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Abstract
In most cases, the lack of parallel corpora
makes it impossible to directly train super-
vised models for the text style transfer task.
In this paper, we explore training algorithms
that instead optimize reward functions that ex-
plicitly consider different aspects of the style-
transferred outputs. In particular, we leverage
semantic similarity metrics originally used for
fine-tuning neural machine translation models
to explicitly assess the preservation of content
between system outputs and input texts. We
also investigate the potential weaknesses of
the existing automatic metrics and propose effi-
cient strategies of using these metrics for train-
ing. The experimental results show that our
model provides significant gains in both auto-
matic and human evaluation over strong base-
lines, indicating the effectiveness of our pro-
posed methods and training strategies.1

1 Introduction

Text style transfer aims to convert an input text into
another generated text with a different style but
the same basic semantics as the input. One major
challenge in this setting is that many style transfer
tasks lack parallel corpora, since the absence of hu-
man references makes it impossible to train the text
style transfer models using maximum likelihood
estimation (MLE), which aims to maximize the
predicted likelihood of the references. As a result,
some of the earliest work (Shen et al., 2017; Hu
et al., 2017; Fu et al., 2018) on unsupervised text
style transfer proposed training algorithms that are
still based on MLE by formulating the style transfer
models as auto-encoders optimized with reconstruc-
tion loss. Specifically, during training the model
is tasked to generate a style-agnostic encoding and
reconstruct the input text based on this encoding
with style-specific embeddings or decoders. Dur-
ing inference, the model aims to transfer the source

1Code and data are available at: https://github.
com/yixinL7/Direct-Style-Transfer

text style using the target style information. While
these methods have seen empirical success, they
face the inherent difficulty of coming up with a
style-agnostic but content-preserving encoding –
this is a non-trivial task and failure at this first step
will diminish style transfer accuracy and content
preservation of the final output.

Another line of work (Xu et al., 2018; Pang and
Gimpel, 2019; Luo et al., 2019) proposes train-
ing algorithms based on rewards related to the au-
tomatic evaluation metrics, which can assess the
model performance more directly during training.
This approach is conceptually similar to training
algorithms that optimize models using rewards re-
lated to the corresponding evaluation metrics for
other NLP tasks, such as machine translation (Shen
et al., 2016; Wieting et al., 2019a) or text summa-
rization (Paulus et al., 2018; Li et al., 2019). As
for unsupervised style transfer, the widely used au-
tomatic metrics mainly attend to three desiderata:
(1) style transfer accuracy – the generated sentence
must be in the target style, commonly measured
by the accuracy of a style classifier applied to the
transferred text, (2) fluency – the generated text
must be grammatically correct and natural, com-
monly measured by the perplexity of a language
model and (3) content preservation – the semantics
need to be preserved between the source and target,
commonly measured by the BLEU score between
the system outputs and source texts. Since these
automatic metrics only require the system outputs
and source texts, they can be used as rewards for
training. Moreover, the two lines of approaches can
be used together, and previous work (Yang et al.,
2018; John et al., 2019; Madaan et al., 2020) pro-
posed methods which use the auto-encoders as the
backbone augmented with task-specific rewards.
In particular, the style transfer accuracy reward is
used by most of the recent work.

However, reward-based training algorithms still
have their limitations, and in this paper we aim

https://github.com/yixinL7/Direct-Style-Transfer
https://github.com/yixinL7/Direct-Style-Transfer
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to identify and address the bottlenecks of these
methods. Specifically, we focus on two problems:
(1) the difficulty of designing an efficient reward
for content preservation, (2) the lack of robustness
of the existing automatic evaluation metrics.

