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Abstract

Word Sense Disambiguation (WSD) is a his-
torical NLP task aimed at linking words in
contexts to discrete sense inventories and it
is usually cast as a multi-label classification
task. Recently, several neural approaches
have employed sense definitions to better rep-
resent word meanings. Yet, these approaches
do not observe the input sentence and the
sense definition candidates all at once, thus
potentially reducing the model performance
and generalization power. We cope with this
issue by reframing WSD as a span extrac-
tion problem — which we called Extractive
Sense Comprehension (ESC) — and propose
ESCHER, a transformer-based neural architec-
ture for this new formulation. By means of
an extensive array of experiments, we show
that ESC unleashes the full potential of our
model, leading it to outdo all of its competi-
tors and to set a new state of the art on the
English WSD task. In the few-shot scenario,
ESCHER proves to exploit training data ef-
ficiently, attaining the same performance as
its closest competitor while relying on almost
three times fewer annotations. Furthermore,
ESCHER can nimbly combine data annotated
with senses from different lexical resources,
achieving performances that were previously
out of everyone’s reach. The model along with
data is available at https://github.com/
SapienzaNLP/esc.

1 Introduction

Being able to link a piece of raw text to a knowl-
edge base is fundamental in NLP (Navigli, 2009;
McCoy et al., 2019; Bender and Koller, 2020), as
it can aid neural models to ground their represen-
tations on structured resources and enable Natural
Language Understanding (Navigli, 2018). A task
that is key to achieving this goal is Word Sense
Disambiguation (WSD), where, given a sentence

∗∗Work carried out while at the Sapienza University of
Rome.

with a target word, a model has to predict its most
suitable meaning from a predefined set of labels,
i.e., its senses. WSD has not only considerably
improved its performance with the advent of deep
learning (by around 15 F1 points in 15 years), but
it has also shown its benefits in downstream appli-
cations such as Neural Machine Translation (Liu
et al., 2018; Pu et al., 2018) and Information Ex-
traction (Moro and Navigli, 2013; Delli Bovi et al.,
2015), while also being leveraged to enrich the
contextual representations of neural models (Peters
et al., 2019; Zhang et al., 2019). However, WSD
has mostly been framed as a multi-label classifi-
cation task (Raganato et al., 2017b; Hadiwinoto
et al., 2019) over a very large vocabulary of dis-
crete senses. This formulation may limit a model’s
capabilities to properly represent word meanings,
as each sense is only defined by means of its occur-
rences in a training set, while its inherent meaning
remains linguistically unexpressed. Furthermore,
rare or unseen senses are either poorly modeled
or cannot be modeled at all. These problems have
recently been mitigated by integrating sense defi-
nitions (glosses) within neural architectures (Ku-
mar et al., 2019; Huang et al., 2019; Blevins and
Zettlemoyer, 2020). Yet, despite their large im-
provements, none of these models attends all the
possible definitions of a target word at once, and
therefore each lacks the ability to represent both the
input context and the candidate definitions together.

Inspired by the Extractive Reading Comprehen-
sion framework (Rajpurkar et al., 2016) in the
field of Question Answering (QA), we cope with
these issues and reframe the WSD problem as a
novel text extraction task, which we have called
Extractive Sense Comprehension (ESC). In this
setting, a model receives as input a sentence with
a target word and all its possible sense definitions.
Then, we request the model to extract the text
span associated with the gloss expressing the target
word’s most suitable meaning. Within this frame-

https://github.com/SapienzaNLP/esc
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work, we also propose a transformer-based archi-
tecture (ESCHER) that implements the ESC task by
attending to the input context and target word defi-
nitions jointly. Through an extensive experimental
setting, we show that ESCHER surpasses former
state-of-the-art approaches by a large margin while,
at the same time, requiring almost 3 times less
training data points to attain performances com-
parable to its strongest competitor in a few-shot
setting. Furthermore, thanks to our new formula-
tion, the proposed model can effectively carry out
predictions across different sense repositories and
combine distinct inventories with unmatched nim-
bleness, attaining even higher results than when
limited to a single resource only.

To summarize, this paper brings the following
novel contributions:

1. The Extractive Sense Comprehension task
(ESC), i.e., a reframing of the Word Sense
Disambiguation problem.

2. ESCHER: a transformer-based architecture for
ESC, outperforming all the other modern ar-
chitectures on the WSD task.

3. An extensive study of the proposed model in
different training regimes, i.e., in 0-shot, few-
shot and fully-supervised settings.

