
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 4504–4514

June 6–11, 2021. ©2021 Association for Computational Linguistics

4504

Constrained Multi-Task Learning for Event Coreference Resolution

Jing Lu and Vincent Ng
Human Language Technology Research Institute

University of Texas at Dallas
Richardson, TX 75083-0688

{ljwinnie,vince}@hlt.utdallas.edu

Abstract

We propose a neural event coreference model
in which event coreference is jointly trained
with five tasks: trigger detection, entity coref-
erence, anaphoricity determination, realis de-
tection, and argument extraction. To guide the
learning of this complex model, we incorpo-
rate cross-task consistency constraints into the
learning process as soft constraints via design-
ing penalty functions. In addition, we propose
the novel idea of viewing entity coreference
and event coreference as a single coreference
task, which we believe is a step towards a uni-
fied model of coreference resolution. The re-
sulting model achieves state-of-the-art results
on the KBP 2017 event coreference dataset.

1 Introduction

Event coreference resolution is the task of determin-
ing whether two event mentions in a document refer
to the same real-world event. For two event men-
tions to be coreferent, their triggers (i.e., the words
realizing the occurrence of the events) should have
the same subtype and their corresponding argu-
ments (e.g., the times, places, and people involved)
have to be entity-coreferent. However, identifying
potential arguments (which is performed by an en-
tity extraction system), linking arguments to their
event mentions (which is also performed by an
event extraction system), and determining whether
two event arguments are coreferent (which is the
job of an entity coreference resolver), are all non-
trivial tasks. Hence, a key challenge in designing
an event coreference resolver involves determining
how to integrate these noisy components.

One of the most common approaches to event
coreference resolution is pipelined approaches,
where a trigger detection component, which iden-
tifies triggers and assigns event subtypes to them,
is followed by an event coreference component,
which clusters coreferent event mentions. It should
therefore not be surprising that errors propagate

from the trigger detection component to the event
coreference component. To avoid aggravating this
error propagation problem, knowledge provided by
other information extraction (IE) components (e.g.,
entity coreference, event arguments) is typically
employed as features for training event coreference
models (Chen et al., 2009; McConky et al., 2012;
Cybulska and Vossen, 2013; Araki et al., 2014; Liu
et al., 2014; Peng et al., 2016; Krause et al., 2016;
Choubey and Huang, 2017). Oftentimes, these fea-
tures provide limited improvements to event coref-
erence models as they are too noisy to be useful.

Though less popular than pipelined approaches,
bootstrapping approaches have been used for event
coreference resolution, where an event coreference
model is bootstrapped with models trained for one
or more related IE tasks. For instance, Lee et al.
(2012) incrementally build clusters of coreferent
event and entity mentions by iteratively bootstrap-
ping event coreference output using entity corefer-
ence output and vice versa. While in pipelined ap-
proaches only upstream tasks can influence down-
stream tasks, in bootstrapping approaches different
tasks can influence each other. Nevertheless, er-
rors made in earlier iterations of the bootstrapping
process cannot be undone in later iterations.

Joint learning approaches have recently emerged
as promising approaches to event coreference ow-
ing to their ability to address error propagation.
In these approaches, two or more tasks are jointly
trained. For instance, Araki and Mitamura (2015)
learn a joint model for trigger detection and event
coreference using a structured perceptron, and Lu
and Ng (2017) learn a joint model for trigger de-
tection, event coreference, and anaphoricity deter-
mination using a structured conditional random
field. The key advantage of these models is that the
tasks involved can benefit from each other during
training. However, since a jointly learned model
involves multiple tasks, it is typically complex. In
fact, it is by no means easy to scale such a model

4505

to a large number of tasks because of the high com-
putational complexity involved in learning.

Joint inference approaches have also been ap-
plied to event coreference resolution. For instance,
Chen and Ng (2016) and Lu et al. (2016) first train
separate models for entity coreference, trigger de-
tection, argument extraction, and event coreference,
then use Integer Linear Programming or Markov
Logic Networks to jointly infer the outputs of these
tasks subject to (mostly) hard cross-task consis-
tency constraints. For instance, one such hard
constraint says that two coreferent event mentions
should have the same event subtype. Since the
models are trained independently, they cannot ben-
efit from each other and could be noisy. Worse
still, performing joint inference using hard con-
straints over (very) noisy outputs could do more
harm than good. For instance, if two event men-
tions are correctly classified as coreferent but one
of their subtypes is misclassified, then enforcing
the aforementioned constraint might cause the joint
inference procedure to incorrectly infer that the two
are not coreferent. This explains why joint infer-
ence approaches have become less popular than
joint learning approaches in recent years.

In light of the above discussion, we seek to ad-
vance the state of the art in event coreference reso-
lution by proposing a model that jointly learns six
tasks: trigger detection, event coreference, entity
coreference, anaphoricity determination, argument
extraction, and realis detection. As noted above,
joint learning typically presents a serious compu-
tational challenge, and training a complex joint
model involving six tasks would not have been pos-
sible without the advent of the neural NLP era.

While multi-task learning in a neural network
typically allows the different tasks involved to ben-
efit from each other via learning shared representa-
tions, we hypothesize that the model would benefit
additional guidance given that the learning task,
which involves six tasks, is so complex. Conse-
quently, we propose to guide the learning process
by exploiting cross-task consistency constraints.
As mentioned above, such consistency constraints
are typically employed in joint inference and rarely
in joint learning. Moreover, unlike in joint infer-
ence where such constraints are typically imple-
mented as hard constraints, we provide flexibility
by implementing them as soft constraints. Specif-
ically, we design penalty functions for penalizing
outputs that violate a constraint, where the degree

of penalty depends on the extent of the violation.
Another contribution of our work involves

proposing the idea of a unified coreference model.
So far, entity and event coreference have always
been viewed as two separate tasks, where links be-
tween entity mentions are distinguished from links
between event mentions. However, their similar-
ity has led us to hypothesize that they could be
viewed as a single task, where coreference links
are established between a set of mentions without
distinguishing between entity and event mentions.