Content preservation is more difficult to measure
compared to style transfer accuracy and fluency be-
cause it needs to consider the overlap in the seman-
tics between the source text and system outputs.
While using BLEU score between the source text
and system output would be a direct solution (Xu
et al., 2018), this approach has an inherent limita-
tion in that n-gram based metrics such as BLEU
are sensitive to lexical differences and will penal-
ize modifications that are necessary for transferring
text style. In fact, previous work has proposed
various different proxy rewards for content preser-
vation. One of the most popular methods is the
cycle-consistency loss (Luo et al., 2019; Dai et al.,
2019; Pang and Gimpel, 2019), which introduces
a round-trip generation process, where the model
generates an output in the target style, and the abil-
ity of a reconstruction model to re-generate the
original text is used as a proxy for content preserva-
tion. While this method is more tolerant to lexical
differences, the correlation between the reconstruc-
tion loss and content preservation can be weak.

Therefore, we aim to design a reward for content
preservation which can directly assess the semantic
similarity between the system outputs and input
texts. Specifically, we note that models of semantic
similarity are widely studied (Wieting et al., 2016;
Sharma et al., 2017; Pagliardini et al., 2018; Zhang*
et al., 2020), and we can leverage these methods to
directly calculate the similarity between the system
outputs and input texts. This renders our method
applicable for even unsupervised settings where no
human references are available.

Another key challenge for reward-based training
algorithms is that the existing automatic evaluation
metrics are not well-correlated with human eval-
uation (Li et al., 2018). It poses general risks to
the work in this field with respect to model training
and evaluation since these metrics are widely used.
An important observation we made from our ex-
periments is that style transfer models can exploit
the weaknesses of the automatic metrics. They do
this by making minimal changes to the input texts
which are enough to trick the classifier used for
style transfer accuracy while achieving high con-
tent preservation and fluency scores due to the high

lexical similarity with the input texts. Upon iden-
tifying this risk, we re-visit and propose several
strategies that serve as auxiliary regularization on
the style transfer models, effectively mitigating the
problem discussed above.

We empirically show that our proposed reward
functions can provide significant gains in both auto-
matic and human evaluation over strong baselines
from the literature. In addition, the problems we
identify with existing automatic evaluation metrics
suggest that the automatic metrics need to be used
with caution either for model training or evalua-
tion in order to make it truthfully reflect human
evaluation.

2 Methods

2.1 Overview
Data for unsupervised text style transfer can be
defined as

D = {(x(1), s(1)), ..., (x(i), s(i)), ..., (x(n), s(n))},

where x(i) denotes the text and s(i) denotes the
corresponding style label. The objective of the task
is to generate (via a generator g) the output with the
target style conditioned on s while preserving most
of the semantics of the source x. In other words,
x̂ = g(x, s) should have style s and the semantics
of x. We define the style as a binary attribute such
that s ∈ {0, 1}, however, it can be easily extended
to a multi-class setting.

2.2 Generator
For our generator, we fine-tune a large-scale lan-
guage model GPT-2 (Radford et al., 2019). GPT-2
is pre-trained on large corpora and can be fine-
tuned to generate fluent and coherent outputs for
a variety of language generation tasks (Wolf et al.,
2019). Since GPT-2 is a unidirectional language
model, we reformulate the conditional generation
task as a sequence completion task. Namely, as
input to the generator, we concatenate the original
sentence with a special token which indicates the
target style. The sequence following the style token
is our output.

2.3 Reward Functions
We use four reward functions to control the quality
of the system outputs. The quality of the outputs
is assessed in three ways: style transfer accuracy,
content preservation, and fluency. We attend to
each of these factors with their respective rewards.
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Figure 1: SIM Loss v.s. Cycle-Consistency Loss

Here we denote the input text x having style s
by xs, and denote the output by x̃s, i.e., x̃s =
g(xs, 1− s).

Rewards for Style Transfer Accuracy We use
a style classifier to provide the supervision signal
to the generator with respect to the style transfer ac-
curacy. The min-max game between the generator
g and the classifier fcls is:

min
θg

max
θfcls

Exs [log(1− fcls(g(xs, 1− s), 1− s))]

+ Exs [log fcls(xs, s) + log(1− fcls(xs, 1− s))].
(1)

The style transfer accuracy reward for the generator
is the log-likelihood of the output being labeled as
the target style:

rcls(x̃s) = log(fcls(x̃s, 1− s)). (2)

Following prior work, we use the CNN-based clas-
sifier (Kim, 2014) fcls, which takes both the sen-
tence and the style label as input and its objective
is to predict the likelihood of the sentence being
coherent to the given style.