4. A study on combining data annotated with
distinct lexicographic resources.

Besides its performance advantages, ESC also
comes with other benefits: it does not require a
large output vocabulary, and it eases the joint use
of corpora annotated with different inventories.

2 Related Work

Word Sense Disambiguation (WSD) is one of the
long-standing problems in lexical semantics, in-
troduced for the first time in the context of Ma-
chine Translation by Weaver (1949). WSD aims
at linking a word in context to its most suitable
meaning in a predefined sense inventory, which
is usually a dictionary where each entry defines a
concept via a definition (gloss) and a set of exam-
ples. Most approaches to WSD rely on WordNet
(Miller et al., 1990) as the underlying inventory
of senses for the English language, and SemCor
(Miller et al., 1993) as training corpus. WordNet
organizes lexical-semantic information by means
of a graph where sets of synonyms are grouped into

synsets (concepts) and edges are typed semantic
relations.

While early neural models used WordNet as a
mere repository of senses (Raganato et al., 2017b;
Hadiwinoto et al., 2019), more recent approaches
have started to exploit sense definitions (Kumar
et al., 2019; Blevins and Zettlemoyer, 2020) and re-
lational information (Bevilacqua and Navigli, 2020;
Conia and Navigli, 2021). Sense definitions, in par-
ticular, have been shown to be effective for mod-
eling word senses (Luo et al., 2018; Kumar et al.,
2019), as they provide information orthogonal to
that available in the training data. This has been
further investigated under different perspectives
by Huang et al. (2019, GlossBERT), Blevins and
Zettlemoyer (2020, BEM) and Bevilacqua et al.
(2020, Generationary). GlossBERT casts the WSD
problem as a binary classification task where, given
a word in context and one of its dictionary defini-
tions, it determines whether this definition matches
the word meaning expressed in the context. BEM
employs a bi-encoder to represent the target word
and its sense definitions within the same space.
Generationary, instead, has predefined sense in-
ventories at its disposal and directly generates a
definition given a word in its context. The strength
of these approaches lies in the fact that glosses al-
low senses that are under-represented within the
training corpus to be modeled, hence mitigating
the long-standing paucity of sense-annotated data
(Pasini, 2020). Nevertheless, none of the above
approaches can exploit all definitions at once: in-
deed, glosses are either provided one at a time
(GlossBERT), modeled with one vector only and
independently from each other (BEM), or used in-
dividually as target text to be generated (Genera-
tionary).

Our new formulation (ESC) for the WSD prob-
lem stands out from previous approaches inasmuch
as it is the first to access the input context and all
the target word’s definitions together, while, at the
same time, dropping the requirement of a prede-
fined sense inventory. Indeed, differently from its
competitors, our proposed approach (ESCHER) can
scale effectively across different lexical resources
even when they were not available at the time of
training.

3 Methodology

In what follows, we first formalize the Extractive
Sense Comprehension task (Section 3.1), then in-
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Figure 1: Depiction of ESCHER. The model takes as input a sentence concatenated with all the target word’s
definitions and outputs two indices indicating the start and end token in the input text of the target word definition.

troduce ESCHER, a transformer-based architecture
for ESC (Section 3.2), and finally put forward a
novel approach for mitigating the bias towards the
most frequent meanings (Kilgarriff, 2004) within
training data (Section 3.3).

3.1 Extractive Sense Comprehension

To unleash the full potential of attention-based
models on the Word Sense Disambiguation task,
we reframe WSD as a span-extraction prob-
lem. Formally, given a sense inventory S, we
first define the definitional context Dŵ for the
target word ŵ as the concatenation of all the
possible definitions d1, . . . , dk in S for ŵ, i.e.,
Dŵ = wd1

1 . . . wd1
|d1| . . . w

dk
1 . . . wdk

|dk|, where wdz
i is

the i-th word of the gloss dz (1 ≤ z ≤ k). Then,
we reformulate the task as follows: given a target
word ŵ, a context c in which ŵ occurs and the
definitional context Dŵ, a model has to find the
interval [i∗, j∗] in Dŵ which identifies the correct
definition d∗ ∈ Dŵ of ŵ in c. This formulation,
on the one hand, aids to better characterize word
meanings, thanks to the inclusion of all the target
word definitions as additional input. On the other
hand, it also relieves the burden of a large output
vocabulary – typically in the order of tens of thou-
sands of meanings – which makes the classification
cumbersome.

