
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 397–415

June 6–11, 2021. ©2021 Association for Computational Linguistics

397

Text Generation from Discourse Representation Structures

Jiangming Liu Shay B. Cohen Mirella Lapata
Institute for Language, Cognition and Computation

School of Informatics, University of Edinburgh
jiangming.liu@ed.ac.uk, {scohen,mlap}@inf.ed.ac.uk

Abstract

We propose neural models to generate
text from formal meaning representations
based on Discourse Representation Structures
(DRSs). DRSs are document-level representa-
tions which encode rich semantic detail per-
taining to rhetorical relations, presupposition,
and co-reference within and across sentences.
We formalize the task of neural DRS-to-text
generation and provide modeling solutions for
the problems of condition ordering and vari-
able naming which render generation from
DRSs non-trivial. Our generator relies on
a novel sibling treeLSTM model which is
able to accurately represent DRS structures
and is more generally suited to trees with
wide branches. We achieve competitive perfor-
mance (59.48 BLEU) on the GMB benchmark
against several strong baselines.

1 Introduction

It is not uncommon for text generation systems
to produce natural language output from interme-
diate semantic representations (Yao et al., 2012;
Takase et al., 2016). The literature presents sev-
eral examples of generating text from logical forms
underlying various grammar formalisms (Wang,
1980; Shieber et al., 1990; Carroll and Oepen, 2005;
White et al., 2007), typed lambda calculus (Lu
and Ng, 2011), Abstract Meaning Representations
(AMR; Flanigan et al. 2016; Konstas et al. 2017;
Song et al. 2018; Beck et al. 2018; Damonte and
Cohen 2019; Ribeiro et al. 2019; Zhu et al. 2019;
Cai and Lam 2020; Wang et al. 2020), Discourse
Representation Theory (DRT; Basile and Bos 2011;
Basile 2015), and Minimal Recursion Semantics
(MRS; Horvat et al. 2015; Hajdik et al. 2019).

In this work, we propose neural models to gen-
erate high-quality text from semantic representa-
tions based on Discourse Representation Structures
(DRSs). DRSs are the basic meaning-carrying units
in Discourse Representation Theory (DRT; Kamp

b5

b6 : x1, b1 : e1,
b1 : x2, b2 : t1 b1

b6 : Pred(x1, male.n.02)
b1 : Pred(e1, play.v.03)
b1 : Agent(e1, x1)
b1 : Theme(e1, x2)
b1 : Pred(x2, piano.n.01)
b2 : Pred(t1, now.n.01)
b1 : temp after(e1, t1)

b4

b4 : � : b3 : x3, b3 : e2 b3

b3 : Named(x3, “tom”)
b3 : Pred(e2, stop.v.05)
b3 : Agent(e2, x3)
b1 : Pred(x1, male.n.02)
b3 : Patient(e2, x1)
b3 : temp before(e2, e1)

CONTRAST(b1, b4)

The man is going to play the piano. Tom may stop him.

Figure 1: DRS representing two-sentence discourse.

1981; Kamp and Reyle 1993; Asher and Lascarides
2003), a formal semantic theory designed to han-
dle a variety of linguistic phenomena, including
anaphora, presuppositions (Van der Sandt, 1992;
Venhuizen et al., 2018), and temporal expressions
within and across sentences. DRSs are scoped
meaning representations, they capture the seman-
tics of negation, modals, and quantification.

Figure 1 displays in box format the meaning
representation for a discourse consisting of two
sentences. The outermost box is a segmented DRS
expressing the rhetorical relation CONTRAST be-
tween box b1 representing the first sentence and
box b4 representing the second sentence. Boxes b1
and b2 are DRSs, the top layers contain variables
(e.g., x1, x2) indicating discourse referents and the
bottom layers contain conditions (e.g., Named(x3,
“tom”)) representing information about discourse
referents. Variables and conditions have pointers
(denoted by b in the figure) pointing to the boxes
where they should be interpreted.1 Predicates are
disambiguated to their Wordnet (Fellbaum, 1998)
senses (e.g., male.n.02 and play.v.03).

Although there has been considerable activity re-
cently in developing models which analyze text in
the style of DRT (van Noord et al., 2018, 2019; Liu
et al., 2019a, 2018; Fancellu et al., 2019), attempts

1In Figure 1, b6 is a presuppositional box for the interpre-
tation of the man in the context of the two-sentence discourse.

398

(a)

b5

b6 : x1 , b1 : e1 ,
b1 : x2 , b2 : t1 b1

b1 : Theme(e1 , x2)
b1 : temp after(e1 , t1)
b1 : Pred(x2 , piano.n.01)
b1 : Pred(e1 , play.v.03)
b2 : Pred(t1 , now.n.01)
b1 : Agent(e1 , x1)
b6 : Pred(x1 , male.n.02)

b4

b4 : � : b3 : x3 , b3 : e2 b3

b3 : temp before(e2 , e1)
b3 : Pred(e2 , stop.v.05)
b3 : Patient(e2 , x1)
b1 : Pred(x1 , male.n.02)
b3 : Named(x3 , “tom”)
b3 : Agent(e2 , x3)

CONTRAST(b1 , b4)

(b)

b1

b9 : x2 , b2 : e9 ,
b2 : x3 , b8 : t4 b2

b9 : Pred(x2 , male.n.02)
b2 : Pred(e1 , play.v.03)
b2 : Agent(e9 , x2)
b2 : Theme(e9 , x3)
b2 : Pred(x3 , piano.n.01)
b8 : Pred(t1 , now.n.01)
b2 : temp after(e9 , t1)

b3

b3 : � : b4 : x1 , b4 : e1 b4

b4 : Named(x1 , “tom”)
b4 : Pred(e1 , stop.v.05)
b4 : Agent(e1 , x1)
b2 : Pred(x2 , male.n.02)
b4 : Patient(e1 , x2)
b4 : temp before(e1 , e9)

CONTRAST(b2 , b3)

Figure 2: DRS from Figure 1 with (a) shuffled condi-
tions and (b) different variable names.

to generate text from DRSs have been few and far
between (however see Basile 2015 and Narayan
and Gardent 2014 for notable exceptions). This
is primarily due to two properties of DRS-based
semantic representations which render generation
from them challenging. Firstly, DRS conditions are
unordered representing a set (rather than a list).2

A hypothetical generator would have to produce
the same output text for any DRSs which convey
the same meaning but appear different due to their
conditions having a different order (see Figures 1
and 2a which are otherwise identical but the order
of conditions in boxes b1 and b4 varies). The sec-
ond challenge concerns variables and their promi-
nent status in DRSs. Variables identify objects
in discourse (such as entities and predicates), and
are commonly used to model semantic phenomena
including coreference, control constructions, and
scope. In Figure 1, variables x, e, s, t, p, and b de-
note entities, events, states, time, propositions and
boxes, respectively. Variable names themselves are
arbitrary and meaningless posing a challenge for
learning. Our generator must verbalize different
variable names to the same surface form. The mean-
ing representations in Figures 1 and 2b are identical
and both correspond to the same discourse except
that the variables have been given different names
(b5 in Figure 1 has been named b1 in Figure 2b, b1
is now b2, x1 is x2, e1 is e9, and so on).

2An exception are conditions in segmented DRSs whose
order can be retrieved deterministically based on the argu-
ments of rhetorical relations. For example, given the relation
BECAUSE(b1, b3), we can assume that box b1 precedes b3.

These two problems are further compounded by
the way DRSs are displayed, in a box-like format
which is intuitive and easy to read but not conve-
nient for modeling purposes. As a result, DRSs are
often post-processed in a format that can be han-
dled more easily by modern neural network mod-
els. For example, DRS variables and conditions
are converted to clauses (van Noord et al., 2018)
or DRSs are modified to trees where each box is a
subtree and conditions within the box correspond
to children of the subtree (Liu et al., 2019a, 2018).

In this paper we propose novel solutions to con-
dition ordering and variable naming. We argue
that even though DRS conditions appear unordered,
they have a latent order due to biases in the way
the training data is created. To give a concrete ex-
ample, the Groningen Meaning Bank (GMB; Bos
et al. 2017) provides the largest collection to date
of English texts annotated with DRSs. These an-
notations were generated with the aid of a CCG
parser (Clark and Curran, 2007); atomic DRS con-
ditions were associated with CCG supertags and
then semantically combined following the syntactic
CCG derivations. Even annotators creating DRSs
manually would be prone to follow a canonical or-
der (e.g., listing named entities first, then verbal
predicates and their thematic roles, and finally tem-
poral conditions). We propose a graph-based model
which learns to recover the latent order of condi-
tions without explicitly enumerating all possible
orders which can be prohibitive. We also handle
variable names with a method which rewrites ar-
bitrary indices to relative ones which are in turn
determined by the order of conditions.

Following previous work, we convert DRSs to a
more amenable format. Specifically, we consider
Discourse Representation Tree Structures (DRTSs;
Liu et al. 2019b) as the semantic representation in-
put to our document generation task, and generate
a sequence of words autoregressively. We adopt an
encoder-decoder framework with a treeLSTM (Tai
et al., 2015) encoder and a standard LSTM (Hochre-
iter and Schmidhuber, 1997) decoder. Problemati-
cally, DRS trees are wide and the number of chil-
dren for a given node can be as many as 180. It
therefore becomes memory-consuming and sparse
to assign a forget gate for each child as in the
case of conventional (N -ary) treeLSTM (Tai et al.,
2015). We propose a variant which we call Sibling
treeLSTM that replaces N forget gates with a par-
ent gate and a sibling gate. As a result, it reduces

399

memory usage from O(N) to O(2), and is more
suitable for modeling wide and flat trees.

Our contributions can be summarized as follows:
(1) we formalize the task of neural DRS-to-text
generation; (2) we provide solutions for the prob-
lems of condition ordering and variable naming,
which render generation from DRS-based meaning
representations non-trivial; and (3) propose a novel
sibling treeLSTM model that can be also generally
used to model wide tree structures. We make our
code and datasets publicly available.3

2 Problem Formulation

Let S denote a DRS-based meaning representation.
The aim of DRS-to-text generation is to produce
text T that verbalizes input meaning S:

T ∗ = arg max
T∈T

P (T |S,Θ),

where T is the set of all possible texts, S has an
arbitrary order of conditions and indexing of vari-
ables, and Θ is the set of model parameters.

Our generation model is based on the encoder-
decoder framework (Bahdanau et al., 2015) and
operates over tree structures. Moreover, prior to
training, variable names are rewritten so that their
(arbitrary) indices denote relative order of appear-
ance. We propose a novel sibling TreeLSTM for
encoding tree structures. The decoder is a sequen-
tial LSTM equipped with an attention mechanism
generating word sequence T = [t0, t1, ..., tm−1],
wherem is the length of the text. At test time, DRS
conditions are normalized, i.e., they are reordered
following a canonical order learned from data, and
used as input to our generation model.