Rewards for Content Preservation To ensure
that the system outputs still preserve the basic se-
mantics of the source sentences, we use the pre-
trained SIM model introduced in Wieting et al.
(2019b,a) to measure the semantic similarity be-
tween the source sentences and system outputs.
The SIM score for a sentence pair is the cosine sim-
ilarity of its sentence representations. These repre-
sentations are constructed by averaging sub-word
embeddings. Compared to the cycle-consistency
loss (Luo et al., 2019; Dai et al., 2019; Pang and

Gimpel, 2019), our method is more direct since it
doesn’t require a second-pass generation. It also
has advantages over n-gram based metrics like
BLEU (Papineni et al., 2002) since it is more ro-
bust to lexical changes and can provide smoother
rewards.

In Wieting et al. (2019a), SIM is augmented with
a length penalty to help control the length of the
generated text. We use their entire model, SIMILE,
as the content preservation reward,

rsim(x̃s) = LP(xs, x̃s)
αSIM(xs, x̃s), (3)

where
LP(r, h) = e

1−min(|r|,|h|)
max(|r|,|h|) , (4)

and α is an exponential term to control the weight
of the length penalty, which is set to 0.25.

We also use the cycle-consistency loss Lcyc to
bootstrap the training:

Lcyc(θg) = Exs [− log(pg(xs|g(xs, 1− s), s))].
(5)

Here, pg is the likelihood assigned by the generator
g. This introduces two generation passes, i.e., x̃s =
g(x, 1 − s) and x̄s = g(x̃s, s) while SIM reward
only requires one generation pass, as illustrated in
Fig. 1.

Rewards for Fluency Style transfer accuracy re-
wards and content preservation rewards do not have
a significant effect on the fluency of the outputs.
Therefore, we again use the pre-trained GPT-2
model, but as a reward this time. To encourage
the outputs to be as fluent as the source sentences,
we define the fluency reward as the difference of the
perplexity between the system outputs and source
sentences:

rlang(x̃s) = ppl(xs)− ppl(x̃s). (6)

Here, ppl denotes the length-normalized perplex-
ity assigned by the language model fine-tuned on
the training set.

As will be further discussed in Section 3.3, we
found that using the rewards mentioned above can
still result in unnatural outputs. Therefore, we
additionally use a LSTM-based (Hochreiter and
Schmidhuber, 1997) discriminator fadv to provide
a naturalness reward, whose job is to discriminate
the system outputs and the real sentences, i.e., an
adversarial discriminator. It constructs a min-max
game with the generator:

min
θg

max
θfadv

Exs [log(1− fadv(g(xs, 1− s)))]

+ Exs [log(fadv(xs))].
(7)
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The naturalness reward is the log-likelihood of the
outputs being classified as real sentences:

radv(x̃s) = log(fadv(x̃s)). (8)

2.4 Learning
The final corresponding loss term is:

L∗(θg) = − 1

N

N∑
i=1

r∗(x̃
(i)
s ). (9)

Here, N is the number of samples in the dataset.
To train the model, we use the weighted average of
the losses defined in the previous section:

L(θg) = λclsLcls(θg) + λadvLadv(θg)

+ λsimLsim(θg) + λlangLlang(θg)

+ λrecLrec(θg).

(10)

where λ denotes the weight of the corresponding
term. The setting of λ is chosen to make the train-
ing stable and have balanced style transfer accuracy
and content preservation performance on the devel-
opment set. Lrec is the reconstruction loss, i.e.,

Lrec(θg) = Exs [− log(pg(xs|xs, s))]. (11)

We follow a two-stage training procedure. We
first use the cycle-consistency loss Lcyc to boot-
strap the training and then fine-tune the model with
the rewards we introduced above to improve the
output quality.