3.2 ESCHER

We now introduce a transformer-based model for
the ESC task (Figure 1). It takes as input a context

c with a target word ŵ1 concatenated withDŵ. The
target word ŵ is surrounded by the tags <t> and
</t> and each definition in Dŵ has the first letter
capitalized and a period at the end. We separate the
context c and the definitional context Dŵ with the
special symbol </s> and surround the whole text
with the tags <s> and </s>.2

Formally, given the input:

m =<s> w1 . . . <t> ŵ </t> . . . wn </s>

wd1
1 . . . wd1

|d1| . . . w
dk
1 . . . wdk

|dk| </s>

of length l, the model computes the span (i, j) con-
taining the predicted gloss for the target word ŵ as
follows:

H = transformer(m)

Z =W TH + b

Zs =
[
Z11 . . . Z1l

]
Ze =

[
Z21 . . . Z2l

]
where transformer can be any transformer-
based architecture, H ∈ Rf×l is the matrix of
hidden states,3 and W ∈ Rf×2 and b ∈ R2 are
trainable parameters. Zs and Ze are two variables
containing the logits for each word wu indicating,
respectively, whether it is the start or the end of the
correct definition for target word ŵ.

1For the sake of simplicity, in the following we use word
to refer to subwords, words and multiwords.

2The <s> and </s> tags can be any special token in
a model vocabulary that have been used to divide texts at
pretraining time.

3f indicates the number of dimensions of each hidden
state.
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Finally, we train the model by averaging two
distinct cross-entropy losses that we compute for
the start and end indices:

Ls = −Zs
i∗ + log

l∑
v=1

exp(Zs
v)

Le = −Ze
j∗ + log

l∑
v=1

exp(Ze
v)

where Zs
i∗ and Ze

j∗ are the scores associated with
the correct start and end indices.

At prediction time, rather than allowing the sys-
tem to output a span that does not correspond pre-
cisely to any definition in Dŵ, the model outputs a
pair (i, j) such that a definition dk ∈ Dŵ starts in i
and ends in j and its probability is the maximum
across all the other gloss spans in Dŵ. Formally,
the model selects its output as follows:

output = argmax
(i,j)

P (wi, wj)

P (wi, wj) = P (wi = start | Zs)×
P (wj = end | Ze)

P (wu = start | Zs) =
exp(Zs

u)∑l
v=1 exp(Z

s
v)

P (wu = end | Ze) =
exp(Ze

u)∑l
v=1 exp(Z

e
v)

where P (wu = start | Zs) and P (wu = end |
Ze) indicate the probability that wu is the start or
the end of any of the k definitions, respectively.

3.3 Rebalancing the Most Frequent Sense
Bias

While our approach already allows all the possi-
ble definitions of a word to be contextualized by
jointly encoding them together with the context
sentence, it may still suffer from the high unbal-
ance in sense distribution (Kilgarriff, 2004) and be
biased towards the most frequent definition regard-
less of its contextualization. Our framework allows
this issue to be dealt with in an elegant way, which
we have called Gloss Noise (GN). GN counterbal-
ances this bias by lowering the prior probability
of the most frequent glosses. That is, inspired by
the negative sampling technique (Mikolov et al.,
2013), GN adds, to each training example, k fre-
quent definitions that are not related to the target
word. We sample the k glosses from the following
multinomial distribution:

p(di) =
fdi∑|D|
j=1 fdj

where D is the set of all possible definitions in
the training set and fdi is the frequency of the i-th
definition in a sense-tagged corpus. The value of
k, instead, is sampled from a Poisson distribution
with λ = 1, so that the expected number of added
definitions is equal to 1. This allows the discrep-
ancy between the training and prediction phases to
be kept as small as possible, while also introducing
negative signals for frequent senses. Indeed, Gloss
Noise ensures that the expected number of times a
definition is added as a negative example is equal
to the number of times it is seen as a correct one,
thereby counterbalancing the high rate at which fre-
quent definitions are seen only as positive examples
without overly affecting rare senses.

4 Standard WSD Evaluation

In this Section we introduce the experimental set-
ting we use to evaluate the proposed framework
and neural architecture.