We first describe our DRS-to-tree conversion
and variable renaming procedures (Sections 2.1
and 2.2). We next present our tree-to-sequence
generation model (Section 2.3), and explain how
DRS conditions are ordered (Section 2.4).

2.1 DRS-to-Tree Conversion
The algorithm of Liu et al. (2018) renders DRSs
in a tree-style format. It constructs trees based on
DRS conditions in the bottom box layers, with-
out considering variables in the top layer. This
results in oversimplified semantic representations
and information loss (e.g., presuppositions cannot
be handled). We improve upon their approach by

3https://github.com/LeonCrashCode/
Discourse-Representation-Tree-Structure/
tree/main/gmb/DRS-to-text

(a)

b5

b1

b6 : Ref(x1)
b6 : Pred(x1 , male.n.02)
b1 : Ref(e1)
b1 : Pred(e1 , play.v.03)
b1 : Agent(e1 , x1)
b1 : Ref(x2)
b1 : Theme(e1 , x2)
b1 : Pred(x2 , piano.n.01)
b2 : Ref(t1)
b2 : Pred(t1 , now.n.01)
b1 : temp after(e1 , t1)

b4

b4 : � : b3

b3 : Ref(x3)
b3 : Named(x3 , ”tom”)
b3 : Ref(e2)
b3 : Pred(e2 , stop.v.05)
b3 : Agent(e2 , x3)
b1 : Pred(x1 , male.n.02)
b3 : Patient(e2 , x1)
b3 : temp before(e2 , e1)

CONTRAST(b1 , b4)

(b)

b5

b1 b4 CONTRAST

b1 b4Ref Pred ... temp after

b6 x1 b6 x1 male.n.02 b1 e1 t1

�

b4 DRS

Ref Named ... temp before

b3 x3 b3 x3 “tom” b3 e2 e1

Figure 3: (a) Box-style DRSs; (b) Tree-style DRSs.

SDRS

DRS

O : Ref(X)
O0 : Pred(X0, male.n.02)
B0 : Ref(E)
B0 : Pred(E0, play.v.01)
B0 : Agent(E0, X0)
B0 : Ref(X)
B0 : Theme(E0, X0)
B0 : Pred(X0, piano.n.01)
O : Ref(T)
O0 : Pred(T0, now.n.01)
B0 : temp after(E0, T0)

DRS

B0 : � :

B0 : Ref(X)
B0 : Named(X0, ”tom”)
B0 : Ref(E)
B0 : Pred(E0, step.v.01)
B0 : Agent(E0, X0)
B−2 : Pred(X−2, male.n.01)
B0 : Patient(E0, X−2)
B0 : temp before(E0, E−1)

CONTRAST(k0, k1)

Figure 4: DRSs with relative variables.

merging variables in the top layer with variables in
the bottom layer via introducing special conditions.

We collect variables in top layers of DRS boxes
to construct a dictionary d = {v : b}, where
v denotes a variable and b is a presupposition box
label (e.g., x1 : b1). We then move variables
from the top to the bottom layer by expressing
them as special conditions b : Ref(v) and placing
them before conditions on variable v. For example,
b6 : x1 in Figure 1 becomes special condition b6 :
Ref(x1) and is placed before condition b6 : Pred(x1,
male.n.02) in Figure 3(a).

Once top variables have been rewritten as spe-
cial conditions, the resulting DRSs are converted
into trees as shown in Figure3(b). Box variables
(e.g., b1, b5) become parent nodes, while condi-
tions, which are also subtrees, become children.

https://github.com/LeonCrashCode/Discourse-Representation-Tree-Structure/tree/main/gmb/DRS-to-text
https://github.com/LeonCrashCode/Discourse-Representation-Tree-Structure/tree/main/gmb/DRS-to-text
https://github.com/LeonCrashCode/Discourse-Representation-Tree-Structure/tree/main/gmb/DRS-to-text

400

2.2 Relative Variables

We rename variables with regard to their relative
position in a given DRS following a predefined
traversal order.

We obtain the sequence of box variables by
traversing DRSs in an outer-to-inner and left-to-
right manner, e.g., [b5, b1, b4, b3] in Figure 1. For
SDRSs, we replace variables in discourse relations
with ki, where i denotes th ith box from left to
right. For example “CONTRAST(b1, b4)” in Fig-
ure 1 is rewritten to “CONTRAST(k0, k1). Vari-
ables and conditions within presupposition boxes
are rewritten to Bi, where i ∈ Z denotes the dis-
tance of the current box to the presupposition box.
For example, b1 : Agent(e1, x1) is rewritten to B0 :
Agent(e1, x1) because it is in the current box b1,
while b1 : Pred(x1, “male.n.02”) is rewritten to
B−2 : Pred(x1, “male.n.02”) because it is in box b3
and two hops away from presupposition box b1.
We use special label O for presupposition boxes
pertaining to semantic content outwith the current
DRS. For example, b6 : Ref(x1) is rewritten to O :
Ref(x1) because it introduces a new presupposition
box, and b6 : Pred(x1, male.n.02) is rewritten to
O0 : Pred(x1, male.n.02) because the condition can
only be interpreted in this new presupposition box
(now O0 and previoulsy b6).

We obtain a sequence of general variables by
traversing conditions as they appear in the DRS.
Variables introduced for the first time are denoted
by their type (going from left-to-right), while subse-
quent mentions of the same variables are rewritten
with relative indices denoting their distance from
the position where they were first introduced. Take
Figure 3(a) as an example. The sequence of gen-
eral variables is [x1, x1, e1, e1, e1, x1, x2, e1, x2,
x2, t1, t1, e1, t1, x3, x3, e2, e2, e2, x3, x1, e2, x1,
e2, e1], and is rewritten to [X , X0, E, E0, E0,
X0, X , E0, X0, X0, T , T0, E0, T0, X , X0, E,
E0, E0, X0, X−2, E0, X−2, E0, E−1]. The DRS
from Figure 3(a) is shown in Figure 4 with relative
variables.

2.3 Generation Model

Our generation model is based on the encoder-
decoder framework, where an encoder is used to
encode input DRS trees and a decoder outputs a
sequence of words. A limitation of sequential en-
coders is that they only allow sequential informa-
tion propagation without considering the structure
of the input (Tai et al., 2015; Wang et al., 2019). In

b6 x1

Ref

b6 x1male.n.02

Pred
...

...

b3 e1 t1

temp after

b4 DRS

�

b5

b1 b4 CONTRAST

b1 b4

Ref Named temp before

...

b3 x3 b3 x3 “tom”

...

b3 e2 e1

Figure 5: The sibling treeLSTM; grey boxes are hid-
den representations of nodes, black/red arrows repre-
sent sibling/parent information flow.

our case, DRS tree structures are additionally wide
(the longer a document, the wider the tree) and rel-
atively flat (see Figure 3(b)). To better model these
aspects, we propose a treeLSTM encoder which
takes sibling information into account.

As shown in Figure 5, the hidden representations
of the sibling TreeLSTM cells are updated from
preceding sibling and child nodes. More formally,
the hidden representation for node j is given by:

uj = tanh(gu([xj ;hjs;hjp])) (1)

ij , oj = σ(gio([xj ;hjs;hjp])) (2)

fjs = σ(gfs ([xj ;hjs])) (3)

fjp = σ(gfp ([xj ;hjp])) (4)

cj = ij · uj + fjs · cjs + fjp · cjp (5)

hj = oj · tanh(cj), (6)

where xj is the token input representation, hjs is
the hidden representation of the sibling node pre-
ceding j, hjp is the hidden representation of the last
child of node j (Equation (1)), g∗ are linear func-
tions, and σ is a sigmoid function (Equations (2)–
(4)). For each node j, we obtain its cell input rep-
resentation uj (Equation (1)), its input gate ij and
output gate oj (Equation (2)), and two forget gates
fjs (Equation (3)) and fjp (Equation (4)) for its
neighbor cell and the last child cell, respectively.
The memory of the current cell cj (Equation (5)) is
updated by the gated sum of its cell input represen-
tation and the memories of its neighbor and child
cells. The hidden representation of current node hj
is computed with its output gate oj (Equation (6)).

401

Finally, a DRS tree is represented by the hidden
representations of its nodes [h0, h1, ..., hn′−1] as
computed by the sibling treeLSTM (n′ denotes the
number of nodes). The decoder is a standard LSTM
with global attention (Bahdanau et al., 2015).

2.4 Condition Ordering
As discussed previously, DRSs at test time may
exhibit an arbitrary order of conditions, which our
model should be able to handle. Our solution is to
to reorder conditions prior to generation by learning
a latent canonical order from training data (e.g., to
recover boxes b1 and b3 in Figure 1 from boxes b1
and b3 in Figure 2). More formally, given a set
of conditions Rset, we obtain an optimal ordering
R = [r0, r1, ..., rn−1] such that:

R∗ = arg max
R∈π(Rset)

SCOREK(R|Rset), (7)

where π(Rset) are all permutations of Rset, and
R∗ is the order with the highest likelihood accord-
ing to SCOREK. Here, K parametrizes SCORE as
“knowledge” we collect from our training data by
observing canonical orders of conditions. Unfor-
tunately, the time complexity of calculating Equa-
tion (7) is O(n!), we must enumerate all possible
permutations for a set of conditions with n as large
as 180. Since this is prohibitive, we resort to graph
ordering which allows us to recover the order of
the conditions without enumeration.

Graph Construction We construct a graph from
the set of DRS conditions which we break down
into graph nodes and edges. Conditions in DRSs
can be simple or complex according to their type
of arguments. A simple condition might have a
relation name with two arguments (e.g., Named(x3,
“tom”) and Agent(e1, x3)), while a complex con-
dition has a scoped name (e.g., possibility �) and
takes one or more DRSs as arguments. Simple
conditions are denoted by a 3-tuple (ls, a0, a1),
where ls is the condition name (e.g., Named and
Agent) and a0 and a1 are its first and the second ar-
gument, respectively, which could be a variable or
constant (e.g., e1, x3 and “piano.n.01”). Complex
conditions are a 2-tuple (lc, Vr), where lc is the
scope name, and Vr the set of arguments scoped by
the condition. For example, the set of arguments
for the possibility scope (�) in Figure 1 is {e1, e2,
x1, x3, “tom”, “stop.v.05”, “male.n.”}.