In the bootstrap stage, the objective function is

Lboot(θg) = λcycLcyc(θg) + λclsLcls(θg)

+ λrecLrec(θg)
(12)

We select the checkpoint with the highest mean
of the style transfer accuracy and BLEU on the
development set as the starting point for the second
training stage.

In the second stage, the generator is optimized
with Eq. 10. The classifier fcls for Lcls is pre-
trained and the language model for Llang is fine-
tuned on the training set. During training, the dis-
criminator fadv for Ladv is trained against the gen-
erator. fcls is fixed when trained on some datasets,
while it is trained against the generator on others.
We select the checkpoint that has the style transfer
accuracy and BLEU score similar to that from the
first stage and the lowest perplexity on the develop-
ment set.

Lastly, since gradients can not be propagated
through the discrete samples, we use two ap-
proaches to circumvent this problem. For the con-
tent preservation reward (Eq. 3) and fluency reward
(Eq. 6), we use the REINFORCE (Williams, 1992)
algorithm to optimize the model,

∇θgEx̃s∼pg(x̃s)[r(x̃s)]
= Ex̃s∼pg(x̃s)[∇θg log pg(x̃s)r(x̃s)]

(13)

We approximate the expectation by greedy decod-
ing and the log-likelihood is normalized by se-
quence length, i.e., 1

L

∑L
i=1 log pg(w̃i), where w̃i

denotes the i-th token of x̃s and L is sequence
length. For the style transfer accuracy reward
(Eq. 2) and naturalness reward (Eq. 8), we use
a different approach to generate a continuous ap-
proximation of the discrete tokens, which allows
gradients to be back-propagated to the generator.
Namely, taking the style classifier fcls as an exam-
ple, we use the distribution pi of each token pro-
duced by the generator as the input of the classifier.
This distribution is then multiplied by the classi-
fier’s word embedding matrix W embed to obtain a
weighted average of word embeddings:

ŵi = piW
embed (14)

Then, the classifier takes the sequence of ŵi as
its input. We chose this method because it pro-
vides a token-level supervision signal to the gen-
erator, while the REINFORCE algorithm provides
sentence-level signals.

3 Experiments

3.1 Datasets
We evaluate our approach on three datasets for sen-
timent transfer with positive and negative reviews:
Yelp review dataset, Amazon review dataset pro-
vided by Li et al. (2018),2 and the IMDb movie
review dataset provided by Dai et al. (2019).3

We also evaluate our methods on a formality
style transfer dataset, Grammarly’s Yahoo Answers
Formality Corpus (GYAFC),4 introduced in Rao
and Tetreault (2018). Although it is a parallel cor-
pus, we treat it as an unaligned corpus in our ex-
periments. In order to compare to previous work,

2https://github.com/lijuncen/
Sentiment-and-Style-Transfer

3https://github.com/fastnlp/
nlp-dataset

4https://github.com/raosudha89/
GYAFC-corpus

https://github.com/lijuncen/Sentiment-and-Style-Transfer
https://github.com/lijuncen/Sentiment-and-Style-Transfer
https://github.com/fastnlp/nlp-dataset
https://github.com/fastnlp/nlp-dataset
https://github.com/raosudha89/GYAFC-corpus
https://github.com/raosudha89/GYAFC-corpus
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Dataset Style Train Dev Test

Yelp Positive 266K 2000 500
Negative 177K 2000 500

Amazon Positive 277K 985 500
Negative 279K 1015 500

IMDb Positive 178K 2000 1000
Negative 187K 2000 1000

GYAFC Formal 52K 2247 500
Informal 52K 2788 500

Table 1: Number of samples in the Train, Dev, and Test
splits for each dataset in our experiments.