2 Related Work

Traditional resolvers. Many existing event
coreference resolvers, including those that employ
the four approaches described in the introduction,
are developed in the pre-neural era. resolvers. For a
detailed overview of these non-neural resolvers and
the wide variety of hand-engineered features they
employ, we refer the reader to Lu and Ng (2018).
Neural resolvers. Of particular relevance to our
work are neural event coreference models (e.g.,
Nguyen et al. (2016), Choubey and Huang (2017,
2018), Huang et al. (2019)). Unlike their traditional
counterparts, neural coreference models can lever-
age the knowledge learned from large unlabeled
corpora through pretrained word embeddings or
transfer learning. Existing neural event coreference
models are pipeline-based and seek to learn word
representations so that coreferent event mentions
have similar word embeddings, effectively making
the rather unrealistic assumption that an event trig-
ger is composed of a single token (Nguyen et al.,
2016). In contrast, our neural resolver is a joint
model and seeks to learn the representations of text
spans, each of which corresponds to a candidate
event trigger and may be composed of more than
one token, so that coreferent event mentions have
similar span representations.
Constrained learning in neural models. An-
other line of related work concerns the use of con-
straints in neural models (Li et al., 2019; Wang
et al., 2020), where constraints are represented as
first order logic formulas and compiled into the
loss functions. These models are typically trained
to minimize the weighted sum of task losses and
constraint losses. Rather than introduce additional
terms in the loss function, we employ constraints
as penalty terms when learning to score how likely
two event mentions are coreferent, effectively mak-
ing the two mentions less likely to be coreferent if

4506

{Two men}en1 accused of {hacking}ev1 {a British soldier}en2 to {death}ev2 last month appeared in {separate courts}en3

for hearings. {The men}en4, {Michael Adebolajo}en5, 28, and {Michael Adebowale}en6, 22, face {murder}ev3 charges.
{Adebolajo}en7 was also charged with other offenses, including the attempted {murder}ev4 of {two police officers}en8.

Table 1: Event coreference example.

a constraint is violated.

3 Definitions

Before formally defining the six tasks in the next
section, we introduce several related definitions.

• An event mention is an explicit occurrence
of an event consisting of a textual trigger, ar-
guments or participants (if any), and the event
subtype, and can optionally be characterized
by a set of attributes and their values.

• An entity mention is an explicit mention of
an entity in a text that has an entity type.

• An event trigger is a string of text that most
clearly expresses the occurrence of an event,
usually a word or a multi-word phrase.

• An event argument is an argument filler that
plays a certain role in an event.

• Realis denotes whether an event actually hap-
pened or will happen in the future, or whether
it is a generic event. Its value can be ACTUAL,
GENERIC or OTHER.

• An event/entity coreference chain is a group
of event/entity mentions that refer to the same
real-world event/entity.

To better understand these definitions, consider
the example in Table 1. The four event mentions
(ev1, ev2, ev3, ev4) are triggered by “hacking”,
“death”, “murder”, and “murder” respectively. The
first three have ACTUAL as their realis and the last
one belongs to OTHER. While ev2 has LIFE_DIE

as its subtype, the remaining ones all have subtype
CONFLICT_ATTACK. Among the eight entity men-
tions (en1, . . . , en8), en3 has FACILITY as its type
and the remaining ones are all PERSONs. en1 and
en2 are the arguments of ev1 filling the roles of
ATTACKER and TARGET respectively, whereas en4
is the argument of ev3 having the role ATTACKER.
There are two entity coreference chains (one com-
posed of en1 and en4 and the other en5 and en7)
and one event coreference chain (ev1 and ev3).

4 Model

We design a span-based neural model for event
coreference resolution owing to its ability to effec-
tively learn representations of text spans. While

span-based models have been successfully applied
to a variety of entity-based IE tasks such as entity
coreference (Lee et al., 2017; Joshi et al., 2020) and
relation extraction (Luan et al., 2019), they have
not been applied to event coreference.

More formally, our model takes as input a docu-
ment D represented as a sequence of word tokens,
from which we extract all possible intra-sentence
spans of up to length L. It simultaneously learns
six tasks, which we define below.

The trigger detection task aims to assign each
span i a subtype label yi. Each yi takes a value in
a subtype inventory or NONE, which indicates that
i is not a trigger. The model predicts i’s subtype to
be y∗i = arg maxyt st(i, yt), where st is a scoring
function suggesting i’s likelihood of having yi as
its subtype.

The event coreference resolution task aims to
assign span i an antecedent yc, where yc ∈
{1, . . . , i − 1, ε}. In other words, the value of yc
is the id of i’s antecedent, which can be one of the
preceding spans or a dummy antecedent ε (if the
event mention underlying i starts a new cluster).
We define the following scoring function:

sc(i, j) =

{
0 j = ε
sm(i) + sm(j) + sp(i, j) j 6= ε

(1)

where sm(i) is the score suggesting span i’s like-
lihood of being a trigger and sp(i, j) is a pairwise
coreference score computed over span i and a pre-
ceding span j. The model predicts the antecedent
of i to be y∗c = arg maxj∈Y(i) sc(i, j), where Y(i)
is the set of i’s candidate antecedents.

The entity coreference resolution task involves
identifying entity mentions that refer to the same
real-world entity. Intuitively, entity coreference is
useful for event coreference: two event mentions
are not likely to be coreferent if there exists an
argument role (e.g., ATTACKER) for which the cor-
responding arguments in the two event mentions
are not entity-coreferent. In our model, it is defined
in the same way as the event coreference resolution
task except that it operates on the spans identified
by the entity mention detection component rather
than the trigger detection component. The entity
mention detection task is defined in the same way

4507

as the trigger detection task except that it aims to
assign each span i an entity type label.