4.1 Setup

Data We use the evaluation suite made available
by Raganato et al. (2017a) for the English Word
Sense Disambiguation task. It includes SemCor
(Miller et al., 1993) for training, i.e., a corpus con-
taining 33,362 sentences and 226,036 instances
annotated manually with senses from WordNet
3.0. As common practice, we use SemEval-2007
(SE07; Pradhan et al., 2007) as development
set. For testing, we consider all the remaining
datasets in the suite, i.e., Senseval-2 (SE2; Ed-
monds and Cotton, 2001), Senseval-3 (SE3; Sny-
der and Palmer, 2004), SemEval-2013 (SE13; Nav-
igli et al., 2013), SemEval-2015 (SE15; Moro and
Navigli, 2015) and their concatenation (ALL).4

In order to measure the extent to which systems
generalize to rare and unseen words and definitions
(zero-shot settings), we also consider five other test
sets that we created from the ALL dataset:

i) MFS, which contains test instances tagged
with the most frequent sense for the target
word in the training set;

ii) LFS, which contains test instances that are
tagged with a sense that is not the most fre-
quent for the target word and that was seen at
least once during training;

4We note that the evaluation suite includes the dev set, i.e.,
SemEval-2007, within the ALL dataset, and so do we.
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iii) 0-lex, which contains test instances whose lex-
eme5 was never seen as a target word during
training;

iv) 0-lex-def,6 which contains test instances with
a definition that was never seen associated
with the target lexeme during training;

v) 0-def, which contains test instances whose
definition has never been seen during training.
We note that 0-def differs from 0-lex-def as a
definition is tied in WordNet to a synset, i.e.,
a set of synonymous senses, rather than to a
sense; therefore the same definition may be
seen associated with different lexemes.

Comparison Systems As baselines, we consider
the Most Frequent Sense computed on the training
set (MFS SemCor) and two neural models featur-
ing BERTlarge and BARTlarge as text encoders,
with a linear classifier over the whole sense vocab-
ulary on top. As for the BERTlarge baseline, we
follow Blevins and Zettlemoyer (2020) and keep
BERTlarge weights fixed, while for BARTlarge we
finetune the whole model.

As competitors, we consider the following mod-
els: GLU (Hadiwinoto et al., 2019), which keeps
BERT weights frozen and trains a gated linear
unit on top of it; SVC7 (Vial et al., 2019), which
uses a vocabulary compression technique; EWISE
(Kumar et al., 2019); GlossBERT (Huang et al.,
2019); BEM8 (Blevins and Zettlemoyer, 2020) and
EWISER (Bevilacqua and Navigli, 2020), which
take advantage of external knowledge such as
glosses and semantic relations. We note that
EWISER uses a different development set, hence
its results are not fully comparable with the others.
Finally, we also consider two nearest-neighbour
approaches based on synset embedding and vector
similarity, i.e., LMMS (Loureiro and Jorge, 2019)
and ARES (Scarlini et al., 2020).

ESCHER Setting We use BARTlarge (Lewis
et al., 2020; Wolf et al., 2020) as transformer ar-
chitecture9 owing to the fact that it is among the
strongest models on reading comprehension tasks

5A (lemma, part of speech) pair.
6We identify a sense as a pair (lexeme, definition).
7Similarly to Blevins and Zettlemoyer (2020), we report

the best results of the SVC single model trained on SemCor
only.

8BEM is the state-of-the-art model in this setting at the
time of writing.

9Please see Appendix A for experiments with different
transformer pretrained models.

such as SQuAD (Rajpurkar et al., 2016) and it al-
lows us to feed sequences up to 1024 subtokens
long.10 We use the output of its last decoder layer
to represent the input tokens and compute the start
and end token distributions. We note that ESCHER

is directly comparable to the BARTlarge baseline
in terms of model complexity as both use the same
transformer model with one linear layer on top.

We finetune the whole ESCHER architecture
with the Rectified Adam (Liu et al., 2020) opti-
mizer with learning rate set to 1 · e−5 for up to
300,000 steps, 20 steps of gradient accumulation
and batches made of 700 tokens.11 In what follows,
we report the results for our model with and with-
out Gloss Noise (Section 3.3), denoting them as
ESCHER and ESCHERNo-GN, respectively.

4.2 Results

Framework Benchmark In Table 1 we report
the F1 scores of ESCHER, ESCHERNo-GN and all
the other systems. By comparing BARTlarge and
ESCHER, we can measure the effectiveness of our
proposed framework, ESC, on the performance of
a transformer-based architecture. Indeed, the two
architectures are nearly identical except for the last
layer, where, for each token, BARTlarge makes a
prediction across the whole sense vocabulary, while
ESCHER performs a binary classification. Thus, the
large difference between the two models (8.5 F1
points) suggests that the Extractive Sense Compre-
hension formulation of WSD allows the potential
of transformer-based architectures to be fully ex-
ploited, and, therefore, attain better performance.