Dataset Eq. λcls λadv λsim λlang λrec λcyc

Yelp (10) 2 0.5 20 2 0.1 -
(12) 1 - - - 1 1.5

Amazon (10) 2 0.5 20 2 1 -
(12) 5 - - - 1 0.5

IMDb (10) 1 0.5 20 2 1 -
(12) 1 - - - 1 1

GYAFC (10) 2 0.5 20 2 1 -
(12) 1 - - - 1 1

Table 2: Hyperparameter setting of Eq. 10 and Eq. 12
on each dataset.

we chose the Family & Relationships category for
our experiments. Datasets statistics are shown in
Table 1.

3.2 Experimental Details

Following previous work, we measure the style
transfer accuracy using a FastText5 (Joulin et al.,
2017) style classifier trained on the respective train-
ing set of each dataset. To measure content preser-
vation, we use SIM and BLEU as metrics where
self-SIM and self-BLEU are computed between
the source sentences and system outputs, while
ref-SIM and ref-BLEU are computed between the
system outputs and human references when avail-
able. To measure the fluency we use a pre-trained
GPT-2 model to compute the perplexity.6 Our gen-
erator, GPT-2, has 1.5 billion parameters, and we
train on a GTX 1080 Ti GPU for about 12 hours.

The weights of the loss terms in Eq. 10 and
Eq. 12 are detailed in Table 2. While during our
experiments we found that there are other possi-
ble configurations which give higher scores with
respect to the automatic evaluation metrics, as will
be discussed in Section 3.3, we also found that

5https://fasttext.cc/
6Note that we didn’t fine-tune it on the training set

Dataset Model Acc PPL BLEU

Yelp DIRR-CYCLE 91.7 392 18.7
DIRR-YELP-ADV 95.2 353 20.7

Amazon DIRR 62.2 205 30.1
DIRR-AMAZON-ADV 83.2 228 29.0

Table 3: Adversarial Results. DIRR-YELP-ADV and
DIRR-AMAZON-ADV denote the models which gener-
ate adversarial examples. Acc denotes the style transfer
accuracy, PPL denotes the perplexity, BLEU is com-
puted between the human references and system out-
puts.

better performance in automatic evaluation doesn’t
always entail better performance in human evalu-
ation. Therefore, we also manually checked the
quality of the transferred texts on development set
when we chose the value of the hyperparameters.

We compare our model with several state-of-
the-art methods: DeleteAndRetrieve (D&R) (Li
et al., 2018), B-GST (Sudhakar et al., 2019), Cycle-
Multi (Dai et al., 2019), Deep-Latent (He et al.,
2020), Tag&Gen (Madaan et al., 2020), and Du-
alRL (Luo et al., 2019). We also compare our fi-
nal model, DIRR(Direct-Reward), with the model
only trained with the first stage (DIRR-CYCLE) as
mentioned in Section 2.4.

3.3 Adversarial Examples

Yelp and Amazon are arguably the most frequently
used datasets for the sentiment transfer task. In our
experiments, we found that the automatic evalua-
tion metrics can be tricked on these datasets. Ta-
ble 3 shows the performance of the models which
generate adversarial examples. Upon identifying
these risks, we propose several design options that
can effectively mitigate these problems.

Yelp Dataset For the Yelp dataset, when trained
without the adversarial discriminator fadv and the
fluency reward, our model (DIRR-YELP-ADV) is
able to discover a trivial solution which receives
high automatic evaluation scores: injecting a word
that carries strong sentiment at the beginning of
the output, and making minimum changes (if any)
to the source sentences, as illustrated in Table 8.
This obviously does not meet the objective of
content-preserving sentiment transfer and is easily
detectable for humans. In fact, after we manually
removed the first word from each of the output sen-
tences, the transfer accuracy dropped from 95.2 to
58.4. To address this problem, we introduced an

https://fasttext.cc/
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Model "game" "phone"

Pos. Neg. Pos. Neg.