The anaphoricity determination task aims to as-
sign each span i an anaphoricity label ya, where ya
can be ANAPHORIC, which indicates that the men-
tion having span i is coreferent with a preceding
mention, or NON-ANAPHORIC. The model sa(i)
predicts the mention having span i as anaphoric if
and only if sa(i) ≥ 0. To train this model, we set
the target value to 1 for anaphoric mentions and
−1 for non-anaphoric mentions. Anaphoricity is
useful for coreference: it prevents non-anaphoric
mentions from being resolved.

The realis detection task aims to assign each
span i a realis label yr, where yr ∈ {ACTUAL,
GENERIC, OTHER, ENTITY, and NONE}. As
mentioned in Section 3, ACTUAL, GENERIC, and
OTHER are labels used for event mention spans. To
enable every span i to be assigned a realis label, we
augment the realis label set to include ENTITY and
NONE. Specifically, ENTITY is a label that is exclu-
sively reserved for spans that correspond to entity
mentions, and NONE indicates that i does not cor-
respond to a mention. The model predicts the realis
type of i to be y∗r = arg maxyr sr(i, yr), where sr
is a scoring function suggesting i’s likelihood of
having realis type yr. Realis detection is useful for
event coreference: two event mentions cannot be
coreferent if their realis labels are different.

The argument extraction task aims to assign an
argument role label yo to a candidate argument k
of a candidate event mention span i, where (1) k
is a candidate entity mention span, and (2) yo is
a role taken from an argument role inventory or
NONE, which indicates that the token is not an ar-
gument of i. We consider (1) k to be a candidate
argument of i if and only if it appears within the
same sentence as i; and (2) a span to be a candidate
event/entity mention span if it is assigned a non-
NONE event/entity type by the Mention Prediction
Layer, which we will describe shortly. For each
candidate argument k of i, the model predicts its
role in i to be y∗o = arg maxyo so(i, k, yo), where
so is a scoring function suggesting token k’s like-
lihood of being an argument of i having role yo.
Arguments, when combined with entity corefer-
ence chains, would be useful for event coreference.

4.1 Model Structure

The model structure, which is shown in Figure 1,
is described in detail below.

Span Representation Layer We adapt the inde-
pendent version of Joshi et al.’s (2019) state-of-
the-art entity coreference resolver to event coref-
erence resolution. Specifically, we divide an input
document into non-overlapping regions, each of
which has size Ld. The word sequence in each
region serves as an input training sequence. We
then pass the sequence into a pretrained trans-
former encoder used in SpanBERT-large (Joshi
et al., 2020) to encode tokens and their contexts.
Finally, we set gi, the representation of span i, to
[hstart(i); hend(i); hhead(i); fi], where hstart(i) and
hend(i) are the hidden vectors of the start and end
tokens of the span, hhead(i) is an attention-based
head vector and fi is a span width feature embed-
ding. To maintain computational tractability, we
first compute a score sm for each span i:

sm(i) = FFNNm(gi) (2)

where FFNN is a standard feedforward neural net-
work. Then we retain only the topN% of the spans
for further processing.
Trigger Prediction Layer For each span i that
survives the filtering, we pass its representation gi
to a FFNN, which outputs a vector oti of dimension
T , where T is the number of possible event sub-
types (including NONE). oti(y), the yth element of
oti, is a score indicating i’s likelihood of belonging
to event subtype y. Specifically:

oti = FFNNt(gi) (3)

st(i, y) = oti(y) (4)

Anaphoricity Prediction Layer We predict the
anaphoricity value of each top span i as follows.
Since the anaphoricity of a mention is dependent on
its preceding context, we first concatenate the aver-
age of the representations of the 25 tokens imme-
diately preceding i (to approximate i’s preceding
context) with the span representation gi. We then
pass the resulting vector, cxi, to a FFNN, which
outputs an anaphoricity value. Specifically:

sa(i) = FFNNa(cxi) (5)

Realis Prediction Layer To predict the realis
value of each top span i, we pass its representa-
tion gi to a FFNN, which outputs a vector ori of
length 5. ori(y), the yth element of ori, is a score
indicating i’s likelihood of having realis type y:

ori = FFNNr(gi) (6)

4508

Figure 1: Model structure.

sr(i, y) = ori(y) (7)

Coreference Prediction Layer To predict event
coreference links, we define the pairwise score be-
tween span i and span j as follows:

sp(i, j) = FFNNc([gi; gj ; gi ◦ gj ,uij]) (8)

where ◦ denotes element-wise multiplication, gi◦gj
encodes the similarity between i and j, and uij

is a feature embedding encoding the distance be-
tween them. We can then compute the full coref-
erence score defined in Equation 1 using Equa-
tions 2 and 8. To improve running time, we follow
Lee et al. (2018) and use their antecedent prun-
ing method, coarse-to-fine pruning, to reduce the
number of candidate antecedents for each anaphor.
Incorporating Entity Coreference The most
straightforward way to incorporate entity corefer-
ence information into our model would be to have
(1) an entity mention detection model that is archi-
tecturally identical to the trigger detection model
except that it assigns entity type (rather than event
subtype) labels to each span, and (2) an entity coref-
erence model that is architecturally identical to the
event coreference model described above except
that it identifies antecedents for spans provided by
the entity mention detection (rather than trigger
detection) component. While this would allow en-
tity coreference to interact with event coreference
and other tasks via the shared Span Representation
Layer, the two coreference tasks would otherwise
be learned independently of each other.