When Gloss Noise is enabled (ESCHER row),
our model gains 1 F1 point in comparison to when
it is disabled (ESCHERNo-GN). This highlights that
directly mitigating the bias towards the Most Fre-
quent Senses during training is fundamental to mak-
ing our approach as effective as possible.

Finally, thanks to our new formulation of the
WSD problem, a simple model such as ESCHER

outperforms all the other approaches by a large mar-
gin on the ALL dataset, beating the previous state
of the art by 1.7 points (BEM). This corroborates
our hunch that the Extractive Sense Comprehen-
sion task is an extremely effective formulation of
WSD for transformer-based architectures.

10As for the <t> and </t> symbols, we used the words
<classify> and </classify>.

11Please refer to Appendix B for further details on the train-
ing.
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Dev Set Test Sets Concatenation of all Datasets

Model SE07 SE2 SE3 SE13 SE15 Nouns Verbs Adj. Adv. ALL

B
as

el
in

es MFS SemCor 54.5 65.6 66.0 63.8 67.1 67.7 49.8 73.1 80.5 65.5
BERTbase 68.6 75.9 74.4 70.6 75.2 75.7 63.7 78.0 85.8 73.7
BARTlarge 63.5 75.0 72.2 69.3 74.2 74.0 61.6 76.9 86.1 72.2

P
ri

or
w

or
k

EWISE‡ 67.3 73.8 71.1 69.4 74.5 74.0 60.2 78.0 82.1 71.8
GLU 68.1 75.5 73.6 71.1 76.2 — — — — 74.1
LMMS†† 68.1 76.3 75.6 75.1 77.0 — — — — 75.4
SVC — — — — — — — — — 75.6
GlossBERT† 72.5 77.7 75.2 76.1 80.4 79.8 67.1 79.6 87.4 77.0
ARES†† 71.0 78.0 77.1 78.7 75.0 80.6 68.3 80.5 83.5 77.9
EWISER‡ 71.0 78.9 78.4 78.9 79.3 81.7 66.3 81.2 85.8 78.3
BEM† 74.5 79.4 77.4 79.7 81.7 81.4 68.5 83.0 87.9 79.0

O
ur

s ESCHERNo-GN
† 75.0 80.5 76.9 81.1 83.0 83.0 68.5 81.9 86.1 79.7

ESCHER† 76.3 81.7 77.8 82.2 83.2 83.9 69.3 83.8 86.7 80.7

Table 1: Comparison of F1 scores for the all-words WSD task. EWISER uses SemEval-2015 (SE15) as devel-
opment set. † indicates systems having access to sense definitions. ‡ indicates systems having access to sense
definitions utilizing synset embeddings. †† indicates systems using a nearest-neighbor approach based on synset
embeddings. The difference in performance attained on the ALL test between ESCHER and BEM (underlined) is
statistically significant with p� 0.01 according to the McNemar’s test (Dietterich, 1998).

Results on Rare and Unseen Senses In Table 2
we report the results of the three best-performing
models, i.e., ESCHER, ESCHERNo-GN and BEM, on
five datasets, measuring how well models perform
when dealing with rare words and meanings in dif-
ferent situations (cf. Section 4.1). ESCHERNo-GN
manages to outperform BEM on most datasets,
hence already demonstrating that our new fram-
ing allows transformers to better generalize on rare
words and senses. When enabling Gloss Noise,
ESCHER achieves even higher performance on all
datasets, falling behind BEM only on the MFS
dataset. Interestingly enough, the comparison with
BEM on the 0-lex-def and 0-def datasets shows that
ESCHER can easily predict definitions that were ei-
ther seen associated only with lexemes different
from the input ones or not seen at all, while, in
direct contrast, BEM performs poorly in both sce-
narios. A similar pattern is observed for the Least
Frequent Senses (LFS) dataset, where ESCHER out-
performs BEM by 3.6 F1 points at the cost of only 1
point less in predicting the most frequent meanings.