Condition names become nodes in our graph.
Simple conditions are further divided into con-
stant and thematic nodes. Constant nodes are

(a)

Conditions Nodes Edges
Pred(x1, “male.n.02”) Pred “male.n.02” a0 = x1

Pred(e1, “play.v.03”) Pred “play.v.03” a0 = e1
Agent(e1, x1) Agent a0 = e1, a1 = x1

Theme(e1, x2) Theme a0 = e1, a1 = x2

Pred(x2, “piano.n.01”) Pred “piano.n.01” a0 = x2

Pred(t1, “now.n.01”) Pred “now.n.01” a0 = t1
temp after(e1, t1) temp after a0 = e1, a1 = t1

(b)

Pred “play.v.03”

Agent Theme

temp after
Pred “male.n.02”

Pred “piano.n.01”

Pred “now.n.01”

a 0a
1

a
0

a1

a
0 a 1

a 0
-o

f

a
1 -of

a
0 -of

a1-o
f

a
0 -of

a 1
-o

f

Figure 6: (a) Conditions and their corresponding graph
nodes (b) graph with inverse edges (shown in red).

constructed by concatenating the relation name
in the condition with the constant argument
(e.g., condition Pred(x1, “male.n.02”) becomes
node Pred “male.n.02”). Thematic nodes cor-
respond to the relation name of the thematic
condition (e.g., Agent(e1, x1) becomes the node
“Agent”). Complex nodes correspond to the name
of complex conditions (e.g., possibility �).

We insert edges between graph nodes if these
share arguments. For example, in Figure 6(b), there
is an edge connecting node Pred “male.n.02” with
Agent as they share argument x1. We label this
edge with a1 to denote the fact that it is the sec-
ond argument of Agent. Another edge is drawn
between Pred “play.v.03” and Agent (as they share
argument e1) with label a0 denoting that this is the
first argument of Agent. Edges between nodes are
bidirectional, with inverse edges bearing the suffix
“-of”. Edges drawn between constant and complex
nodes bear the label “Related”, while edges be-
tween two constant nodes (with the same variables)
bear the label “Equal” (we provide a more formal
description in the Appendix).

Ordering Model Given graph G = (Rset, E),
where Rset = {r0, r1, ..., rn−1} is the set of nodes
and E is the set of edges in G, our model outputs
R∗ as the optimal order of Rset.

As shown Figure 6(a), each node is a sequence
of words. A BiLSTM is applied to obtain represen-
tation xi of each node ri = [wi0, ..., w

i
m−1]:

xi = BiLSTM([wi0, ..., w
i
m−1]). (8)

We encode the graph with a Graph Convolutional
Recurrent network (GCRN; Seo et al. 2018). For

402

each node ri, we collect information from neighbor
hidden representations with a gate controling the
information flow from neighbors to current nodes:

h′ki =
∑
j

gkj · hk−1j ; (9)

gkj = σ(f([eji, h
k−1
i , hk−1j])), (10)

where eji is the embedding of edges from node rj
to ri, and k is the recurrent step in the GRU. The
node hidden representations are updated as:

hki = GRUCell([xi; gk−1G], hk−1i) (11)

gkG = GRUCell(
1

n

∑
i

hki , g
k−1
G) (12)

where gG represents the hidden representation of
the graph as the average of (hidden) node represen-
tations, and GRUCell denotes the gated recurrent
cell function. We obtain the hidden representa-
tions of nodes in the final recurrent step (K) as
HK = {hK0 , hK1 , ..., hKn−1}.

Our decoder obtains the orders with the highest
probability. We avoid enumerating all possible per-
mutations for a set of nodes by generating their or-
der autoregressively with an LSTM-based Pointer
Network (PN; Vinyals et al. 2015):

SCOREK(R|Rset) =PN(R|Rset, HK , θ) (13)

PN(R|Rset, HK , θ) =
∏
i

P (ri|r<i, HK) (14)

P (ri|r<i, HK) = softmax(vT tanh(W [hdi ;H
K])) (15)

where θ are the parameters of the Pointer Net-
work, hdi is the ith step hidden representation of
the Pointer Network, and v, and W are parame-
ters. Hidden representation hdi is updated by the
input representation of the (i− 1)th ordered node:
hdi = LSTMCell(xri−1 , h

d
i−1). All parameters are

optimized with standard back-propagation.

3 Experiments

Our experiments were carried out on the Gronin-
gen Meaning Bank (GMB; Bos et al. 2017) which
provides a large collection of English documents
annotated with DRSs. We used the standard train-
ing, development, and test splits that come with the
distribution of the corpus. All DRSs in the GMB
were preprocessed into the tree-based format dis-
cussed in Section 2.1. We also extracted from the
training data conditions and their order for training
our graph ordering model. Dataset statistics are
shown in Table 1.

Task train dev test

Generation 7,970 992 1,038
Condition Ordering 133,332 16,493 17,624

Table 1: GMB dataset statistics; number of documents
(generation) and number of different sequences of con-
ditions (ordering).

3.1 Condition Ordering

Models and Settings Before evaluating our gen-
erator per se, we assess the effectiveness of the pro-
posed condition ordering model (see Section 2.4).
Specifically we compare four kinds of graphs:
NoEdges, is a graph without edges; FullEdges,
is a complete graph where each pair of nodes has
edges; SiGraph, is the proposed graph without
bidirectional edges; and BiGraph, is the proposed
graph with bidirectional edges (see Figure 6). We
also consider Counting, a baseline model which
greedily orders pairs of conditions according to
their frequency of appearance in the training data
(see the Appendix for details).

For all neural models the embedding dimension
was 50 and the hidden dimension 300. The bidi-
rectional LSTM used for representing the graph
nodes has a single layer, and the recurrent step in
the GCRN is 2 (K = 2). We applied the Adam
optimizer (Kingma and Ba, 2014). We use accu-
racy to measure the percentage of absolute orders
which are predicted correctly and Kendall’s τ co-
efficient to measure the relationship between two
lists of ordered items; τ ranges from−1 to 1, where
−1 means perfect inversion and 1 means perfect
agreement.

Results Table 2 summarizes our results. SiGraph
performs better than NoEdges (+14.83% accu-
racy), showing that edge information is helpful
for the representation of nodes which are used to
order conditions. FullEdges performs worse than
SiGraph (−13.68% accuracy), underlying the fact
that graph structure matters (i.e., edges are helpful
when connecting certain pairs of nodes). BiGraph
achieves the best ordering performance by a large
margin compared to SiGraph (+9.63 % accuracy).
One possible reason is that bidirectionality ensures
all nodes have incoming edges, which can be used
to update the node representations.

403

Models Acc (%) τ Parameters

Counting 14.38 0.57 —

NoEdges 44.64 0.75 6.1M
FullEdges 45.79 0.75 6.1M
SiGraph 59.47 0.85 6.1M
BiGraph 69.10 0.89 6.1M

Table 2: Results for condition ordering (dev set).

Models BLEU Parameters

Seq 71.79 47.4M
ChildSum 72.98 (+1.19) 47.1M
Nary 73.24 (+1.45) 49.2M
Sibling 74.22 (+2.43) 49.2M

Table 3: Ideal-world generation (dev set); improve-
ments compared to Seq shown in parentheses.

3.2 Ideal-World Generation

Models and Settings We first examine genera-
tion performance in an ideal setting where (gold
standard) condition orders are given and the indices
of variables are fixed.

We compared the proposed treeLSTM against
Seq, a baseline sequence-to-sequence model which
adopts a bidirectional LSTM as its encoder.4 Trees
were linearized in a top-down and left-to-right
fashion, X = [x0, x1, ...xn−1], where n is the
tree length. We obtained hidden representations
H = [h0, h1, ..., hn−1] of the input with:

[h0, h1, ..., hn−1] = BiLSTM([x0, x1, ..., xn])

In addition, we included various models with tree-
based encoders: ChildSum, is the bidirectional
childsum-treeLSTM encoder of Tai et al. (2015);
it operates over right-branch binarized trees; Nary,
is the bidirectional Nary-TreeLSTM of Tai et al.
(2015), again over right-branch binarized trees;5

and Sibling is our bidirectional sibling-TreeLSTM.
All models were equipped with the same LSTM
decoder, global attention (Bahdanau et al., 2015),
and the copy strategy of See et al. (2017).

The embedding dimension was 300 and the hid-
den dimension 512. All encoders and decoders
have 2 layers. The detailed settings are shown in

4The length of the input tokens can be around 4,000.
5We experimented with n-ary (n > 2) trees, but found

that binary trees perform best. Right-branch binary trees are
also empirically better than left-branch ones.

Models BLEU

Seq+Naive 4.61
Seq+Random 24.34 (16.77)
Seq+Counting 45.17
Seq+GraphOrder 55.57

Sibling+Naive 6.98
Sibling+Random 43.43 (0.26)
Sibling+Counting 49.54
Sibling+GraphOrder 58.73

Table 4: Real-world generation (dev set). For Random,
we report average results after shuffling 5 times (vari-
ance shown in parentheses).

Models BLEU Parameters

Graph 45.72 30.1M
Seq+GraphOrder 55.28 32.4M + 6.1M
Sibling+GraphOrder 59.26 34.5M + 6.1M

Table 5: Real-world generation (test set).

the Appendix. We measure generation quality with
case-insensitive BLEU (Papineni et al., 2002).

Results Table 3 shows our results on the devel-
opment dataset. Overall, treeLSTM models per-
forms better (average +1.69 BLEU) than sequence
models. Nary performs better (+0.26 BLEU) than
ChildSum because the latter cannot model the order
of children. Sibling performs best (74.22 BLEU),
because it it not only encodes the tree structure but
also keeps track of sequential information.

3.3 Real-World Generation

Models and Settings We finally, present our re-
sults in a more realistic setting where both prob-
lems of condition ordering and variable naming
must be addressed. We recover condition order
using four approaches: a Naive method which has
no special-purpose ordering mechanism; the order
of conditions is random in the development/test
sets and fixed in the training set; Random, the
order of conditions is random in the training, de-
velopment, and test sets; Counting, the order of
conditions is recovered by the Counting method;
GraphOrder recovers the order of conditions with
BiGraph. All comparison systems employ vari-
able renaming as introduced in Section 2.2. We
report experiments with a sequence-to-sequence
generator and our sibling-TreeLSTM.

404

500 1,000 1,500 2,000 2,500 3,000 3,500

20

40

60

80

text length

B
L

E
U

(%
)

Seq+GraphOrder
Sibling+GraphOrder

Figure 7: BLEU score against DRS size (test set).

Results Table 4 summarizes our results on the
development set. Naive performs poorly, indicat-
ing that both Seq and Sibling models are sensitive
to the order of conditions. Random, has higher
variance with Seq (+16.51) compared to Sibling.
Hidden representations for each timestep in Seq
are heavily influenced by all previous steps, which
are sequentially encoded; subtrees are encoded as a
unit in Sibling, which is a more global representa-
tion for capturing patterns. Overall, we observe that
the order of conditions plays a key role in the gener-
ation: both Seq and Sibling models improve when
ordering of conditions is explicitly incorporated
(either with Counting or GraphOrder). We observe
that the combination of Sibling with GraphOrder
achieves the best results (58.73 BLEU).