Towards the goal of building a unified model
of coreference, we propose a novel idea: we seek

to learn entity and event coreference simultane-
ously by viewing them as a single coreference task.
From a learning perspective, there is only one task
to be learned, which is coreference resolution over
a set of mentions. To do so, we extend the Span
Representation Layer, the Trigger Prediction Layer,
and the Coreference Prediction Layer as follows.
First, the Span Representation Layer will identify
spans corresponding to mentions that are composed
of both entity mentions and event mentions even
though the model doesn’t know (and doesn’t need
to know) which ones are entity mentions and which
ones are event mentions. Second, the Trigger Pre-
diction Layer will assign each mention span a se-
mantic type, which is taken from a type inventory
consisting of both entity types and event subtypes
(and NONE, if the span is not a mention). In other
words, the Trigger Prediction Layer, which is essen-
tially extended to a Mention Prediction Layer, now
extracts both entity and event mention spans. Third,
the Coreference Prediction Layer computes coref-
erence chains based on the predicted mention spans
and their semantic types. Since all the learner sees
are mentions, it doesn’t know (and doesn’t need to
know) which coreference chains it computes are
entity-based and which ones are event-based. Simi-
larly, it doesn’t know (and doesn’t need to know)
which types in the type inventory are entity types
and which ones are event subtypes. A key advan-
tage of this unified model of coreference is that it
allows entity and event coreference to be tightly
coupled via parameter sharing.

When we apply this model to a test document,
we need to distinguish which coreference relations

4509

it identifies are entity-based and which ones are
event-based. This can be done easily based on
the semantic type associated with the mentions
underlying the extracted coreference relation under
consideration. If the semantic type is an entity type,
the corresponding coreference relation is regarded
as an entity coreference relation; otherwise, it is
regarded as an event coreference relation.

Argument Prediction Layer To predict argu-
ments and their roles, we pair each top span i and
each candidate argument k to form an input vector
vaik = [gi; ti; gk; tk], where gi is the span represen-
tation of i, ti is the one-hot subtype vector of i, gk
is the span representation of argument candidate k,
and tk is the one-hot subtype vector of k. During
training, we use the gold subtype label to derive
the subtype vector. During inference, we derive
the subtype vector from the output of the Mention
Detection Layer. We feed the resulting vector into
a FFNN, which outputs a vector oaik of dimension
21. oaik(y), the yth element of oaik, is a score
indicating k’s likelihood of being an argument of i
with role y:

oaik = FFNNoa(vaik) (9)

so(i, k, y) = oaik(y) (10)

Incorporating Consistency Constraints As
noted before, we propose to guide the learning
process by incorporating commonsense knowledge
that encodes cross-task consistency constraints on
coreference and the auxiliary tasks. We begin by
incorporating two consistency constraints on the
outputs of coreference and mention detection:
C1: If two spans are coreferent, they should have
the same semantic type. C2: If a span has an an-
tecedent that is not the dummy antecedent, its se-
mantic type shouldn’t be NONE.

We incorporate each constraint into the model
via a scoring function that computes how much two
spans i (an anaphor) and j (a candidate antecedent
of i) should be penalized if a constraint is violated.
For constraint C1, we define a cost function, c1,
which is computed as follows:

c1(i, j) = min(|st(i, yi)− st(i, yj)|, |st(j, yj)− st(j, yi)|
(11)

where yi = arg maxyt st(i, yt) and yj =
arg maxyt st(j, yt). Intuitively, c1 provides an es-
timate of the least amount of adjustment needed
to make i’s semantic type the same as j’s or the

other way round. In particular, c1 returns 0 (i.e., no
penalty) if the two spans have the same type.

Similarly, for constraint C2, we define a cost
function c2, which is computed as follows:

c2(i, j) =


0 arg max

y∈Y
st(i, y) 6= None

st(i,None)− max
y∈Y\{None}

st(i, y) otherwise

(12)
where Y is the set of possible types. Intuitively,
c2 estimates the minimum amount that needs to be
adjusted so that anaphor j’s type is not NONE.

Finally, we incorporate c1 and c2 into the model
as penalty terms in sc (Equation 1). Specifically,
we redefine sc as follows:

sc(i, j) =

{
0 j = ε
sm(i) + sm(j) + sp(i, j)− [β1c1(i, j) + β2c2(i, j)] j 6= ε

(13)
where β1 and β2 are positive constants that control
the hardness of the constraints. The smaller a βi
is, the softer the corresponding constraint is. Intu-
itively, if a constraint is violated, sc(i, j) will be
lowered by one or more of the penalty terms, and j
will less likely be selected as the antecedent of i.

In addition, we enforce the following consis-
tency constraints. Like C1 and C2, each of them
will be accompanied by a cost function that will
eventually be incorporated into sc as a penalty term.
Coreference and anaphoricity. C3: If a span’s
antecedent is not the dummy antecedent, its
anaphoricity value should be ANAPHORIC. C4:
If a span has a dummy antecedent, its anaphoricity
value should be NON-ANAPHORIC.
Coreference and realis detection. C5: If two spans
are coreferent, they should have the same realis
value. C6: If a span’s antecedent is not the dummy
antecedent, its realis value should not be NONE.
Coreference and argument extraction. C7: If two
event mention spans are coreferent, their same-role
arguments, if any, should be entity-coreferent.

4.2 Training
The loss function we use, L(Θ), is composed of the
losses of the six tasks, and is defined as follows:

L(Θ) =

d∑
i=1

(λcLc+λtLt+λaLa+λrLr +λoLo)

(14)

where the hyperparameters (i.e., the λ’s) determine
the trade-off between the task losses. The model
is trained to minimize L(Θ), whereas the hyperpa-
rameters are tuned using grid search to maximize
AVG-F (the standard event coreference evaluation
metric; see the next section) on development data.

4510

Task Losses We employ a max-margin loss for
each of the six tasks.