Train 58 7548 8947 2742
Test 0 10 20 6
Human 1 10 18 6
B-GST 55 0 13 44
Tag&Gen 69 0 14 5
DIRR 26 0 19 45
DIRR-AMAZON-ADV 291 0 190 4

Table 4: Frequencies of words in the Amazon Dataset
that appear often enough in specific classes to erro-
neously cause the classifier to make incorrect predic-
tions. Pos. denotes the positive sentences, Neg. de-
notes the negative sentences.

auxiliary discriminator fadv as we discussed above
to penalize the trivial outputs since they can be
easily captured by the discriminator. On the other
hand, the output perplexity is not sensitive enough
to this local feature so using the fluency reward
alone is not sufficient. Our final model has much
more stable performance when the first word of its
output sentences is removed, experiencing only a
small drop of the style transfer accuracy from 94.2
to 88.2.

Amazon Dataset For the Amazon dataset, we
found that the style classifier fcls needs to be up-
dated during the training to prevent the model ex-
ploiting the data imbalance problem of the dataset.
Namely, in the Amazon dataset some categories
of products appear mostly in negative or positive
reviews. In Table 4, we show the word frequency
of game and phone in both negative and positive re-
views. In the original dataset, game mostly appears
in negative reviews while phone mostly appears
in positive reviews. Therefore, without any prior
knowledge, it is very likely that these words will
be used as informative features by the sentiment
classifier, which makes its predictions unreliable.7

When our second-stage model is trained with
the fixed style classifier, it (DIRR-AMAZON-ADV)
learns to exploit this dataset bias by changing
the nouns in the original sentences to game or
phone, which achieves better transfer accuracy. We
list some examples in Table 5. DIRR-AMAZON-
ADV generated 291 game in 500 positive reviews,
which obviously changes the semantics of the
source sentences. In order to show that this phe-
nomenon is independent to the classifier architec-

7Notice that the style classifier only achieves 43 accuracy
on the human references.

Model Text

Source don t waste your time or money on these jeans .
Adv don t need your time or money on these phones .

Source i made beef bolognese in the oven and it turned
out wonderfully .

Adv i made beef bolognese in the game and it turned
out wonderfully .

Source this one does the job i need it for !
Adv this game does the job i need it for !

Table 5: Adversarial examples received high style
transfer accuracy scores on Amazon Dataset. Adv
denotes the adversarial examples generated by DIRR-
AMAZON-ADV.

ture, we additionally fine-tuned a BERT-based (De-
vlin et al., 2019) classifier, which yielded 51.3,
57.6, 70.4 accuracy on human references, DIRR,
DIRR-AMAZON-ADV respectively, showing the
same pattern of the fastText classifier. We notice
that some two-stage models (Li et al., 2018; Sud-
hakar et al., 2019; Madaan et al., 2020) and other
methods (Yang et al., 2018; Luo et al., 2019) also
use a fixed classifier or use words with unbalanced
frequencies in different styles as important features,
which means that their methods may face the same
risk. While Li et al. (2018) has pointed out this data
imbalance problem of the Amazon dataset, we fur-
ther demonstrate that a strong generator can even
use this discrepancy to trick the automatic metrics.
We are able to mitigate this problem by updating
the style classifier during the training, and in Ta-
ble 4, DIRR is more robust to the data imbalance
problem compared to other methods.

3.4 Automatic Evaluation

The automatic evaluation results are shown in Ta-
ble 6. We report the performance of the previous
methods based on the outputs they provided for fair
comparison and omit those whose results are not
available.