5 Merging Multiple Knowledge Bases

Being able to combine datasets tagged with differ-
ent inventories is a desirable ability for a model.
Indeed, being able to use different datasets grants
access to a larger number of examples, while, at
the same time, removing the necessity of having

Model MFS LFS 0-lex 0-lex-def 0-def

BEM 94.7 52.1 91.2 67.1 68.2
ESCHERNo-GN 93.7 52.8 94.5 74.3 76.4
ESCHER 93.7 55.7 95.1 75.0 76.8

Table 2: Comparison of ESCHER against its competi-
tors on MFS, LFS and zero-shot datasets.

one system for each inventory. However, merging
distinct lexicographic resources is not a straightfor-
ward task and requires its own complex pipeline.
An easier approach could be to concatenate datasets
tagged with different vocabularies, which, nonethe-
less, would expose models to possibly different
definitions for nearly identical meanings and to dif-
ferent levels of sense granularity. In this Section we
therefore investigate the ability of ESCHER to man-
age data annotated with distinct sense inventories
when simply joining them. To this end, we train
ESCHER on the concatenation of SemCor and the
Oxford Dictionary dataset (Chang et al., 2018) and
compare its performance with the state-of-the-art
system at the moment of writing, i.e. BEM, when
trained on the same corpus.

5.1 The Oxford Dictionary Dataset

Chang et al. (2018) introduced a dataset contain-
ing roughly 785,000 instances for as many sen-
tences and covering 79,004 senses of the Ox-
ford Dictionary of English. The dataset is split
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Dataset Polysemy Exp. Polysemy #Senses #Instances
W

or
dN

et SemCor 6.88 0.76 33,362 226,036
SE07 8.48 0.29 375 455
ALL 5.87 0.54 3,669 7,611

O
xf

or
d Oxfordtrain 3.81 0.98 79,105 555,695

Oxforddev 6.69 0.68 33,197 78,550
Oxfordtest 6.79 0.76 37,714 151,306

Table 3: Statistics for training, development and test
corpora annotated with two inventories: WordNet (top)
and Oxford (bottom).

into train (Oxfordtrain), dev (Oxforddev) and
test12 (Oxfordtest). In Table 3 we report its statis-
tics together with those of the training (SemCor),
development (SE07) and test (ALL) sets of the
standard evaluation suite. Specifically, we show
the average polysemy of each dataset (Polysemy),
the expressed polysemy (Exp. Polysemy), i.e., for
each lexeme we compute the number of senses that
appear in the dataset over the number of possible
senses it can assume in the reference vocabulary
and we average across all lexemes, the number
of distinct senses (#Senses) and the number of in-
stances (#Instances). As one can see, Oxfordtrain
contains more than two times the instances and
senses of SemCor, while having roughly half of
SemCor’s polysemy but a higher expressed poly-
semy. As for Oxfordtest, it contains a larger number
of instances than ALL, and also a higher polysemy
and expressed polysemy.

5.2 Setup

We analyze three different scenarios: i) Standard,
where the system is trained on the same inventory
with which it is tested, e.g., trained on Oxfordtrain
and tested on Oxfordtest; ii) Zero-shot, in which
the system is trained on one sense inventory and
tested on the other, e.g,. trained on SemCor and
tested on Oxfordtest; and iii) Joint, in which the
system is jointly trained with the two sense invento-
ries. In order to combine the two different invento-
ries, we train the model by alternating the batches
made up of either SemCor or Oxfordtrain instances.
Since the number of instances in SemCor is lower
than that in Oxfordtrain, we oversample SemCor
by repeating its instances. Finally, we select the
model with the best macro F1 averaged on the two
validation datasets (SE07 and Oxforddev). We add
the subscript S, OT and S+OT to models trained
on SemCor, Oxfordtrain and their concatenation,

12We refer to the one named test_easy in the original
paper.

Model SE07 ALL OXdev OXtest

BEMS 74.5 79.0 61.5 61.7
ESCHERS 76.3 80.7 67.6 67.9

BEMOT 56.9 67.2 84.2 84.3
ESCHEROT 60.7 70.3 86.3 86.3

BEMS+OT 74.9 78.8 85.0 85.2
ESCHERS+OT 77.8 81.5 87.6 87.7

Table 4: Comparison of ESCHER and BEM
when using different training sets, i.e., SemCor
(BEMS and ESCHERS), Oxfordtrain (BEMOT and
ESCHEROT ) and their concatenation (BEMs+OT and
ESCHERS+OT ).

respectively.