Defining the coreference loss is slightly tricky
since the coreference annotations for each docu-
ment are provided in the form of clusters. We adopt
the coreference loss function previously defined by
Wiseman et al. (2015) for entity coreference reso-
lution. Specifically, let GOLDc(i) denote the set
of spans preceding span i that are coreferent with
i, and ylc be arg maxy∈GOLDc(i) sc(i, y). In other
words, ylc is the highest scoring (latent) antecedent
of i according to sc among all the antecedents of i.
The loss function for coreference is defined as:

Lc(Θ) =
n∑

i=1

max
j∈Y(i)

(∆c(i, j)(1+sc(i, j)−sc(i, ylc))

(15)
where ∆c(i, j) is a mistake-specific cost function
that returns the cost associated with a particular
type of error (Durrett and Klein, 2013).1 Intuitively,
the loss function penalizes a span i if the predicted
antecedent j has a higher score than the correct
latent antecedent ylc.

We similarly define the loss for trigger detection:

Lt(Θ) =
∑n

i=1

∑
l̂ 6=yt

max(0,∆t(i, l̂)(1 + st(i, l̂)− st(i, yt)))
(16)

where ∆t(i, l̂) is a mistake-specific cost function
that returns the cost associated with a particular
type of error.1 Intuitively, the loss function penal-
izes each span for which each of the wrong sub-
types l̂ has a higher score than the correct subtype
yt according to st.

The task losses for anaphoricity determination,
realis detection, and argument extraction are all
max-margin losses that are defined similarly as the
one used for trigger detection.

5 Evaluation

5.1 Experimental Setup
5.1.1 Corpora
We perform training and evaluation on the En-
glish corpora used in the TAC KBP 2017 Event
Nugget Detection and Coreference task. There
are no official training sets: the task organiz-
ers simply made available a number of event
coreference-annotated corpora for training. We use
LDC2015E29, E68, E73, E94, and LDC2016E64
as our training set, which contain 817 documents

1Space limitations preclude a description of these error
types. See Durrett and Klein (2013) for details.

with 22894 event mentions distributed over 13146
coreference chains2. Among these 817 documents,
we reserve 82 documents for parameter tuning and
use the remaining documents for model training.
We report results on the official test set, which con-
sists of 167 documents with 4375 event mentions
distributed over 2963 coreference chains.

5.1.2 Evaluation Metrics

Results of event coreference, trigger detection and
realis detection are obtained using version 1.8 of
the official scorer provided by the KBP 2017 orga-
nizers. For event coreference, the scorer employs
four scoring metrics, MUC (Vilain et al., 1995),
B3 (Bagga and Baldwin, 1998), CEAFe (Luo,
2005) and BLANC (Recasens and Hovy, 2011),
as well as the unweighted average of their F-scores
(AVG-F). Results of trigger detection and realis de-
tection are both expressed in terms of Precision (P),
Recall (R) and F-score. The scorer considers (1) a
trigger correctly detected if it has an exact match
with a gold trigger in terms of boundary and event
subtype, and (2) a realis label correctly classified if
it has an exact match with a gold trigger in terms
of boundary and realis value.

Additionally, we express results of both argu-
ment extraction and anaphoricity determination in
terms of Precision, Recall and F-score. We con-
sider an event argument correctly extracted if it has
an exact match with a gold trigger-argument pair in
terms of trigger boundary, event subtype, argument
head and argument role. We consider an anaphoric
mention correct if it has an exact match with the
boundary of a gold anaphoric mention.

Finally, we report entity coreference results in
terms of CoNLL score, which is the unweighted
average of MUC, B3, and CEAFe.

5.1.3 Implementation Details

We use the SpanBERT-large model in the Span
Representation Layer.3 For each document, we
split it into segments of length 512 and generate
all spans of length up to 10. Each FFNN has one
hidden layer of size 2000. The size of the width
feature embedding is 20. For span pruning, we keep
the top 50% of the spans. For candidate antecedent
pruning, we keep the top 15 antecedents.

2LDC2015E73 and E94 don’t have annotations for entity
detection, entity coreference resolution and argument extrac-
tion. We set the losses of these three tasks to 0 during training.

3https://github.com/facebookresearch/SpanBERT

4511

Event Coreference Trigger Anaphoricity Realis Argument Entity
Coref.

MUC B3 CEA BLA AVG P R F P R F P R F P R F CoNLL
Jiang et al. (2017) 30.6 43.8 39.9 27.0 35.3 56.8 55.6 56.2 − − − 48.0 46.9 47.4 − − − −

Huang et al. (2019) 35.7 43.2 40.0 32.4 36.8 56.8 46.4 51.1 − − − − − − − − − −
Lu and Ng (2020) 37.1 44.5 40.0 29.9 37.9 64.5 46.9 54.3 − − − − − − − − − −
Knowledge-lean 37.6 52.3 51.7 33.6 43.8 71.5 55.3 62.4 − − − − − − − − − −

Pipeline 38.6 53.0 53.0 35.0 44.9 73.9 56.1 63.8 43.0 44.5 43.8 70.0 53.1 60.3 36.9 29.9 33.0 72.6
Full Joint 45.2 54.7 53.8 38.2 48.0 71.6 58.7 64.5 50.4 45.3 47.7 63.7 52.0 57.3 32.4 24.5 27.9 68.7

Table 2: Results of different resolvers on event coreference and related tasks. Results in rows 1-3 are copied
verbatim from the original papers; − indicates the corresponding result is not available.

For training, we use document sized mini-
batches and apply a dropout rate of 0.3. Following
Joshi et al. (2019), we use different learning rates
for training the task parameters and the SpanBERT
parameters. Specifically, the task learning rate is
1×10−5 and is decayed linearly, whereas the learn-
ing rate for SpanBERT is 2× 10−4 and is decayed
linearly. The hyperparameters in the loss function,
λc, λt, λa, λr, and λo, are 1, 1, 0.05, 0.5, and 0.05.