Table 5 presents our results on the test set. We
compare our Sibling encoder against a sequential
one. Both models are interfaced with GraphOrder.
We also compare to a previous graph-to-text model
(Song et al., 2018; Damonte and Cohen, 2019)
which has been used for generating from AMRs.
We converted DRSs to graphs following the method
of Liu et al. (2020); graphs were encoded with
a GCRN (Seo et al., 2018) and decoded with
an LSTM. As can be seen, Sibling+GraphOrder
outperforms all comparison systems achieving a
BLEU of 59.26. However, compared to ideal-world
generation (see Table 3) there is still considerable
room for improvement.

3.4 Analysis
Figure 7 shows model performance on test set
against DRS size (i.e., the number of nodes in a
DRS tree). Perhaps unsurprisingly, we see that gen-
eration quality deteriorates with bigger DRSs (i.e.,
with >1,600 nodes).

While BLEU is frequently adopted as an auto-
matic evaluation metric for genration tasks, it is

somewhat problematic in our case as it merely cal-
culates word overlap between generated and gold-
standard text without assessing whether model out-
put is faithful to the semantics of the input (i.e., the
DRS meaning representations). To this effect, we
present examples of text generated by our model,
demonstrating how the DRS input constrains and
affects the output text.

Figure 8 shows examples of text generation from
the test set. In the first example, the model gen-
erates the word because from the rhetorical rela-
tion, BECAUSE(b10, b12). Temporal information
(highlighted in blue in the figure) is also accurately
reflected in the generated text (sell is inflected to its
present tense form). In addition, the model tends to
over-generate (e.g., the word dollar is mentioned
twice) and sometimes misses out on important de-
terminers (e.g., some). In the second example,
the model generates the word themselves referring
to the entities mentioned before, e.g., x29 equals
to x27 which refers to inmates, resolving the coref-
erence. In the third example, the model gener-
ates the modal verb must in accordance with the
scope operator NEC (a shorthand for Necessity, �).
Also, the model generates all for food and goods
corresponding to the Implication (IMP) condition
(i.e., ∀x(P (x)→ Q(x))).

4 Related Work

Much previous work has focused on text generation
from formal representations of meaning focusing
exclusively on isolated sentences or queries. The
literature offers a collection of approaches to gen-
erating from AMRs most of which employ neu-
ral models and structured encoders (Song et al.,
2018; Beck et al., 2018; Damonte and Cohen, 2019;
Ribeiro et al., 2019; Zhu et al., 2019; Cai and Lam,
2020; Wang et al., 2020). Other work generates
text from structured query language (SQL) adopt-
ing either sequence-to-sequence (Iyer et al., 2016)
or graph-to-sequence models (Xu et al., 2018).

Basile (2015) was the first to attempt genera-
tion from DRT-based meaning representations. He
proposes a pipeline system which operates over
graphs and consists of three components: an align-
ment module learns the correspondence between
surface text and DRS structure, an ordering mod-
ule determines the relative position of words and
phrases in the surface form and a realizer generates
the final text. Narayan and Gardent (2014) simplify
complex sentences with a two-stage model which

405

DRS

... DRS(b10 Pred(b10 x24 “speculator.n.01”) Pred(b10 x25 “dollar.n.01”) Pred(b10 e8
“sell.v.01”) Agent(b10 e8 x24) Theme(b10 e8 x25) Pred(b4 t1 “now.r.01”) Equ(b10 X26 t1
) temp includes(b10 t5 x26) temp overlap(b10 e8 t5)) SDRS(b12 DRS(b11 Pred(b3 x5
“thing.n.12”) Pred(b11 e9 “expect.v.01”) Agent(b11 e9 x5) ... BECAUSE(b10 b12)))

Gold ... some speculators are selling dollars because they expect ...

Ours ... , the dollar . speculators are selling dollars because they expect ...

DRS
... Pred(b16 e11 “be.v.00”) Agent(b16 e11 x26) Ref(b16 x27) Card(b16 x27 7) Ref(b16
x28) Pred(b16 x27 “inmate n.01”) Ref(b16 x29) Equ(b16 x27 x29) Ref(b17 x30) Pred(b17
x30 “group.n.01”) Ref(b16 e12) Pred(b16 e12 “disguise.v.01”) Theme(b16 e12 x29) ...

Gold ... were among seven inmates who disguised themselves ...

Ours ... were among seven inmates disguised themselves ...

DRS

.... DRS(b4 NEC(b4 DRS(b5 IMP(b5 DRS(b6 Ref(b6 x11) Ref(b6 x10) subset of(
b6 x11 x10) Ref(b6 x12) subset of(b6 x12 x10) Ref(b6 x13) Pred(b6 x13 “food.n.01”
) In(b6 x11 x13) Pred(b6 x11 “goods.n.01”) Ref(b6 s2) Topic(b6 s2 x12) Pred(b6
s2 “manufactured.a.01”) Pred(b6 x12 goods n.01)) DRS(b7 Ref(b7 e4) Pred(b7 e4
“import.v.01”) Theme(b7 e4 x10) Pred(b3 t1 “now.r.01”) Ref(b7 t3) temp included(b7 e4
t3) temp before(b7 t1 t3)))IMP))NEC) ...

Gold ... all food and manufactured goods must be imported ...

Ours ... all food and manufactured goods must be imported ...

Figure 8: DRS example from test set with gold and automatically generated text by ours (Sibling+GraphOrder).
Temporal information marked in blue, rhetorical relations marked in red, co-reference marked as green, and scope
marked in brown.

first performs sentence splitting and deletion op-
erations over DRSs and then uses a phrase-based
machine translation model for surface realization.

Our work is closest to Basile (2015); we share
the same goal of generating from DRSs, however,
our model is trained end-to-end and can perform
long-form generation for documents and sentences
alike. We also adopt an ordering component, but
we order DRS conditions rather than lexical items,
and propose a model capable of inferring a global
order. There has been long-standing interest in
information ordering within NLP (Lapata, 2003;
Abend et al., 2015; Chen et al., 2016; Gong et al.,
2016; Logeswaran et al., 2018; Cui et al., 2018; Yin
et al., 2019; Honovich et al., 2020). Our innovation
lies in conceptualizing ordering as a graph scoring
task which can be further realized with graph neural
network models (Wu et al., 2020).

5 Conclusions

In this paper, we have focused on document-level
generation from formal meaning representations.
We have adopted DRT as our formalism of choice
and highlighted various challenges associated with

the generation task. We have introduced a novel
sibling treeLSTM for encoding DRSs rendered as
trees and shown it is particularly suited to trees with
wide branches. We have experimentally demon-
strated that our encoder coupled with a graph-based
condition ordering model outperforms strong com-
parison systems. In the future, we would like to
embed our generator in practical applications such
as summarization and question answering.

Acknowledgments

We thank the anonymous reviewers for their feed-
back. We gratefully acknowledge the support
of the European Research Council (Lapata, Liu;
award number 681760), the EU H2020 project
SUMMA (Cohen, Liu; grant agreement 688139)
and Bloomberg (Cohen, Liu).

References
Omri Abend, Shay B. Cohen, and Mark Steedman.

2015. Lexical event ordering with an edge-factored
model. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-

https://www.aclweb.org/anthology/N15-1122.pdf
https://www.aclweb.org/anthology/N15-1122.pdf

406

nologies (NAACL-HLT), pages 1161–1171, Denver,
Colorado, USA.

Nicholas Asher and Alex Lascarides. 2003. Logics of
conversation. Cambridge University Press.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the 4th International Conference on Learning Rep-
resentations (ICLR), San Diego, California.

Valerio Basile. 2015. From Logic to Language: Natu-
ral Language Generation from Logical Forms. Ph.D.
thesis, University of Groningen, Netherlands.

Valerio Basile and Johan Bos. 2011. Towards generat-
ing text from discourse representation structures. In
Proceedings of the 13th European Workshop on Nat-
ural Language Generation, pages 145–150, Nancy,
France.

Daniel Beck, Gholamreza Haffari, and Trevor Cohn.
2018. Graph-to-sequence learning using gated
graph neural networks. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 273–283, Mel-
bourne, Australia.

Johan Bos, Valerio Basile, Kilian Evang, Noortje J Ven-
huizen, and Johannes Bjerva. 2017. The Groningen
meaning bank. In Handbook of Linguistic Annota-
tion, pages 463–496. Springer.

Deng Cai and Wai Lam. 2020. Graph transformer
for graph-to-sequence learning. In Proceedings of
the 34th AAAI Conference on Artificial Intelligence
(AAAI), pages 7464–7471, New York, USA.

John Carroll and Stephan Oepen. 2005. High-
efficiency realization for a wide-coverage unifica-
tion grammar. In Robert Dale and Kam-Fai Wong,
editors, Proceedings of the 2nd International Joint
Conference on Natural Language Processing (IJC-
NLP), volume 3651, pages 165–176. Springer, Jeju,
Korea.

Xinchi Chen, Xipeng Qiu, and Xuanjing Huang.
2016. Neural sentence ordering. arXiv preprint
arXiv:1607.06952.

Stephen Clark and James Curran. 2007. Wide-
coverage efficient statistical parsing with CCG
and log-linear models. Computational Linguistics,
33(4):493–552.

Baiyun Cui, Yingming Li, Ming Chen, and Zhongfei
Zhang. 2018. Deep attentive sentence ordering net-
work. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 4340–4349, Brussels, Belgium.

Marco Damonte and Shay B. Cohen. 2019. Struc-
tural neural encoders for AMR-to-text generation.
In Proceedings of the 2019 Conference of the North

American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies (NAACL-HLT), pages 3649–3658, Minneapolis,
USA.

Federico Fancellu, Sorcha Gilroy, Adam Lopez, and
Mirella Lapata. 2019. Semantic graph parsing
with recurrent neural network DAG grammars. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2769–
2778, Hong Kong, China.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Database. MIT Press, Cambridge, MA.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and
Jaime G. Carbonell. 2016. Generation from abstract
meaning representation using tree transducers. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT), pages 731–739, San Diego, Califor-
nia, USA.

Jingjing Gong, Xinchi Chen, Xipeng Qiu, and Xu-
anjing Huang. 2016. End-to-end neural sentence
ordering using pointer network. arXiv preprint
arXiv:1611.04953.

Valerie Hajdik, Jan Buys, Michael Wayne Goodman,
and Emily M. Bender. 2019. Neural text genera-
tion from rich semantic representations. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT), pages 2259–2266, Minneapolis, Minnesota.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Or Honovich, Lucas Torroba Hennigen, Omri Abend,
and Shay B. Cohen. 2020. Machine reading of his-
torical events. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7486–7497, Online. Association for
Computational Linguistics.

