoder) R
ct Context vector (Decoder) R%
Ym Gumbel-Softmax params. (Encoder) RT
wy Tokens (onehot) RY

Table 4: Notations used in this paper

B Computing Infrastructure

We used the Adam optimizer with initial learning
rate 10~3 and early stopping (lack of validation
performance improvement for 10 iterations). We
represent events by their pretrained Glove 300 em-
beddings and utilized gradient clipping at 5.0 to
prevent exploding gradients. The Gumbel-Softmax
temperature is fixed to 7 = 0.5. We have not used
dropout or batch norm on any layer. We have used
two layers of Bi-directional GRU cells with a hid-
den dimension of 512 for the encoder module and
Unidirectional GRU with the same configuration
for the decoder. Each model was trained using
a single GPU (a TITAN RTX RTX 2080 TI, or
a Quadro 8000), though we note that neither our
models nor the baselines required the full memory
of any GPU (e.g., our models used roughly 6GB of
GPU memory for a batch of 100 documents).

C Additional Insights into Novelty

We have previously mentioned how our work is
most similar to HAQAE (Weber et al., 2018b).
In this section, we provide a brief overview of
HAQAE (Appendix C.1) and then highlight dif-
ferences (Fig. 4), with examples (Appendix C.2).

C.1 Overview of HAQAE

HAQAE provides an unsupervised tree structure
based on the vector quantization variational autoen-
coder (VQVAE) over M latent variables. Each

VQ-VAE

b e
'”’"’J;— € I )
: Min Distance

Query

dp

(a) VQVAE

Gumbel-Softmax

Query [E— )
I ) | )1

Simpl : .

(Simplex) : ¢p Vector to Matrix

Multiplication

(b) Gumbel-Softmax and Emb (ours)

Figure 4: (a) VQ-VAE in HAQAE works based on the
minimum distance between the query vector and the
embeddings. (b) our approach first draws a Gumbel-
Softmax sample and then extracts the relevant row by
doing vector to matrix multiplication.

latent variable z; is defined in the embedding space
denoted as e. The varaitional distribution to ap-
proximate z = {z1, 22, . .. ,zM}ﬁ\il given tokens
x is defined as follows:
M-1
q(zlz) = qo(z0|z) [ ai(zilparent_of(z;), z).
i=1
The encoder calculates the attention over the input
RNN hidden states h,, and the parent of z; to define
qi(zi = k|zi—1,x):

1 k= argmin,||g;(z, parent_of(z;)) — e;;l|2

0 elsewise,

where g;(x, parent_of(z;)) computes bilinear atten-
tion between h,, and parent_of(z;)).

In this setting, the variational distribution is de-
terministic; right after deriving the latent query vec-
tor it will be compared with a lookup embedding ta-
ble and the row with minimum distance is selected,
see Fig. 4a. The decoder reconstructs the tokens
as p(x;|z) that calculates the attention over latent
variables and the RNN hidden states. A reconstruc-
tion loss Lf“ and a “commit” loss (Weber et al.,
2018b) loss LJC force g;(x, parent_of(z;)) to be
close to the embedding referred to by ¢;(z;). Both
Lf and LJC terms rely on a deterministic mapping
that is based on a nearest neighbor computation
that makes it difficult to inject guiding information
to the latent variable.

C.2 Frame Vector Norm

Like HAQAE, we use embeddings E instead
of directly using the Gumbel-Softmax frame sam-
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Valid Test

Model € Acc Prec f1 Acc Prec f1

RNNLM - 0.89 £0.001 | 0.73 £0.004 | 0.66 +0.008 | 0.88 £0.005 | 0.71 £0.014 | 0.65 +0.006
RNNLM + ROLE - 0.89 £0.004 | 0.75 £0.022 | 0.69 +0.026 | 0.88 £0.005 | 0.74 +0.017 | 0.68 +0.020

“Ours 0.00 | 0.00 £0.001 | 0.00 0.001 | 0.00 £0.000 | 0.00 £0.001 | 0.00 +0.000 | 0.00 £0.000