We have the following observations of the results.
First, compared to our base model (DIRR-CYCLE),
the model trained with our proposed rewards has
higher fluency, while remains the same level of
content preservation. It indicates that SIM score is
as effective as cycle-consistency loss for content
preservation and our fluency reward can effectively
improve the output fluency. Secondly, there ex-
ists a trade-off among the style transfer accuracy,
content preservation and language fluency. While
our model does not outperform the previous meth-
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Model Acc PPL r-BLEU s-BLEU

Yelp

D&R 89.0 362 10.1 29.1
B-GST 86.0 269 14.5 35.1
Cycle-Multi 87.6 439 19.8 55.2
Deep-Latent 86.0 346 15.2 40.7
Tag&Gen 88.7 355 12.4 35.5
DIRR-CYCLE 91.7 392 18.7 51.2
DIRR 94.2 292 20.7 52.6
Copy 4.1 204 22.5 100.0
Human 70.7 236 99.3 22.5

Amazon

D&R 50.0 233 24.1 54.1
B-GST 60.3 197 20.3 44.6
Tag&Gen 79.9 312 27.6 62.3
DIRR-CYCLE 68.4 374 29.0 60.6
DIRR 62.2 205 30.1 61.3
Copy 21.1 218 40.0 100.0
Human 43.0 209 100.0 40.0

IMDb

Cycle-Multi 77.1 290 N/A 70.4
DIRR-CYCLE 80.5 253 N/A 64.3
DIRR 83.2 210 N/A 64.2
Copy 5.3 147 N/A 100.0

GYAFC

D&R 51.2 226 14.4 27.1
DualRL 62.0 404 33.0 50.8
DIRR-CYCLE 76.2 162 44.1 66.5
DIRR 71.8 145 46.3 59.9
Copy 15.8 147 41.5 98.5
Human 84.5 137 97.8 21.5

Table 6: Automatic Evaluation. Acc is the accuracy of
the sentiment classifier. PPL is the perplexity assigned
by the GPT-2 language model. r-BLEU is the BLEU
score between the human references and system out-
puts. s-BLEU is the BLEU score between the source
sentences and system outputs. Copy is an oracle which
copies the source sentences as outputs. Human denotes
the human references.

ods on all of the metrics, it is able to find a better
balance of the different metrics.

3.5 Human Evaluation

We conducted human evaluation on Yelp, Amazon
and GYAFC datasets evaluating the style transfer
accuracy, content preservation, and fluency sepa-
rately. The first two aspects are rated with range
1 - 3 while the fluency is rated with range 0 - 1.
We randomly select 100 candidates and compare
the outputs of different systems. We use Ama-
zon Turk8 for human evaluation. Each candidate
is rated by three annotators and we report the av-
erage scores here. We did not evaluate the style

8https://www.mturk.com/

Dataset Model Style Flu. Con. Mean

Yelp
Cycle 2.24 0.62 1.97 2.02
B-GST 2.42 0.64 2.02 2.12
DIRR 2.42 0.66 2.04 2.14

Amazon
Tag&Gen 1.98 0.87 1.95 2.19
B-GST 2.04 0.89 1.77 2.16
DIRR * 2.09 0.87 2.10 2.26

GYAMC
D&R N/A 0.40 2.13 1.66
DualRL N/A 0.51 2.23 1.88
DIRR * N/A 0.70 2.34 2.22

Table 7: Human Evaluation. Style denotes style trans-
fer accuracy, Flu. denotes fluency, Con. denotes con-
tent preservation. Mean denotes the average of the met-
rics where the fluency scores are scaled up to be consis-
tent with other scores. *: significantly better than other
systems (p < 0.01) according to the mean score.

transfer accuracy for the GYAMC dataset since it
is difficult for human annotators to accurately cap-
ture the difference between formal and informal
sentences. The results of our human evaluations
are shown in Table 7. We additionally report the
sample-wise mean score of the metrics where the
fluency scores are scaled up to be consistent with
other scores. Our model achieves better overall
performance when considering all three evaluation
metrics on each dataset.

Interestingly, we found that the automatic met-
rics for both the style transfer accuracy and content
preservation do not accurately reflect performance
as measured by human evaluation. For example, on
the Amazon dataset, although Tag&Gen (Madaan
et al., 2020) achieves significantly higher style
transfer accuracy based on the automatic metric,
our model achieves better performance based on
the human evaluation. This phenomenon suggests
that the importance of our findings discussed in Sec-
tion 3.3, that strong neural models can potentially
exploit the weaknesses of the automatic metrics.