5.3 Results

As one can see from Table 4, ESCHER outperforms
BEM in all settings. That is, when trained with
one inventory and tested on a dataset tagged with
the other inventory (BEMS and ESCHERS on the
Oxfordtest and BEMOT and ESCHEROT on ALL),
ESCHER attains 6 and 3 points higher performance,
respectively, than its competitor. This result is not
important per se, but it also suggests that ESC
does not bind the model to a single lexical knowl-
edge base. Indeed, by extensively leveraging sense
definitions, it allows a transformer-based model
to scale on multiple inventories as long as they
provide at least one definition for each meaning.
BEM, instead, by encoding each gloss indepen-
dently, falls short in representing definitions that
were previously unseen, as also shown in Section
4.2.

When trained on SemCor and Oxfordtrain to-
gether, not only can ESCHER handle the two in-
ventories that coexist in the training set effectively,
but it also leverages them at its own convenience,
achieving 81.5 F1 points on ALL, in contrast to
BEM which performs slightly worse than when
trained in the Standard scenario.

6 Few-Shot Evaluation

We now move to analyzing the performances of
ESCHER in a few-shot scenario, i.e., when the num-
ber of samples available for each sense is limited.

Setting We compare ESCHER against BEM, and
report the F1 scores on the ALL dataset when vary-
ing the number k of training instances per sense in
{1, 3, 5, 10, unlimited}. We show in Table 5 the
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(a) ALL dataset. (b) LFS and 0-lex-def datasets.

Figure 2: (a) F1 Performances of BEM and ESCHER on the ALL evaluation dataset, when varying the number
of instances per sense seen during training. (b) Performance of ESCHER on the MFS, LFS and 0-lex-def datasets,
when varying the number of instances per sense seen during training.

k Instances

1 33,206
3 64,814
5 83,068
10 109,751
unlimited 226,036

Table 5: Number of instances in the training set at dif-
ferent values of k.

number of instances drawn from SemCor that are
seen at training time for each k.

We also report the F1 scores of ESCHER on the
MFS, LFS and 0-lex-def datasets in the same sce-
nario in order to investigate the extent to which the
difference in the number of occurrences for each
sense impacts the ability of the model to generalize
on rare senses.

Results As one can see from Figure 2a,13

ESCHER makes much more efficient use of training
data than BEM, needing roughly one third of the
instances to attain the same results. In fact, BEM
needs more than 5 instances per sense (83,068 in-
stances) to reach the same performance (73.9 F1
points) as that of ESCHER trained with k = 1
(33,206 instances). Furthermore, with roughly half
of the instances (k = 10) ESCHER attains results
that are in the same ballpark as the current state
of the art. Interestingly enough, by looking at Fig-

13BEM chart from the original paper.

ure 2b, we see that ESCHER’s accuracy on the MFS
instances rises when adding more examples. This
is due to the fact that frequent senses get increas-
ingly represented within the training set, therefore
better matching the sense distribution in the test
set. Similarly, the performance on the Least Fre-
quent Senses also rises from k = 1 to k = 10, but
slightly drops when considering the whole dataset.
By manually inspecting the data we notice that this
happens because most of the instances added to the
dataset with k = 10 are tagged with the most fre-
quent sense, therefore drastically skewing the sense
distribution. Finally, the performance on 0-lex-def
remains stable for all k, hence showing that, de-
spite increasingly skewing the distribution towards
the most frequent definitions, our approach can
still provide meaningful representations for unseen
senses.14

7 Error Analysis

In order to get a clear picture of the model’s pit-
falls and gain insights into possible directions for
future work, we perform an analysis of ESCHER

misclassifications on the ALL dataset. We find
that the mistaken predictions belong to three main
categories: most frequent sense bias, insufficient
context and WordNet sense granularity. Since we
already discussed the first of these in the previous
sections, we focus here on the latter two.

14We recall from Section 4.1 that we indicate as a sense a
pair (lexeme, definition).
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Insufficient Context Annotators often compiled
the WSD evaluation datasets by considering each
instance in the context of the documents they ap-
pear in. In contrast, WSD models typically take
into account only the sentence surrounding the tar-
get word, discarding a large portion of the avail-
able context. This behavior causes a discrepancy
where sentences do not provide enough information
to disambiguate the target words therein. Indeed,
ESCHER mistakes most often appear in sentences
with an average length of 27 tokens, i.e., roughly 5
tokens less than the average length in ALL (32).

This suggests that moving the disambiguation
context from sentences to documents may improve
the performances of models as long as they are
capable of handling longer sequences.