5.2 Results and Discussion

Results are shown in Table 2. To gauge the per-
formance of our model, we employ five base-
lines. Row 1 shows the results of our first baseline,
Jiang et al.’s (2017) resolver, which is the highest-
scoring system participating in KBP 2017. Rows 2
and 3 show the performance of our next two base-
lines, a neural resolver (Huang et al., 2019) and a
non-neural resolver (Lu and Ng, 2020) that have
achieved the best results to date on the KBP 2017
test set. Hence, these three baselines can be viewed
as the prior state of the art. As we can see, while
Jiang et al. have the best trigger detector (56.2 F-
score), the best event coreference performance is
achieved by Lu and Ng’s resolver (37.9 AVG-F).

Row 4 shows our fourth baseline, which is our
model except that (1) three prediction layers (argu-
ment, realis, and anaphoricity) are removed, and
(2) the remaining layers are trained to identify
event mentions only (i.e., without entity mentions).
This baseline mimics typical knowledge-lean ap-
proaches to event coreference resolution, which per-
form only trigger detection and event coreference,
but is the first knowledge-lean event coreference
approach implemented in a span-based framework.
As we can see, this baseline outperforms Lu and
Ng’s resolver by 5.9% points in AVG-F for event
coreference. A closer inspection of the coreference
evaluation metrics reveals that in comparison to Lu
and Ng, this baseline’s B3, CEAFe and BLANC
scores increase substantially while its MUC score

barely changes. Since MUC only rewards success-
ful identification of coreference links, the fact that
the MUC score is more or less unchanged implies
that the improvement does not arise from link iden-
tification; rather, the fact that the B3, CEAFe and
BLANC scores improve suggests that the improve-
ment arises from successful identification of sin-
gleton clusters. This is further supported by the
improvement in trigger detection: the baseline’s
trigger detection module achieves an F-score of
62.4, outperforming Lu and Ng’s trigger detection
module by 8.1% points in F-score. This huge im-
provement should not be surprising, as SpanBERT
is specifically designed to extract text spans. Over-
all, despite the encouraging 6%-point improvement
in event coreference AVG-F score, we cannot say
that the successes of span-based models on entity
coreference can be extended to event coreference as
it largely fails to establish event coreference links.

Row 5 shows the result of our fifth baseline,
which is a pipelined version of our model designed
to gauge the benefits of our joint model. Here, we
first train a trigger detector, which is the same as
the Mention Prediction Layer of our model trained
to assign event subtypes to top spans. The re-
sulting triggers are used to train an anaphoricity
model (same as our model’s Anaphoricity Predic-
tion Layer) and a realis detection model (same as
our model’s Realis Prediction Layer). Next, we
train an entity coreference model, which is the
same as our third baseline except that it is trained to
operate on entity rather than event mention spans.
Then, we train an argument extraction model (same
as our model’s Argument Prediction Layer) using
the extracted entity mentions as candidate argu-
ments for the triggers identified by the trigger detec-
tion model. Finally, the outputs of these models are
used to enforce the seven constraints in our model
as hard constraints: any candidate antecedent of
an anaphor that violates any of the constraints is
filtered prior to event coreference resolution. Over-

4512

all, this baseline outperforms the fourth baseline by
0.6% points in AVG-F for event coreference and
1.4% points in F-score for trigger detection.

Row 6 shows the result of our full model, which
outperforms the Pipeline model by 3.1% points in
AVG-F for event coreference and establishes new
state-of-the-art results. Encouragingly, the gains in
AVG-F are accompanied by improvements w.r.t. all
four coreference scoring metrics. In particular, the
MUC score improves considerably by 6.6% points,
which means that the full model has successfully
identified event coreference links. In addition, we
see a 0.7% point improvement in trigger detection
over Pipeline, and a 12.9% point improvement in
realis detection in comparison to Jiang et al. For
bookkeeping purposes, we also report the scores
for each component of our model. Overall, the fact
that our joint model outperforms Pipeline suggests
the benefits of joint modeling.

5.3 Model Ablations

To evaluate the contribution of the different com-
ponents in our model, we show in Table 3 ablation
results, which we obtain by removing one compo-
nent at a time from the model and retraining it.

Consistency constraints. Ablating the consis-
tency constraints means removing all the penalty
terms from sc. The ablated system resembles what
one would usually see in a multi-task learning
setup, where the different tasks involved has a
shared representation. As we can see from row 2,
event coreference performance drops by 1% point,
suggesting the usefulness of using consistency con-
straints in a multi-task setup. While it is perhaps
not surprising that the consistency constraints have
the largest impact on event coreference perfor-
mance, it is somewhat interesting to see that there
is one task whose performance improves when con-
sistency constraints are ablated, realis detection.

Entity coreference. Next, we ablate the entity
coreference component. The ablation of entity
coreference necessitates the removal of the argu-
ment extraction component and the associated con-
straints since the latter relies on the outputs of entity
coreference. We see from row 3 that event coref-
erence performance drops precipitously by 2.7%
points. This suggests that entity coreference has a
considerable positive impact on event coreference.