Ours 0.20 | 0.59 £0.020 | 0.27 +£0.005 | 0.28 +0.090 | 0.58 £0.010 | 0.27 +0.050 | 0.28 +0.010
Ours 0.40 | 0.77 £0.012 | 0.49 £0.130 | 0.50 £0.010 | 0.77 £0.010 | 0.49 £0.060 | 0.50 £0.010
Ours 0.50 | 0.79 +£0.010 | 0.51 £0.080 | 0.48 £0.080 | 0.79 +£0.009 | 0.50 £0.080 | 0.48 4+0.050
Ours 0.70 | 0.85 +0.007 | 0.69 £0.050 | 0.65 £0.040 | 0.84 +0.013 | 0.69 £0.050 | 0.65 £0.020
Ours 0.80 | 0.86 £0.003 | 0.77 £0.013 | 0.74 £0.006 | 0.85 £0.005 | 0.76 £0.008 | 0.74 +0.010
Ours 0.90 | 0.87 £0.002 | 0.81 £0.007 | 0.78 £0.006 | 0.86 £0.011 | 0.81 +0.020 | 0.79 +0.010

Table 5: Accuracy and macro precision and F1-score, averaged across 3 runs, with standard deviation reported.

Addition Concatenation
Valid Test

48.86 £0.13 | 42.76 £0.08
48.73 £0.18 | 42.76 £0.06
49.34 £0.32 | 43.18 £0.21
49.83 £0.24 | 43.90 +0.32
52.41 £0.38 | 45.97 £0.48
55.13 £0.31 | 48.27 £0.21
58.63 +0.25 | 51.39 +0.34

Valid
41.18 £0.69
38.52 £0.83
37.79 £0.52
35.84 £0.66
24.20 £1.07
23.68 £0.75
22.5240.62

Test
36.28 +0.74
33.31 +£0.63
33.12 +0.54
31.11 +0.85
21.19 £0.76
20.77 £0.73
19.84 £0.52

Table 6: Validation and test per-word perplexities with
bilinear-attention (lower is better).

ples. In our model definition, each frame f,, =
[fm.1, fm2s .., fm ] sampled from the Gumbel-
Softmax distribution is a simplex vector:

F
0< fmi <1, D> fmi=1 @
=1

S0 || fllo= (S5, #2007 < FY7. After sam-
pling a frame simplex vector, we multiply it to the
frame embeddings matrix E¥'. With an appropri-
ate temperature for Gumbel-Softmax, the simplex
would be approximately a one-hot vector and the
multiplication maps the simplex vector to the em-
beddings space without any limitation on the norm.

D More Results

In this section, we provide additional quantitative
and qualitative results, to supplement what was
presented in §4.

D.1 Standard Deviation for Frame
Prediction (§4.3)

In Table 5, we see the average results of classifi-
cation metrics with their corresponding standard
deviations.

D.2 Importance of Using Addition rather
than Concatenation in Attention

To demonstrate the effectiveness of our proposed
attention mechanism, we compare the addition

against the concatenation (regular bilinear atten-
tion) method. We report the results on the
Wikipedia dataset in Table 6. Experiments indicate
that the regular bilinear attention structure with
larger e obtains worse performance. These results
confirm the claim that the proposed approach bene-
fits from the addition structure.

D.3 Generated Sentences

Recall that the reconstruction loss is

1 S S S
Ly ~ Sglogp(WIfl( ),fé ). --f](w);Z),

where ff{f) ~ q(fm]ffrf)_l, I, w). Based on these
formulations, we provide some examples of gener-
ated scripts. Given the seed, the model first predicts
the first frame f7, then it predicts the next verb v;
and similarly samples the tokens one-by-one. Dur-
ing the event generations, if the sampled token is
unknown, the decoder samples again. As we see in
Table 7, the generated events and frames samples
are consistent which shows the ability of model in
event representation.

D.4 Inferred Frames

Using Alg. 1, we can see the frames sampled dur-
ing the training and validation. In Table 8, we
provide some examples of frame inferring for both
training and validation examples. We observe that
for training examples when € > 0.5, almost all the
observed frames and inferred frames are the same.
In other words, the model prediction is almost the
same as the ground truth.

Interestingly, the model is more flexible in sam-
pling the latent frames (orange ones). In Table 8a
the model is estimating HAVE_ASSOCIATED in-
stead of the POSSESSION frame. In Table 8b,
instead of PROCESS_START we have ACTIV-
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Seed Event 1

Event 2

elected taylor election at [CHANGE_OF_LEADERSHIP]
graduated ford berkeley at [SCRUTINY]

released album 2008 in [RELEASING]

created county named and [INTENTIONALLY_CREATE]
published he december on [SUMMARIZING]

played music show on [PERFORMERS_AND_ROLES]
aired series canada in [EXPRESSING_PUBLICLY
consists band members of [INCLUSION]

served she attorney as [ASSISTANCE]

earned he theology in [EARNINGS_AND_LOSSES]
helped song lyrics none [ ASSISTANCE]

totals district population of [AMOUNTING_TO]
written book published and [TEXT_CREATION]
starred film music none [PERFORMERS_AND_ROLES]
features series stories none [INCLUSION]

belong music party to [MEMBERSHIP]

sworn she house to [COMMITMENT]
documented he book in [RECORDING]
made chart song with [CAUSATION]
served district city none [ASSISTANCE]
place book stories among [PLACING]
tend lyrics music as [LIKELIHOOD]
abused characters film in [ABUSING]
leads music genre into [CAUSATION]

Table 7: Generated scripts and the inferred frames (in brackets) from the seed event in boldface (¢ = 0.7)

ITY_START and finally in Table 8d we have TAK-
ING_SIDES rather than SUPPORTING.