Matic Horvat, Ann Copestake, and Bill Byrne. 2015.
Hierarchical statistical semantic realization for Min-
imal Recursion Semantics. In Proceedings of the
11th International Conference on Computational Se-
mantics (IWCS), pages 107–117, London, UK. As-
sociation for Computational Linguistics.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 2073–2083,
Berlin, Germany.

https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://tel.archives-ouvertes.fr/tel-01342434
https://tel.archives-ouvertes.fr/tel-01342434
https://www.aclweb.org/anthology/W11-2819
https://www.aclweb.org/anthology/W11-2819
https://www.aclweb.org/anthology/P18-1026.pdf
https://www.aclweb.org/anthology/P18-1026.pdf
https://arxiv.org/pdf/1911.07470.pdf
https://arxiv.org/pdf/1911.07470.pdf
https://www.aclweb.org/anthology/I05-1015.pdf
https://www.aclweb.org/anthology/I05-1015.pdf
https://www.aclweb.org/anthology/I05-1015.pdf
https://arxiv.org/pdf/1607.06952.pdf
https://www.aclweb.org/anthology/J07-4004.pdf
https://www.aclweb.org/anthology/J07-4004.pdf
https://www.aclweb.org/anthology/J07-4004.pdf
https://www.aclweb.org/anthology/D18-1465.pdf
https://www.aclweb.org/anthology/D18-1465.pdf
https://www.aclweb.org/anthology/N19-1366.pdf
https://www.aclweb.org/anthology/N19-1366.pdf
https://doi.org/10.18653/v1/D19-1278
https://doi.org/10.18653/v1/D19-1278
https://www.cs.cmu.edu/~jgc/publication/flanigantree.pdf
https://www.cs.cmu.edu/~jgc/publication/flanigantree.pdf
https://arxiv.org/pdf/1611.04953.pdf
https://arxiv.org/pdf/1611.04953.pdf
https://doi.org/10.18653/v1/N19-1235
https://doi.org/10.18653/v1/N19-1235
https://doi.org/10.18653/v1/2020.acl-main.668
https://doi.org/10.18653/v1/2020.acl-main.668
https://www.aclweb.org/anthology/W15-0116
https://www.aclweb.org/anthology/W15-0116
https://www.aclweb.org/anthology/P16-1195.pdf
https://www.aclweb.org/anthology/P16-1195.pdf

407

Hans Kamp. 1981. A theory of truth and semantic
representation. In J. A. G. Groenendijk, T. M. V.
Janssen, and M. B. J. Stokhof, editors, Formal Meth-
ods in the Study of Language, volume 1, pages 277–
322. Mathematisch Centrum, Amsterdam.

Hans Kamp and Uwe Reyle. 1993. From Discourse to
Logic; An Introduction to Modeltheoretic Semantics
of Natural Language, Formal Logic and Discourse
Representation Theory. Kluwer, Dordrecht.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning
Representations (ICLR), Banff, Canada.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:
Sequence-to-sequence models for parsing and gen-
eration. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 146–157, Vancouver, Canada.

Mirella Lapata. 2003. Probabilistic text structuring:
Experiments with sentence ordering. In Proceed-
ings of the 41st Annual Meeting on Association for
Computational Linguistics (ACL), pages 545–552,
Sapporo, Japan.

Jiangming Liu, Shay B. Cohen, and Mirella Lapata.
2018. Discourse representation structure parsing. In
Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
429–439, Melbourne, Australia.

Jiangming Liu, Shay B. Cohen, and Mirella Lapata.
2019a. Discourse representation parsing for sen-
tences and documents. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pages 6248–6262, Flo-
rence, Italy.

Jiangming Liu, Shay B. Cohen, and Mirella Lapata.
2019b. Discourse representation structure parsing
with recurrent neural networks and the transformer
model. In Proceedings of the IWCS Shared Task
on Semantic Parsing, Gothenburg, Sweden. Associ-
ation for Computational Linguistics.

Jiangming Liu, Shay B. Cohen, and Mirella Lapata.
2020. Dscorer: A fast evaluation metric for dis-
course representation structure parsing. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 4547–
4554.

Lajanugen Logeswaran, Honglak Lee, and Dragomir
Radev. 2018. Sentence ordering and coherence mod-
eling using recurrent neural networks. In Proceed-
ings of the 32nd AAAI Conference on Artificial Intel-
ligence, pages 5285–5292, New Orleans, Louisiana,
USA.

Wei Lu and Hwee Tou Ng. 2011. A probabilistic forest-
to-string model for language generation from typed
lambda calculus expressions. In Proceedings of the

2011 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1611–1622,
Edinburgh, Scotland, UK. Association for Computa-
tional Linguistics.

Shashi Narayan and Claire Gardent. 2014. Hybrid sim-
plification using deep semantics and machine trans-
lation. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 435–445, Baltimore, Maryland. Asso-
ciation for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics (ACL), pages 311–318, Philadel-
phia, Pennsylvania, USA. Association for Computa-
tional Linguistics.

Leonardo F.R. Ribeiro, Claire Gardent, and Iryna
Gurevych. 2019. Enhancing AMR-to-text genera-
tion with dual graph representations. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3174–3185, Hong
Kong, China.

Abigail See, Peter J. Liu, and Christopher D. Man-
ning. 2017. Get to the point: Summarization with
pointer-generator networks. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 1073–1083, Van-
couver, Canada.

Youngjoo Seo, Michaël Defferrard, Pierre Van-
dergheynst, and Xavier Bresson. 2018. Structured
sequence modeling with graph convolutional recur-
rent networks. In Neural Information Process-
ing Systems (NeurIPS), pages 362–373, Montréal,
Canada. Springer.

Stuart M. Shieber, Gertjan van Noord, Fernando C. N.
Pereira, and Robert C. Moore. 1990. Semantic-
head-driven generation. Computational Linguistics,
16(1):30–42.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. A graph-to-sequence model for AMR-
to-text generation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (ACL), pages 1616–1626, Melbourne,
Australia.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguis-
tics and the 7th International Joint Conference on
Natural Language Processing (ACL-IJCNLP), pages
1556–1566, Beijing, China.

https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://www.aclweb.org/anthology/P17-1014.pdf
https://www.aclweb.org/anthology/P17-1014.pdf
https://www.aclweb.org/anthology/P17-1014.pdf
https://www.aclweb.org/anthology/P03-1069.pdf
https://www.aclweb.org/anthology/P03-1069.pdf
http://aclweb.org/anthology/P18-1040
https://www.aclweb.org/anthology/P19-1629.pdf
https://www.aclweb.org/anthology/P19-1629.pdf
https://www.aclweb.org/anthology/W19-1203.pdf
https://www.aclweb.org/anthology/W19-1203.pdf
https://www.aclweb.org/anthology/W19-1203.pdf
https://www.aclweb.org/anthology/2020.acl-main.416.pdf
https://www.aclweb.org/anthology/2020.acl-main.416.pdf
https://arxiv.org/pdf/1611.02654.pdf
https://arxiv.org/pdf/1611.02654.pdf
https://www.aclweb.org/anthology/D11-1149
https://www.aclweb.org/anthology/D11-1149
https://www.aclweb.org/anthology/D11-1149
https://www.aclweb.org/anthology/P14-1041.pdf
https://www.aclweb.org/anthology/P14-1041.pdf
https://www.aclweb.org/anthology/P14-1041.pdf
https://www.aclweb.org/anthology/P02-1040.pdf
https://www.aclweb.org/anthology/P02-1040.pdf
https://arxiv.org/pdf/1909.00352.pdf
https://arxiv.org/pdf/1909.00352.pdf
https://www.aclweb.org/anthology/P17-1099.pdf
https://www.aclweb.org/anthology/P17-1099.pdf
https://pdfs.semanticscholar.org/7823/5ff65a15bbc2777f96f8d646b04d2fc16fde.pdf
https://pdfs.semanticscholar.org/7823/5ff65a15bbc2777f96f8d646b04d2fc16fde.pdf
https://pdfs.semanticscholar.org/7823/5ff65a15bbc2777f96f8d646b04d2fc16fde.pdf
https://www.aclweb.org/anthology/J90-1004
https://www.aclweb.org/anthology/J90-1004
https://www.aclweb.org/anthology/P18-1150.pdf
https://www.aclweb.org/anthology/P18-1150.pdf
https://www.aclweb.org/anthology/P15-1150.pdf
https://www.aclweb.org/anthology/P15-1150.pdf
https://www.aclweb.org/anthology/P15-1150.pdf

408

Sho Takase, Jun Suzuki, Naoaki Okazaki, Tsutomu Hi-
rao, and Masaaki Nagata. 2016. Neural headline
generation on Abstract Meaning Representation. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1054–1059, Austin, Texas. Association for
Computational Linguistics.

Rob A. Van der Sandt. 1992. Presupposition projec-
tion as anaphora resolution. Journal of Semantics,
9(4):333–377.

Rik van Noord, Lasha Abzianidze, Antonio Toral, and
Johan Bos. 2018. Exploring neural methods for
parsing discourse representation structures. Trans-
actions of the Association for Computational Lin-
guistics, 6:619–633.

Rik van Noord, Antonio Toral, and Johan Bos. 2019.
Linguistic information in neural semantic parsing
with multiple encoders. In Proceedings of the 13th
International Conference on Computational Seman-
tics (IWCS), pages 24–31, Gothenburg, Sweden.

Noortje J. Venhuizen, Johan Bos, Petra Hendriks,
and Harm Brouwer. 2018. Discourse semantics
with information structure. Journal of Semantics,
35(1):127–169.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Neural Information
Processing Systems (NeurIPS), pages 2692–2700,
Montréal, Canada.

Juen-tin Wang. 1980. On computational sentence gen-
eration from logical form. In Proceedings of the 8th
International Conference on Computational Linguis-
tics (COLING), pages 405–411, Tokyo, Japan.

Tianming Wang, Xiaojun Wan, and Hanqi Jin. 2020.
AMR-to-text generation with graph transformer.
Transactions of the Association for Computational
Linguistics, 8:19–33.

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen.
2019. Tree transformer: Integrating tree structures
into self-attention. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1060–1070, Hong Kong, China.

Michael White, Rajakrishnan Rajkumar, and Scott Mar-
tin. 2007. Towards broad coverage surface real-
ization with CCG. In Proceedings of the Work-
shop on Using Corpora for NLG: Language Genera-
tion and Machine Translation (UCNLG+MT), pages
267–276, Copenhagen, Denmark.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and S Yu Philip. 2020. A
comprehensive survey on graph neural networks.
IEEE Transactions on Neural Networks and Learn-
ing Systems.

Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng,
and Vadim Sheinin. 2018. SQL-to-text generation
with graph-to-sequence model. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 931–936,
Brussels, Belgium.

Xuchen Yao, Gosse Bouma, and Yi Zhang. 2012.
Semantics-based question generation and implemen-
tation. Dialogue and Discourse, 2(3):11–42.

Yongjing Yin, Linfeng Song, Jinsong Su, Jiali Zeng,
Chulun Zhou, and Jiebo Luo. 2019. Graph-based
neural sentence ordering. In Proceedings of the 28th
International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 5387–5393, Macao, China.

Jie Zhu, Junhui Li, Muhua Zhu, Longhua Qian, Min
Zhang, and Guodong Zhou. 2019. Modeling graph
structure in transformer for better AMR-to-text gen-
eration. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5462–5471, Hong Kong, China.

https://doi.org/10.18653/v1/D16-1112
https://doi.org/10.18653/v1/D16-1112
https://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00241
https://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00241
https://www.aclweb.org/anthology/W19-0504.pdf
https://www.aclweb.org/anthology/W19-0504.pdf
http://papers.nips.cc/paper/5866-pointer-networks.pdf
https://www.aclweb.org/anthology/C80-1061.pdf
https://www.aclweb.org/anthology/C80-1061.pdf
https://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00297
https://arxiv.org/pdf/1909.06639.pdf
https://arxiv.org/pdf/1909.06639.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9046288&casa_token=WpyYVYxwiRUAAAAA:-Xel5yIsqyIbS9y-8_zx_eNRJ_PUAwSkiNTCnYPwP09VeRvLe5RrCZOBGlktTtT6HhFk_Og&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9046288&casa_token=WpyYVYxwiRUAAAAA:-Xel5yIsqyIbS9y-8_zx_eNRJ_PUAwSkiNTCnYPwP09VeRvLe5RrCZOBGlktTtT6HhFk_Og&tag=1
https://www.aclweb.org/anthology/D18-1112.pdf
https://www.aclweb.org/anthology/D18-1112.pdf
http://journals.linguisticsociety.org/elanguage/dad/article/download/1439/1439-5842-1-PB.pdf
http://journals.linguisticsociety.org/elanguage/dad/article/download/1439/1439-5842-1-PB.pdf
https://arxiv.org/pdf/1912.07225.pdf
https://arxiv.org/pdf/1912.07225.pdf
https://www.aclweb.org/anthology/D19-1548.pdf
https://www.aclweb.org/anthology/D19-1548.pdf
https://www.aclweb.org/anthology/D19-1548.pdf

409

A Counting Method

We count how frequently condition ri appears be-
fore rj with type t. Type t is identified according
to the overlap between the arguments of the two
conditions6. For example, ri = (Named, x3, “tom”)
and rj = (Agent, e1, x3) has the type “a0 → a1”,
showing that the first argument in ri equals to the
second argument in rj . We score the order of two
conditions using the following function:

SCOREK(R|Rset) =
∑

i(
∑

i<j COUNTK(ri, rj))

−
∑

j<i COUNTK(ri, rj)
(16)

where COUNT returns the frequency of a pair of
conditions subject to a dataset or corpus K; the
score increases with rj following ri more fre-
quently than preceding it.

A.1 Types
We define different types of relations between two
conditions based on argument overlap (i.e., two
simple conditions, a simple and a complex condi-
tion, and two complex conditions).

Simple and Simple Given two simple condi-
tions, ri = (li, a0i, a1i) and rj = (lj , a0j , a1j)
(with different arguments), we define their types
as:

• t = a0 → a0 if a0i = a0j and a1i 6= a1j .

• t = a1 → a1 if a0i 6= a0j and a1i = a1j .

• t = a0 → a0, a1 → a1 if a0i = a0j and
a1i = a1j .

• t = a0 → a1 if a0i = a1j and a1i 6= a0j .

• t = a1 → a0 if a1i = a0j and a0i 6= a1j .

• t = a0 → a1, a1 → a0 if a1i = a0j and
a0i = a1j .

• t = None if others

Simple and Complex Given a simple conditions
ri = (li, a0i, a1i) and a complex condition rj =
(lj , Vj), the types are defined as:

• t = 1 if a0i ∈ Vj and a1i 6∈ Vj .

• t = 1 if a0i 6∈ Vj and a1i ∈ Vj .

• t = 2 if a0i ∈ Vj and a1i ∈ Vj .

• t = None if others
6We only consider (and count) conditions with overlapping

rguments, i.e., their type t is not None.

Algorithm 1 Greedy Ordering Algorithm
Input: Rset, set of conditions

Output: R∗, list of ordered conditions
1: R∗ = []
2: while Rset is not empty do
3: r∗ = argmaxr∈Rset

PARTIAL(r)
4: Rset removes r∗

5: R∗ appends r∗

6: end while

Complex and Complex Given two complex con-
ditions, ri = (li, Vi) and rj = (lj , Vj), the types
are defined as:

• t = intersection if Vi ∩ Vj 6= Ø.

• t = None otherwise

A.2 Greedy Algorithm

We generate an ordering of conditions following
greedy Algorithm 1 which identifies the highest
scoring pair in Rset, appends it to partial ordering
R∗, and keeps going until Rset is empty. The score
is given by the function:

PARTIALK(r) =
∑

r′∈Rset

COUNT(r, r′)K

−
∑
r′′∈R

COUNT(r, r′′)K,
(17)

B Edge Construction Algorithm

Algorithm 2 shows how edges are created for graph
ordering.

C Model Settings

In the following, we report the best experimental
settings for our condition ordering and text genera-
tion models.

C.1 Condition Ordering Models

Model hyperparameters are shown in Table 6. The
size of the token embeddings (in the graph nodes)
and edge embeddings is 100. The node hidden di-
mension is the same as the hidden dimension of the
BILSTM which is used to encode a sequence of in-
put words for each node and the hidden dimension
of PointerNet. The BILSTM and PointerNet have
one layer. Training hyperparameters are shown in
Table 7.

410

Algorithm 2 Edges Construction
Input: Nt thematic nodes; Nc, complex nodes; Ne, constant

nodes
Output: E, set of edges
1: E = []
2: for nt, ne in Nt, Ne do
3: if nt.a0 is ne.a0 then
4: E = E ∪ {nt

a0−→ ne}
5: E = E ∪ {ne

a0 of−−−→ nt}
6: end if
7: if nt.a1 is ne.a0 then
8: E = E ∪ {nt

a1−→ ne}
9: E = E ∪ {ne

a1 of−−−→ nt}
10: end if
11: end for
12: for nc, ne in Nc, Ne do
13: if ne.a0 in nc.V then
14: E = E ∪ {nc

Related−−−→ ne}
15: E = E ∪ {ne

Related of−−−−−→ nc}
16: end if
17: end for
18: for ne, n′e in Ne, Ne do
19: if ne.a0 is n′e.a0 and ne not is n′e then
20: E = E ∪ {ne

Equal−−−→ n′e}
21: end if
22: end for

hyperparameters value

embedding dim 50
hidden dim 300
LSTM layer 1
graph step 2
beam size 64

Table 6: Hyperparameters of condition ordering model.

C.2 Text Generation Models

Model hyperparameters are shown in Table 8. The
size of the input embeddings in the encoder and
the decoder is 300. The hidden dimensions of the
encoder and decoder are 512. Both the encoder and
decoder have two layers. The hyperparameters of
the training are shown in Table 9.

D Hyperparameter Tuning

We show below model performance with various
hyperparameters. Best hyperparameters were man-
ually chosen after monitoring model accuracy on
the development set.

We take BiGraph as our final condition ordering
model (see Table 10) and Sibling with BiGraph as
the DRS-to-text generation model (see Table 11).

hyperparameters value

optimizer adam
learning rate 0.001
β (0.9, 0.999)
dropout rate 0.5
batch size 32
max gradient norm 5
training steps 400,000
learning rate decay 0.3
start decay steps 200,000
decay steps 20,000
warmup steps 40,000

Table 7: Training hyperparameters for the condition or-
dering models.

hyperparameters value

embedding dim 300
hidden dim 512
layer 2
attention general
beam size 5

Table 8: Hyperparameters of text generation model.

hyperparameters value

optimizer adam
learning rate 0.001
β (0.9, 0.999)
dropout rate 0.5
batch size 30000
batch type tokens
max gradient norm 5
training steps 30,000
learning rate decay 0.5
start decay steps 8,000
decay steps 1,000
warmup steps 4,000

Table 9: Training hyperparameters for text generation
model.

411

embedding hidden step dropout beam Acc

50 300 2 0.5 64 69.10

100 — — — — 68.61
150 — — — — 67.76

— 100 — — — 67.33
— 200 — — — 68.77

— — 1 — — 55.71
— — 3 — — 69.12

— — — 0.2 — 68.02
— — — 0.4 — 68.52
— — — 0.6 — 67.83

— — — — 16 69.03
— — — — 32 69.07
— — — — 96 69.10

Table 10: Performance of condition ordering model (development set; various hyperparameters). Increasing model
size leads to out-of-memory problems when training on a single GPU.

E Examples

We provide example output of our final model
(Sibling+GraphOrder) on the GMB test dataset.
The DRS in tree format with condition ordering
given by GraphOrder is shown in Figures 9–11.
Figure 10 expands nonterminal b33 in Figure 9, and
Figure 11 expands nonterminal b28 in Figure 10.
The corresponding document generated by Sibling
is:

the u.s. dollar hit a record low against
the euro tuesday . it took a dollar , but
48 cents to buy one euro , and a series
of problems including the key of the u.s.
housing sector in which has been bat-
tered by the slowing n.01 , including
continuing the u.s. economy , the dollar
. speculator are selling dollars because
they expect that the u.s. central bank will
try to stimulate the economy by cutting
interest rates soon . u.s. lower interest
rates can cut the return on investments
. the falling dollar is prompting oil-rich
nations around the persian gulf to con-
sider ending the practice of linking the
value of its currency to those of the dollar
and instead supplement the u.s. currency
. such a move would reduce demand for
dollars and weaken the u.s. currency .

412

embedding hidden layer dropout beam BLEU

300 512 2 0.5 5 58.97

100 — — — — 58.19
200 — — — — 58.81

— 128 — — — 43.36
— 256 — — — 55.06

— — 1 — — 52.58
— — 3 — — 58.94

— — — 0.1 — 47.43
— — — 0.2 — 58.24
— — — 0.3 — 58.97
— — — 0.4 — 58.96
— — — 0.6 — 58.22

— — — — 1 58.73
— — — — 3 58.91
— — — — 10 58.97

Table 11: Performance of text generation model (development set; various hyperparameters). Increasing model
size leads to out-of-memory problems when training on a single GPU.