The next question is: will coreference perfor-
mance go up or down if we treat entity and event
coreference as two separate tasks that are learned

Event
Coref. Tri. Ana. Rea. Arg. Entity

Coref.
AVG F F F F CoNLL

1 Full Model 48.0 64.5 47.7 57.3 27.9 68.7
2 − constraints 47.0 64.5 47.6 57.9 27.9 68.5
3 − entity coref. 45.3 63.5 45.0 58.2 − −
4 sep. entity coref. 47.2 65.1 47.8 56.3 26.0 65.7
5 − anaphoricity 47.5 64.9 46.9 58.1 28.4 69.3
6 − realis 46.6 64.8 46.7 − 29.6 69.3
7 − argument 47.4 64.3 48.6 58.5 − 66.7

Table 3: Ablation results of the full model.

in a typical multi-task setup? As we can see from
row 4, the performances of event coreference and
entity coreference drop by 0.8% points and 3%
points respectively. These results suggest that our
viewing the two tasks as a single task is beneficial.
Anaphoricity determination. Next, we ablate
the anaphoricity component, which involves remov-
ing both its task loss and the associated constraints.
From row 5, we see that event coreference per-
formance drops by 0.5% points, and anaphoricity
determination performance drops 0.8% points.
Realis detection. When we ablate realis detec-
tion, both the task loss and the associated consis-
tency are removed. The performances of event
coreference and anaphoricity drop precipitously,
by 1.4% points and 1.0% point respectively, sug-
gesting the usefulness of realis detection for both
event coreference and anaphoricity detection.
Argument extraction. Finally, when the argu-
ment extraction component is ablated, event coref-
erence performance drops by 0.6% points. These
results illustrate the importance of argument extrac-
tion for event coreference.

Overall, these results suggest that each compo-
nent contributes positively to event coreference.

6 Conclusion

We proposed the first neural model for event coref-
erence resolution that (1) jointly learned six tasks,
(2) used consistency constraints to guide learning,
and (3) viewed entity and event coreference as a
single task. Our model outperformed several strong
baselines and achieved state-of-the-art results on
the KBP 2017 event coreference dataset.

Acknowledgments

We thank the three anonymous reviewers for their
detailed and insightful comments on an earlier draft
of the paper. This work was supported in part by
NSF Grants IIS-1528037 and CCF-1848608.

4513

References
Jun Araki, Zhengzhong Liu, Eduard Hovy, and Teruko

Mitamura. 2014. Detecting subevent structure for
event coreference resolution. In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation, pages 4553–4558.

Jun Araki and Teruko Mitamura. 2015. Joint event trig-
ger identification and event coreference resolution
with structured perceptron. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 2074–2080.

Amit Bagga and Breck Baldwin. 1998. Algorithms for
scoring coreference chains. In Proceedings of the
LREC Workshop on Linguistic Coreference, pages
563–566.

Chen Chen and Vincent Ng. 2016. Joint inference over
a lightly supervised information extraction pipeline:
Towards event coreference resolution for resource-
scarce languages. In Proceedings of the 30th AAAI
Conference on Artificial Intelligence, pages 2913–
2920.

Zheng Chen, Heng Ji, and Robert Haralick. 2009. A
pairwise event coreference model, feature impact
and evaluation for event coreference resolution. In
Proceedings of the Workshop on Events in Emerging
Text Types, pages 17–22.

Prafulla Kumar Choubey and Ruihong Huang. 2017.
Event coreference resolution by iteratively unfold-
ing inter-dependencies among events. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 2124–2133.

Prafulla Kumar Choubey and Ruihong Huang. 2018.
Improving event coreference resolution by modeling
correlations between event coreference chains and
document topic structures. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 485–495.

Agata Cybulska and Piek Vossen. 2013. Semantic re-
lations between events and their time, locations and
participants for event coreference resolution. In Pro-
ceedings of the International Conference Recent Ad-
vances in Natural Language Processing, pages 156–
163.

Greg Durrett and Dan Klein. 2013. Easy victories and
uphill battles in coreference resolution. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1971–1982.

Yin Jou Huang, Jing Lu, Sadao Kurohashi, and Vincent
Ng. 2019. Improving event coreference resolution
by learning argument compatibility from unlabeled
data. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 785–
795.

Shanshan Jiang, Yihan Li, Tianyi Qin, Qian Meng, and
Bin Dong. 2017. SRCB entity discovery and linking
(EDL) and event nugget systems for TAC 2017. In
Proceedings of the 2017 Text Analysis Conference.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving pre-training by representing
and predicting spans. Transactions of the Associa-
tion for Computational Linguistics, (8):64–77.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and
Daniel Weld. 2019. BERT for coreference resolu-
tion: Baselines and analysis. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint
Conference on Natural Language Processing, pages
5803–5808.

Sebastian Krause, Feiyu Xu, Hans Uszkoreit, and Dirk
Weissenborn. 2016. Event linking with sentential
features from convolutional neural networks. In Pro-
ceedings of the Conference of Computataional Nat-
ural Language Learning, pages 239–249.

Heeyoung Lee, Marta Recasens, Angel Chang, Mihai
Surdeanu, and Dan Jurafsky. 2012. Joint entity and
event coreference resolution across documents. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
489–500.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies (Volume 2: Short Papers), pages
687–692.

Tao Li, Vivek Gupta, Maitrey Mehta, and Vivek Sriku-
mar. 2019. A logic-driven framework for consis-
tency of neural models. In Proceedings of the 2019
Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint
Conference on Natural Language Processing, pages
3924–3935.

Zhengzhong Liu, Jun Araki, Eduard Hovy, and Teruko
Mitamura. 2014. Supervised within-document event
coreference using information propagation. In Pro-
ceedings of the 9th International Conference on Lan-
guage Resources and Evaluation, pages 4539–4544.