Some wrong predictions like CATASTROPHE in-
stead of CAUSATION in Table 8c can be considered
as the effect of other words like “pressure" in “re-
sulted pressure revolution in". In some cases like
Table 8b the predicted frame BEING_NAMED is a
better choice than the ground truth APPOINTING.
In the same vein FINISH_COMPETITION is a better
option rather than GETTING in Table 8f.

D.5 Clustering

Here we provide more examples for Bene and Bgec
in Table 9. Our experiments show that by sorting
the tokens in each frame, the first 20 words are
mostly verbs. And among different token types,
verbs are better classifiers for frames.

Event Ground Truth Inferred Frame
1 | estimated product prices in ESTIMATING ESTIMATING
2 | rose which billions to CHANGE_POSITION_ON_A_SCALE | CHANGE_POSITION_ON_A_SCALE
3 | had per as_of POSSESSION POSSESSION
4 | houses mumbai headquarters none | BUILDINGS BUILDINGS
5 | have % offices none POSSESSION HAVE_ASSOCIATED
(a) Example 1 (training)
Event Ground Truth Inferred Frame
1 | competed she olympics in | WIN_PRIZE WIN_PRIZE
2 | set she championships at | CAUSE_TO_START | CAUSE_TO_START
3 | named she <unk> in APPOINTING BEING_NAMED
4 | started she had but PROCESS_START ACTIVITY_START
5 | had she height because_of | POSSESSION POSSESSION
(b) Example 2 (training)
Event Ground Truth Inferred Frame
1 | arose that revolution after COMING_TO_BE COMING_TO_BE
2 | supported who charter none TAKING_SIDES TAKING_SIDES
3 | developed pressure classes from | PROGRESS PROGRESS
4 | remained monarchy run and STATE_CONTINUE | STATE_CONTINUE
5 | resulted pressure revolution in CAUSATION CATASTROPHE
(c) Example 3 (training)
Event Ground Truth | Inferred Frame
1 | features it form in INCLUSION INCLUSION
2 | allows format provides and PERMITTING | DENY_PERMISSION
3 | provides format forum none SUPPLY SUPPLY
4 | rely readers staff upon RELIANCE RELIANCE
5 | support citations assertions none | SUPPORTING | TAKING_SIDES
(d) Example 4 (validation)
Event Ground Truth Inferred Frame
1 | attended he university none | ATTENDING ATTENDING
2 | moved he 1946 in MOTION TRAVEL
3 | married he yan in PERSONAL_RELATIONSHIP | FORMING_RELATIONSHIPS
4 | worked they moved and BEING_EMPLOYED BEING_EMPLOYED
5 | moved they beijing to MOTION MOTION
(e) Example 5 (validation)
Event Ground Truth Inferred Frame
1 | had he achievements none | POSSESSION HAVE_ASSOCIATED
2 | competed he finished and | FINISH_COMPETITION REQUIRED_EVENT
3 | finished he relay in PROCESS_COMPLETED_STATE | ACTIVITY_DONE_STATE
4 | set he three between INTENTIONALLY_CREATE INTENTIONALLY_CREATE
5 | won he championships at | GETTING FINISH_COMPETITION

(f) Example 6 (validation)

Table 8: Sequences of 5 events and the inferred frames
during training with partial frame observation, and val-
idation without any observation. Blue frames are ob-
served and orange frames are latent.