413

b 3
1

b 2
b 5

b 7
b 1

0
b 3

2
C

O
N

T
IN

U
A

T
IO

N
(b

2
,b

5
)

C
O

N
T

IN
U

A
T

IO
N

(b
5
,b

7
)

C
O

N
T

IN
U

A
T

IO
N

(b
7
,b

1
0
)

B
E

C
A

U
SE

(b
1
0
,b

3
2
)

b 1
:R

ef
(x

2
)

b 1
:N

am
ed

(x
2
,“

u.
s.”

)
b 1

:R
ef

(x
1
)

b 1
:I

n(
x
1
,x

2
)

b 1
:P

re
d(
x
1
,“

do
lla

r.n
.0

1”
)

b 2
:R

ef
(x

4
)

b 2
:P

re
d(
x
4
,“

re
co

rd
.n

.0
1”

)
b 2

:R
ef

(x
3
)

b 2
:O

n(
x
3
,x

4
)

b 2
:P

re
d(
x
3
,“

lo
w

.n
.0

1”
)

b 3
:R

ef
(x

5
)

b 3
:P

re
d(
x
5
,“

eu
ro

.n
.0

1”
)

b 2
:a

ga
in

st
(x

3
,x

5
)

b 2
:R

ef
(e

1
)

b 2
:P

re
d(
e 1

,“
hi

t.v
.0

1”
)

b 2
:T

he
m

e(
e 1

,x
1
)

b 2
:C

o-
T

he
m

e(
e 1

,x
3
)

b 4
:R

ef
(t

1
)

b 4
:P

re
d(
t 1

,“
no

w
.a

.0
1”

)
b 2

:R
ef

(t
2
)

b 2
:T

em
p

in
cl

ud
ed

(e
1
,t

2
)

b 2
:T

em
p

be
fo

re
(t

2
,t

1
)

b 2
:R

ef
(x

6
)

b 2
:N

am
ed

(x
6
,“

tu
es

da
y”

)
b 2

:O
n(
e 1

,x
6
)

b 3
:P

re
d(
x
5
,“

th
in

g.
n.

12
”)

b 5
:R

ef
(x

8
)

b 5
:P

re
d(
x
8
,“

do
lla

r.n
.0

1”
)

b 5
:R

ef
(x

7
)

b 5
:S

ub
se

t
of

(x
8
,x

7
)

b 5
:R

ef
(x

1
0
)

b 5
:C

ar
d(
x
1
0
,“

48
”)

b 5
:P

re
d(
x
1
0
,“

ce
nt

.n
.0

1”
)

b 5
:S

ub
se

t
of

(x
1
0
,x

7
)

b 5
:R

ef
(e

2
)

b 5
:P

re
d(
e 2

,“
ta

ke
.v

.0
1”

)
b 5

:A
ge

nt
(e

2
,x

5
)

b 5
:T

he
m

e(
e 2

,x
7
)

b 4
:P

re
d(
t 1

,“
no

w
.a

.0
1”

)
b 5

:R
ef

(t
3
)

b 5
:T

em
p

in
cl

ud
ed

(e
2
,t

3
)

b 5
:T

em
p

be
fo

re
(t

3
,t

1
)

b 5
:R

ef
(p

1
)

b 5
:p

1

b 6

b 6
:R

ef
(x

1
2
)

b 6
:C

ar
d(
x
1
2
,“

1”
)

b 6
:P

re
d(
x
1
2
,“

eu
ro

.n
.0

1”
)

b 6
:R

ef
(e

3
)

b 6
:P

re
d(
e 3

,“
bu

y.
v.

01
”)

b 6
:R

ef
(x

1
1
)

b 6
:A

ge
nt

(e
3
,x

1
1
)

b 6
:T

he
m

e(
e 3

,x
1
2
)

b 5
:F

or
(e

2
,p

1
)

b 5
:R

ef
(x

9
)

b 5
:C

ar
d(
x
9
,“

1”
)

b 5
:R

ef
(s

1
)

b 5
:P

re
d(
s 1

,“
m

or
e.

a.
01

”)
b 5

:T
op

ic
(s

1
,x

8
)

b 5
:th

an
(s

1
,x

9
)

b 7
:R

ef
(x

1
3
)

b 7
:P

re
d(
x
1
3
,“

se
ri

es
.n

.0
1”

)
b 7

:R
ef

(x
1
4
)

b 7
:P

re
d(
x
1
4
,“

pr
ob

le
m

.n
.0

1”
)

b 8
:R

ef
(s

2
)

b 8
:R

ef
(x

1
7
)

b 8
:T

op
ic

(s
2
,x

1
7
)

b 8
:P

re
d(
s 2

,“
ke

y.
a.

01
”)

b 9
:R

ef
(x

2
1
)

b 9
:N

am
ed

(x
2
1
,“

u.
s.”

)
b 8

:R
ef

(x
1
8
)

b 8
:O

f(
x
1
7
,x

1
8
)

b 8
:R

ef
(x

1
9
)

b 8
:P

re
d(
x
1
9
,“

ho
us

in
g.

n.
01

”)
b 8

:O
f(
x
1
7
,x

1
9
)

b 8
:P

re
d(
x
1
7
,“

se
ct

or
.n

.0
1”

)
b 7

:R
ef

(x
1
6
)

b 7
:in

(x
1
6
,x

1
7
)

b 7
:o

f(
x
1
3
,x

1
4
)

b 7
:R

ef
(e

4
)

b 7
:P

re
d(
e 4

,“
ba

tte
r.v

.0
1”

)
b 7

:I
ns

tr
um

en
t(
e 4

,x
1
)

b 9
:R

ef
(e

6
)

b 9
:P

re
d(
e 6

,“
sl

ow
.v

.0
0”

)

b 9
:R

ef
(x

2
0
)

b 9
:P

at
ie

nt
(e

6
,x

2
0
)

b 7
:P

re
d(
x
1
6
,“

gl
oo

m
.n

.0
1”

)
b 7

:R
ef

(e
5
)

b 7
:P

re
d(
e 5

,“
co

nt
in

ue
.v

.0
0”

)
b 7

:T
he

m
e(
e 5

,x
1
6
)

b 8
:N

am
ed

(x
1
8
,“

u.
s.”

)
b 9

:O
n(
x
2
0
,x

2
1
)

b 9
:P

re
d(
x
2
0
,“

ec
on

om
y.

n.
01

”)
b 7

:R
ef

(x
1
5
)

b 7
:S

ub
se

t
of

(x
2
0
,x

1
5
)

b 1
:P

re
d(
x
1
,“

do
lla

r.n
.0

1”
)

b 7
:S

ub
se

t
of

(x
1
6
,x

1
5
)

b 7
:in

cl
ud

e(
x
1
4
,x

1
5
)

b 7
:A

ge
nt

(e
4
,x

1
3
)

b 7
:R

ef
(t

4
)

b 7
:R

ef
(x

2
2
)

b 7
:T

em
p

in
cl

ud
es

(t
4
,x

2
2
)

b 7
:T

em
p

ov
er

la
p(
e 4

,t
4
)

b 4
:P

re
d(
t 1

,“
no

w
.a

.0
1”

)
b 7

:R
ef

(x
2
3
)

b 7
:E

qu
(x

2
3
,t

1
)

b 7
:R

ef
(e

7
)

b 7
:T

em
p

in
cl

ud
es

(e
7
,x

2
3
)

b 7
:T

em
p

ab
ut

(e
4
,e

7
)

b 1
0
:R

ef
(x

2
4
)

b 1
0
:P

re
d(
x
2
4
,“

sp
ec

ul
at

or
.n

.0
1”

)
b 1

0
:R

ef
(x

2
5
)

b 1
0
:P

re
d(
x
2
5
,“

do
lla

r.n
.0

1”
)

b 1
0
:R

ef
(e

8
)

b 1
0
:P

re
d(
e 8

,“
se

ll.
v.

01
”)

b 1
0
:A

ge
nt

(e
8
,x

2
4
)

b 1
0
:T

he
m

e(
e 8

,x
2
5
)

b 4
:P

re
d(
t 1

,“
no

w
.a

.0
1”

)
b 1

0
:R

ef
(x

2
6
)

b 1
0
:E

qu
(x

2
6
,t

1
)

b 1
0
:R

ef
(t

5
)

b 1
0
:T

em
p

in
cl

ud
es

(t
5
,x

2
6
)

b 1
0
:T

em
p

ov
er

la
p(
e 8

,t
5
)

Figure 9: A partial DRS in tree format with condition ordering recovered by GraphOrder.

414

b 3
2

b 1
1

b 1
6

b 1
9

b 2
8

C
O

N
T

IN
U

A
T

IO
N

(b
1
1
,b

1
6
)

C
O

N
T

IN
U

A
T

IO
N

(b
1
6
,b

1
9
)

C
O

N
T

IN
U

A
T

IO
N

(b
1
9
,b

2
8
)

b 3
:P

re
d(
x
5
,“

th
in

g.
n.

12
”)

b 1
1
:R

ef
(p

2
)

b 1
1
:
p
2

b 1
2

b 1
2
:
�

b 1
4

b 1
3
:R

ef
(x

2
8
)

b 1
3
:N

am
ed

(x
2
8
,“

u.
s.”

)
b 1

3
:R

ef
(x

2
7
)

b 1
3
:O

f(
x
2
7
,x

2
8
)

b 1
3
:R

ef
(s

3
)

b 1
3
:T

op
ic

(s
3
,x

2
7
)

b 1
3
:P

re
d(
s 3

,“
ce

nt
ra

l.a
.0

1”
)

b 1
3
:P

re
d(
x
2
7
,“

ba
nk

.n
.0

1”
)

b 1
4
:R

ef
(p

3
)

b 1
4
:
p
3

b 1
5

b 9
:P

re
d(
x
2
0
,“

ec
on

om
y.

n.
01

”)
b 1

5
:R

ef
(e

1
1
)

b 1
5
:P

re
d(
e 1

1
,“

st
im

ul
at

e.
v.