Jing Lu and Vincent Ng. 2017. Joint learning for
event coreference resolution. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
90–101.

http://www.lrec-conf.org/proceedings/lrec2014/pdf/963_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/963_Paper.pdf
https://doi.org/10.18653/v1/D15-1247
https://doi.org/10.18653/v1/D15-1247
https://doi.org/10.18653/v1/D15-1247
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.5848&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.5848&rep=rep1&type=pdf
https://ojs.aaai.org/index.php/AAAI/article/view/10392
https://ojs.aaai.org/index.php/AAAI/article/view/10392
https://ojs.aaai.org/index.php/AAAI/article/view/10392
https://ojs.aaai.org/index.php/AAAI/article/view/10392
https://www.aclweb.org/anthology/W09-4303
https://www.aclweb.org/anthology/W09-4303
https://www.aclweb.org/anthology/W09-4303
https://doi.org/10.18653/v1/D17-1226
https://doi.org/10.18653/v1/D17-1226
https://www.aclweb.org/anthology/P18-1045
https://www.aclweb.org/anthology/P18-1045
https://www.aclweb.org/anthology/P18-1045
https://www.aclweb.org/anthology/R13-1021
https://www.aclweb.org/anthology/R13-1021
https://www.aclweb.org/anthology/R13-1021
https://www.aclweb.org/anthology/D13-1203
https://www.aclweb.org/anthology/D13-1203
https://doi.org/10.18653/v1/N19-1085
https://doi.org/10.18653/v1/N19-1085
https://doi.org/10.18653/v1/N19-1085
https://tac.nist.gov/publications/2017/participant.papers/TAC2017.srcb.proceedings.pdf
https://tac.nist.gov/publications/2017/participant.papers/TAC2017.srcb.proceedings.pdf
https://transacl.org/ojs/index.php/tacl/article/view/1853
https://transacl.org/ojs/index.php/tacl/article/view/1853
https://www.aclweb.org/anthology/D19-1588
https://www.aclweb.org/anthology/D19-1588
http://www.aclweb.org/anthology/K16-1024
http://www.aclweb.org/anthology/K16-1024
http://www.aclweb.org/anthology/D12-1045
http://www.aclweb.org/anthology/D12-1045
https://www.aclweb.org/anthology/D17-1018
https://www.aclweb.org/anthology/D17-1018
https://www.aclweb.org/anthology/N18-2108
https://www.aclweb.org/anthology/N18-2108
https://doi.org/10.18653/v1/D19-1405
https://doi.org/10.18653/v1/D19-1405
http://www.lrec-conf.org/proceedings/lrec2014/pdf/646_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/646_Paper.pdf
https://doi.org/10.18653/v1/P17-1009
https://doi.org/10.18653/v1/P17-1009

4514

Jing Lu and Vincent Ng. 2018. Event coreference reso-
lution: A survey of two decades of research. In Pro-
ceedings of the 27th International Joint Conference
on Artificial Intelligence, pages 5479–5486.

Jing Lu and Vincent Ng. 2020. Event coreference res-
olution with non-local information. In Proceedings
of the 1st Conference of the Asia-Pacific Chapter of
the Association for Computational Linguistics and
the 10th International Joint Conference on Natural
Language Processing, pages 653–663.

Jing Lu, Deepak Venugopal, Vibhav Gogate, and Vin-
cent Ng. 2016. Joint inference for event coreference
resolution. In Proceedings of the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 3264–3275.

Yi Luan, Dave Wadden, Luheng He, Amy Shah, Mari
Ostendorf, and Hannaneh Hajishirzi. 2019. A gen-
eral framework for information extraction using dy-
namic span graphs. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 3036–3046.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of the Human
Language Technology Conference and the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 25–32.

Katie McConky, Rakesh Nagi, Moises Sudit, and
William Hughes. 2012. Improving event co-
reference by context extraction and dynamic feature
weighting. In Proceedings of the 2012 IEEE Interna-
tional Multi-Disciplinary Conference on Cognitive
Methods in Situation Awareness and Decision Sup-
port, pages 38–43.

Thien Huu Nguyen, Adam Meyers, and Ralph Grish-
man. 2016. New York University 2016 system for
KBP event nugget: A deep learning approach. In
Proceedings of the 2016 Text Analysis Conference.

Haoruo Peng, Yangqi Song, and Dan Roth. 2016.
Event detection and co-reference with minimal su-
pervision. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 392–402.

Marta Recasens and Eduard Hovy. 2011. BLANC: Im-
plementing the Rand Index for coreference evalu-
ation. Natural Language Engineering, 17(4):485–
510.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Proceed-
ings of the Sixth Message Understanding Confer-
ence.

Haoyu Wang, Muhao Chen, Hongming Zhang, and
Dan Roth. 2020. Joint constrained learning for
event-event relation extraction. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing, pages 696–706.

Sam Wiseman, Alexander M. Rush, Stuart Shieber, and
Jason Weston. 2015. Learning anaphoricity and an-
tecedent ranking features for coreference resolution.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1416–1426.

https://www.ijcai.org/proceedings/2018/0773
https://www.ijcai.org/proceedings/2018/0773
https://www.aclweb.org/anthology/2020.aacl-main.66
https://www.aclweb.org/anthology/2020.aacl-main.66
https://www.aclweb.org/anthology/C16-1308
https://www.aclweb.org/anthology/C16-1308
https://www.aclweb.org/anthology/N19-1308
https://www.aclweb.org/anthology/N19-1308
https://www.aclweb.org/anthology/N19-1308
https://www.aclweb.org/anthology/H05-1004
https://www.aclweb.org/anthology/H05-1004
https://ieeexplore.ieee.org/document/6188406
https://ieeexplore.ieee.org/document/6188406
https://ieeexplore.ieee.org/document/6188406
https://tac.nist.gov/publications/2016/participant.papers/TAC2016.NYU.proceedings.pdf
https://tac.nist.gov/publications/2016/participant.papers/TAC2016.NYU.proceedings.pdf
https://www.aclweb.org/anthology/D16-1038
https://www.aclweb.org/anthology/D16-1038
https://doi.org/10.1017/S135132491000029X
https://doi.org/10.1017/S135132491000029X
https://doi.org/10.1017/S135132491000029X
https://www.aclweb.org/anthology/M95-1005
https://www.aclweb.org/anthology/M95-1005
https://doi.org/10.18653/v1/2020.emnlp-main.51
https://doi.org/10.18653/v1/2020.emnlp-main.51
https://www.aclweb.org/anthology/P15-1137
https://www.aclweb.org/anthology/P15-1137