WordNet Sense Granularity The granularity of
WordNet senses has been considered one of the
main reasons behind the complexity of the WSD
task (Palmer et al., 2007). To measure the extent
to which this affects ESCHER’s performance, we
utilize the 45 domain-based labels introduced by
Lacerra et al. (2020, CSI), which define macro cat-
egories for each WordNet sense. For instance, in
the CSI inventory, the sense argument%1:10:03::
belongs to the following domains: Culture
Anthropology and Society, Language
and Linguistics and Communication
and Telecomunication.

To better understand the relation between
ESCHER predictions and the gold annotations,
for each misclassified instance in ALL, we
compute the average Jaccard similarity between
the CSI labels assigned to the gold annotation
of that instance and those assigned to the sense
predicted by ESCHER. As an example, ESCHER

misclassified an instance annotated with the sense
argument%1:10:03::, assigning to it the sense
argument%1:10:00::. Examining the domains
to which the predicted sense belongs, we can
see a considerable overlap (and consequently a
high Jaccard similarity) with the domains of the
gold sense (i.e. argument%1:10:03::): Culture
Anthropology and Society, Politics
Government and Nobility, Language
and Linguistics and Communication
and Telecomunication.

As a term of comparison, we repeat the same
procedure when considering a random baseline as
WSD model, i.e., one that predicts for each instance
a random sense among those of the target word. We

find that ESCHER predictions have an average Jac-
card similarity with the gold predictions of 0.49,
whereas the random baseline achieves 0.27. This
suggests that, even when providing a formally mis-
taken output, ESCHER still predicts a sense that
is correlated, according to CSI labels, to the gold
sense. Our analysis calls for further work to im-
prove evaluation in WSD as the F1 score cannot
discriminate between predictions that are clearly
wrong and predictions that are just slightly different
from the gold sense.

8 Conclusion

In this paper, we introduced a novel framing for the
Word Sense Disambiguation problem inspired by
the Extractive Reading Comprehension task in QA:
given a word in a sentence and a text containing all
its possible definitions, a model has to identify the
span containing the correct definition for the target
word. For this new formulation — which we called
Extractive Sense Comprehension (ESC) — we de-
vised a transformer-based architecture (ESCHER),
which, differently from previous approaches, can
look at all the target word definitions at once, along-
side the input sentence. ESCHER surpasses the cur-
rent state of the art by 1.7 points on the standard
English all-words WSD task, thanks to its more effi-
cient use of the training data. Also, when provided
with only a few examples for each sense, ESCHER

attains remarkable levels of performance, requiring
roughly three times less annotated instances than its
direct competitor to reach the same performances.
Furthermore, our new formulation allows ESCHER

to scale across different inventories and to combine
them effectively. Indeed, when provided with data
annotated with multiple vocabularies, it achieves
even better results than when limited to one inven-
tory only, with results in the 86-88% range.

As future work we plan to expand this frame-
work so as to condition the prediction not only on
the target word context and definitions, but also on
the possible senses of its surrounding words.

The pretrained model, along with code
and data, is available at https://github.com/

SapienzaNLP/esc.
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A Transformer Architectures

In this Section we show the results attained
when using RoBERTalarge (Liu et al., 2019) and
XLNetlarge (Yang et al., 2019) as pretrained model
for ESCHER. We note that 73 training examples
out of 226,036 could not fit in 512 bpes, i.e., the
maximum input length for both models, and we
therefore discard them. In Table 6, we report the
results on the English WSD evaluation framework
of Raganato et al. (2017a) for ESCHER initialized
with the aforementioned models along with its per-
formance when using BARTlarge.

ESCHER Transformer Model Parameters SE07 ALL

RoBERTalarge 355M 76.0 80.5
XLNetlarge 340M 76.2 80.6
BARTlarge 406M 76.3 80.7

Table 6: ESCHER results on ALL when initialized with
different transformers.

B Training Details

We use BARTlarge as transformer architecture
which consists of 12 encoder layers and 12 decoder
layers with 1024 hidden size. We train the model
with a constant learning rate of 0.00001, Rectified
Adam as optimizer and a batch size of 700 tokens.
We accumulate the gradient for 20 steps and clip
it at 10. The model is trained for a maximum of
300, 000 steps. We compute the F1 score on the
validation dataset every 2000 steps and stop the
training if the model does not improve for 15 con-
secutive tests (30, 000 steps). The whole training
is done with half precision and an amp-level of O1.
It is worth noting that the training of ESCHER on
SemCor (Miller et al., 1990) took less than 5 hours
on a GeForce RTX 2080ti.
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