01
”)

b 1
5
:S

tim
ul

us
(e

1
1
,x

2
7
)

b 1
5
:E

xp
er

ie
nc

er
(e

1
1
,x

2
0
)

b 1
5
:R

ef
(x

3
0
)

b 1
5
:P

re
d(
x
3
0
,“

in
te

re
st

.n
.0

1”
)

b 1
5
:R

ef
(x

2
9
)

b 1
5
:O

f(
x
2
9
,x

3
0
)

b 1
5
:P

re
d(
x
2
9
,“

ra
te

.n
.0

1”
)

b 1
5
:R

ef
(e

1
2
)

b 1
5
:P

re
d(
e 1

2
,“

cu
t.v

.0
1”

)
b 1

5
:S

tim
ul

us
(e

1
2
,x

2
7
)

b 1
5
:E

xp
er

ie
nc

er
(e

1
2
,x

2
9
)

b 1
5
:P

re
d(
e 1

2
,“

ag
ai

n.
r.0

1”
)

b 1
5
:P

re
d(
e 1

2
,“

so
on

.r.
01

”)
b 1

5
:b

y(
e 1

1
,e

1
2
)

b 1
4
:R

ef
(e

1
0
)

b 1
4
:P

re
d(
e 1

0
,“

tr
y.

v.
01

”)
b 1

4
:A

ge
nt

(e
1
0
,x

2
7
)

b 1
4
:T

he
m

e(
e 1

0
,p

3
)

b 4
:P

re
d(
t 1

,“
no

w
.a

.0
1”

)
b 1

4
:R

ef
(t

7
)

b 1
4
:T

em
p

in
cl

ud
ed

(e
1
0
,t

7
)

b 1
4
:T

em
p

be
fo

re
(t

1
,t

7
)

b 1
6
:
�

b 1
7

b 1
7
:R

ef
(x

3
3
)

b 1
7
:N

am
ed

(x
3
3
,“

u.
s.”

)
b 1

7
:R

ef
(x

3
1
)

b 1
7
:O

f(
x
3
1
,x

3
3
)

b 1
7
:R

ef
(x

3
2
)

b 1
7
:N

am
ed

(x
3
2
,“

lo
w

er
”)

b 1
7
:O

f(
x
3
1
,x

3
2
)

b 1
7
:R

ef
(x

3
4
)

b 1
7
:P

re
d(
x
3
4
,“

in
te

re
st

.n
.0

1”
)

b 1
7
:O

f(
x
3
1
,x

3
4
)

b 1
7
:P

re
d(
x
3
1
,“

ra
te

.n
.0

1”
)

b 1
8
:R

ef
(x

3
5
)

b 1
8
:P

re
d(
x
3
5
,“

re
tu

rn
.n

.0
1”

)
b 1

7
:R

ef
(x

3
6
)

b 1
7
:P

re
d(
x
3
6
,“

in
ve

st
m

en
t.n

.0
1”

)
b 1

7
:o

n(
x
3
5
,x

3
6
)

b 1
7
:R

ef
(e

1
3
)

b 1
7
:P

re
d(
e 1

3
,“

cu
t.v

.0
1”

)
b 1

7
:S

tim
ul

us
(e

1
3
,x

3
1
)

b 1
7
:E

xp
er

ie
nc

er
(e

1
3
,x

3
5
)

b 4
:P

re
d(
t 1

,“
no

w
.a

.0
1”

)
b 1

7
:R

ef
(t

8
)

b 1
7
:T

em
p

in
cl

ud
ed

(e
1
3
,t

8
)

b 1
7
:T

em
p

be
fo

re
(t

1
,t

8
)

b 1
:P

re
d(
e 1

4
,“

fa
ll.

v.
00

”)
b 1

:P
at

ie
nt

(e
1
4
,x

1
)

b 1
:P

re
d(
x
1
,“

do
lla

r.n
.0

1”
)

b 1
9
:R

ef
(s

4
)

b 1
9
:R

ef
(x

3
7
)

b 1
9
:T

op
ic

(s
4
,x

3
7
)

b 1
9
:P

re
d(
s 4

,“
oi

l-
ri

ch
.a

.0
0”

)
b 1

9
:P

re
d(
x
3
7
,“

na
tio

n.
n.

01
”)

b 2
0
:R

ef
(x

3
9
)

b 2
0
:N

am
ed

(x
3
9
,“

pe
rs

ia
n”

)
b 2

0
:R

ef
(x

3
8
)

b 2
0
:E

qu
(x

3
8
,x

3
9
)

b 2
0
:N

am
ed

(x
3
8
,“

gu
lf

”)
b 1

9
:a

ro
un

d(
x
3
7
,x

3
8
)

b 1
9
:R

ef
(e

1
5
)

b 1
9
:P

re
d(
e 1

5
,“

pr
om

pt
.v

.0
1”

)
b 1

9
:C

au
se

(e
1
5
,x

1
)

b 1
9
:T

he
m

e(
e 1

5
,x

3
7
)

b 1
9
:R

ef
(p

4
)

b 1
9
:
p
4

b 3
3

b 2
1

b 2
1
:R

ef
(e

1
6
)

b 2
1
:P

re
d(
e 1

6
,“

co
ns

id
er

.v
.0

1”
)

b 2
1
:R

ef
(x

4
1
)

b 2
1
:A

ge
nt

(e
1
6
,x

4
1
)

b 2
1
:R

ef
(p

5
)

b 2
1
:T

he
m

e(
e 1

6
,p

5
)

b 2
1
:
p
5

b 2
3

b 2
2
:R

ef
(x

4
2
)

b 2
2
:P

re
d(
x
4
2
,“

pr
ac

tic
e.

n.
01

”)
b 2

3
:R

ef
(x

4
3
)

b 2
3
:E

qu
(x

4
2
,x

4
3
)

b 2
4
:R

ef
(x

4
4
)

b 2
4
:P

re
d(
x
4
4
,“

va
lu

e.
n.

01
”)

b 3
:P

re
d(
x
5
,“

th
in

g.
n.

12
”)

b 2
5
:R

ef
(x

4
5
)

b 2
5
:O

f(
x
4
5
,x

5
)

b 2
5
:P

re
d(
x
4
5
,“

cu
rr

en
cy

.n
.0

1”
)

b 2
3
:o

f(
x
4
4
,x

4
5
)

b 2
3
:R

ef
(e

1
7
)

b 2
3
:P

re
d(
e 1

7
,“

lin
k.

v.
01

”)
b 2

3
:A

ge
nt

(e
1
7
,x

4
3
)

b 2
3
:P

at
ie

nt
(e

1
7
,x

4
4
)

b 3
:P

re
d(
x
5
,“

th
in

g.
n.

12
”)

b 1
:P

re
d(
x
1
,“

do
lla

r.n
.0

1”
)

b 2
3
:o

f(
x
5
,x

1
)

b 2
3
:to

(e
1
7
,x

5
)

b 2
3
:R

ef
(e

1
8
)

b 2
3
:P

re
d(
e 1

8
,“

en
d.

v.
01

”)
b 2

3
:A

ge
nt

(e
1
8
,x

4
1
)

b 2
3
:T

he
m

e(
e 1

8
,x

4
2
)

b 2
6

b 2
4
:P

re
d(
x
4
4
,“

va
lu

e.
n.

01
”)

b 2
6
:R

ef
(x

4
7
)

b 2
6
:P

re
d(
x
4
7
,“

ba
sk

et
.n

.0
1”

)
b 2

6
:R

ef
(x

4
8
)

b 2
6
:P

re
d(
x
4
8
,“

cu
rr

en
cy

.n
.0

1”
)

b 2
5
:P

re
d(
x
4
5
,“

cu
rr

en
cy

.n
.0

1”
)

b 2
6
:
¬

b 2
7

b 2
7
:E

qu
(x

4
8
,x

4
5
)

b 2
6
:o

f(
x
4
7
,x

4
8
)

b 2
6
:to

(x
4
4
,x

4
7
)

b 2
6
:R

ef
(e

1
9
)

b 2
6
:P

re
d(
e 1

9
,“

pe
g.

v.
01

”)
b 2

6
:R

ef
(x

4
6
)

b 2
6
:A

ge
nt

(e
1
9
,x

4
6
)

b 2
6
:T

he
m

e(
e 1

9
,x

4
4
)

b 2
6
:P

re
d(
e 1

9
,“

in
st

ea
d.

r.0
1”

)

C
O

N
T

IN
U

A
T

IO
N

(b
2
1
,b

2
6
)

PA
R

A
L

L
E

L
(b

2
1
,b

2
6
)

Figure 10: A partial DRS in tree format with condition ordering recovered by GraphOrder.

415

b 2
8

b 2
8
:
�

b 3
5

b 2
9

b 2
9
:R

ef
(x

4
9
)

b 2
9
:P

re
d(
x
4
9
,“

m
ov

e.
n.

01
”)

b 2
9
:P

re
d(
x
4
9
,“

su
ch

.a
.0

1”
)

b 2
9
:R

ef
(x

5
0
)

b 2
9
:P

re
d(
x
5
0
,“

de
m

an
d.

n.
01

”)
b 2

9
:R

ef
(x

5
1
)

b 2
9
:P

re
d(
x
5
1
,“

do
lla

r.n
.0

1”
)

b 2
9
:f

or
(x

5
0
,x

5
1
)

b 2
9
:R

ef
(e

2
0
)

b 2
9
:P

re
d(
e 2

0
,“

re
du

ce
.v

.0
1”

)
b 2

9
:C

au
se

(e
2
0
,x

4
9
)

b 2
9
:P

at
ie

nt
(e

2
0
,x

5
0
)

b 4
:P

re
d(
t 1

,“
no

w
.a

.0
1”

)
b 2

9
:R

ef
(t

1
0
)

b 2
9
:T

em
p

in
cl

ud
ed

(e
2
0
,t

1
0
)

b 2
9
:T

em
p

be
fo

re
(t

1
,t

1
0
)

b 3
0

b 3
0
:R

ef
(x

5
2
)

b 3
0
:P

re
d(
x
5
2
,“

m
ov

e.
n.

01
”)

b 3
0
:P

re
d(
x
5
2
,“

su
ch

.a
.0

1”
)

b 2
5
:R

ef
(x

5
3
)

b 2
5
:N

am
ed

(x
5
3
,“

u.
s.”

)
b 2

5
:O

n(
x
4
5
,x

5
3
)

b 2
5
:P

re
d(
x
4
5
,“

cu
rr

en
cy

.n
.0

1”
)

b 3
0
:R

ef
(e

2
1
)

b 3
0
:P

re
d(
e 2

1
,“

w
ea

ke
n.

v.
01

”)
b 3

0
:A

ge
nt

(e
2
1
,x

5
2
)

b 3
0
:P

at
ie

nt
(e

2
1
,x

4
5
)

b 3
0
:P

re
d(
e 2

1
,“

fu
rt

he
r.r

.0
1”

)
b 4

:R
ef

(t
1
1
)

b 4
:P

re
d(
t 1

1
,“

no
w

.a
.0

1”
)

b 3
0
:R

ef
(t

1
2
)

b 3
0
:T

em
p

in
cl

ud
ed

(e
2
1
,t

1
2
)

b 3
0
:T

em
p

be
fo

re
(t

1
1
,t

1
2
)

C
O

N
T

IN
U

A
T

IO
N

(b
2
9
,b

3
0
)

PA
R

A
L

L
E

L
(b

2
9
,b

3
0
)

Figure 11: A partial DRS in tree format with condition ordering recovered by GraphOrder.