4715



S3SI0pUR pasIopu? Sunioddns papis pauoddns SAAIS  ONIIV],
jl5) pawnsuod JuLp Yueip uares NOLLSAON]T
Nrem paouep uex sy[em pajres NOILOW 414§
papn[oxa apnjour sapnpout papnjour Surejuod NOISNTON]
pa[nx soprsaxd sIo)sIuIIpe poIaIsIuIupe SUIA0T dIHSYAAVA]
SOS6[-prut parodwod sajadwod odwoo Sunodwoo HZ1dd NIM
pareradood porouyred powred) PpajRIOqE[[0d arerodood NOILVYO™VT10D
pajsaLIe-a1 porrel payooq popuayaidde pajsaLe LSAYYY
sie ssa1dxo s9ssardxo padtoA paare AT10I'1940d” ONISSTAIXH
uNLIM payeIp sasodwod paloyjne pasodwod NOLLVHYD " LXAL
PassaJuOod [eaAa1 PIso[ISIp pafeaAal pasodxa LAYDAS TVIATY
MIIYLIIAO pa[eIsur SIO[[IOUNOd $109[0 Pa1o9[o JIHSYAAVAT d0 AONVHD
paisisse sdjoy PpaAIas SOAIOS QAIOS HAONVLSISSV
anouoy paqed umouy papnua pawreu AQIAINVN ONIAg
pasnooe pasrexd PasIoNLId pasreyd PazZIonLID NOILVOINNIWINOD  INAWOAN[
Jo)001 jooys s100(s paiy payoune| SATLLOALOYd LOOHS
pasnooe pasrexd pasIonNLId pagreyo Ppazronto NOILVDINNWINOD  INIWHAN[
Jox001 jooys sj00ys paiy payoune| SATLLOALOYd LOOHS
\\\\\\\\ s3  paum Qwedaq SAW029q QW029q HONINODAY
(SHIN VY J UDALL) SUIYO],)>Pg/ sowrel
HLIM ™ dN~ ONINOD J014s4dns ag dIHS¥davaT ALITIINTOA DONISOOHD udISoYd
SHSSOT ANV~ SONINIVH ONIYINONOD ONIAID ANd HOYIHWNOD ONILLID paurejqo
NOILOW™ SSVIA HONVHO OD¥HAN(] LYVLS™ SSHO0¥] ONIATIYY L4VLST ALIALLOY paIdud
AdVANNOY NOISSNOSIAq HONVINIVAOOV dMVIN HLIM ™ LA YHHLIDOL dN0D Pm
YIHLIDOL HNO0D HNIHLOD ONILNIOddY NOILVI09VT10D MHEWAN V- ONINODEY PIISud
ONILLED daLVIDOSSY HAVH LOHd4dV ™ ATTVNOILNELN] ONISYHAVYL ONIAINYY pauanjax
NOISNVAXH AdvANNoOg dNTONILLED 4TVISTV NO NOILISOd dONVHD  TVNOILOH¥IA NOLLOJA 3sox
ONISVHTEY ONIAVH WO¥d ™ LNHAZEd ONIINLOVANNVIA AN OYHNINOD TT4STHOYHNINOD pIos
ONIATNYY JdIHSYHAVET 40 dONVHD TOYLNOD HONVHO OD¥HAN(] DNISYHAV Y], passed
ONIQEAN A1ddnS ONIONIIY ONILLED ONIAID Aed
ystuyK)NAnoy juowdaISe usig snye)s~£0a100g 111)ST§59001d LIVLSTALIALLOY Jae)s
40 ¥HONHAIYEIX T ALIAVTINIS HONAAIAY dsviD HONHIYHIXH NOLLIHD¥Ed s
NOISNVAXH dSNv) AN HIOYINNOD HONHAISHY NOILVT4d dALLVDO] SONIATING sasnoy
NOILVSNVD 44 0L ONINOD AONVHO dSNv) ONILYHEA)D ALVAID ATTIVNOLLNALN] pajead
DNIAVAN] ONILVIVIES A¥vANNog TOYLNOD NOLLVNLIS HLVNINOQ pajeuriop
ONLLVEYD HONVHD dSNv) ALVAYD” ATIVNOLLNHLN] ONIINLOVANNVIA NOILVSNYD Jpewr
ONIHOVHL NOILLYONAYg TVNOILVYHdO™ ONIIg ONIIIH NO ONINIOM AIAOTdNE” ONIAY padyIom
HLvaq ONILLINO FINTIVA YO~ SSHOONS NOILLVAIDILIV] YHLNNOONE dTILSOH 143noy
HNIL FALLY 1Y HIVLS ANOd ™ ALIALLDY NOILLVTHY NOLLYVINQ LIVLS™ SSED0¥d LAVLSTALIAILOY Jae)s
__ IYNOLVAJOTONIEE ay ONRIH_ g ) IORTRERS: I R PayOIXa
(SQIDA UDALD) STIN VYY) g SQIOA

layer, the upper table shows the (., and the bottom table shows

ion
the Bgec, when € = 0.7. Each row shows the top 5 words for each clustering.

Results for the outputs of the attenti

Table 9
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