4 Analysis

We next show an ablation study, demonstrating
the effectiveness of the content preservation and
fluency rewards in DIRR, and how SIM can be
used to replace the cycle-consistency loss. We
also compare using BLEU versus using SIM as
a content-preservation reward, finding that using
BLEU results in reduced performance, unstable
training, and artifacts in the outputs, which makes
the results less natural than the results of the model
trained with SIM score.

To illustrate that training with SIM can replace

https://www.mturk.com/
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Model Text self-BLEU self-SIM

Source this was my first stop in looking for a wedding dress . 100.0 100.0
DIRR-BLEU great this was my first stop in looking for a wedding dress . 91.2 95.2
DIRR this was my best stop in looking for a wedding dress . 64.8 81.9

source just a frozen patty cooked like a home one . 100.0 100.0
DIRR-BLEU great a frozen patty cooked like a home one . 88.0 94.6
DIRR just a great patty cooked like a home one . 70.7 88.5

source
wendy ’s has been know to be cheap with their drink

100.0 100.0
refills for years .

DIRR-BLEU
great wendy ’s has been know to be cheap with their drink

93.0 97.5
refills for years .

DIRR wendy ’s has been great with their drink refills for years . 57.2 84.9

Table 8: Comparison of using SIM and BLEU as the content preservation reward. Samples are from the Yelp
dataset. The metrics self-BLEU and self-SIM are calculated between the source sentences and system outputs.

Model Acc PPL s-BLEU s-SIM

DIRR-CYCLE 91.7 392 51.2 76.2
DIRR w/o FLU 92.1 348 51.4 79.8
DIRR-BLEU 91.3 315 59.4 81.8
DIRR 94.2 292 52.6 81.6

Table 9: Ablation and Comparative Study on Yelp
Dataset. Acc is the accuracy of the sentiment classifier.
PPL is the perplexity assigned by the GPT-2 language
model. self-BLEU (s-BLEU) and self-SIM (s-SIM) are
computed between the source sentences and outputs.

the cycle-consistency loss for content preservation,
we fine-tuned DIRR-CYCLE on SIM to produce
a new model, DIRR w/o FLU. The difference be-
tween DIRR and DIRR w/o FLU is that the former
is additionally trained with our fluency rewards.
The results are shown in Table 9, and show two
main trends. First, we see that DIRR w/o FLU

has better fluency and content preservation per-
formance than DIRR-CYCLE, which shows that
the cycle-consistency loss can be replaced by SIM
score for content preservation. Second, DIRR has
better fluency than DIRR w/o FLU, showing the
effectiveness of our fluency rewards.

We next investigate the effectiveness of using
SIM as a reward instead of BLEU. To do this, we
train a model, DIRR-BLEU, which uses BLEU as
the content reward and report the results in Table 9.
The results show that using BLEU has larger con-
tent preservation as measured by BLEU, but has
similar performance when measured by SIM. How-
ever, performance on the style transfer accuracy

and fluency decreases. We hypothesize that this
is because using SIM as a reward gives the model
more freedom, allowing the model to have more
balanced performance since there is less pressure
to copy n-grams. We also observe more adversarial
examples in the outputs of DIRR-BLEU. As dis-
cussed in Section 3.3, these adversarial examples
are generated by injecting a word carrying strong
sentiment at the beginning of the output. The model
trained with BLEU is more likely to generate these
outputs as it will try to avoid breaking up the n-
grams in the source sentences, allowing for a higher
BLEU reward. Examples of this behavior is shown
in Table 8. Notice that the DIRR-BLEU samples
start with the word great, which is enough to often
fool the classifier, but are unnatural.

5 Related Work

A main line of work (Shen et al., 2017; Hu et al.,
2017; Fu et al., 2018; Xu et al., 2018; John et al.,
2019) for text style transfer aims to model the con-
ditional distribution of the data with the encoder-
decoder architecture. Due to the lack of parallel
corpora, inductive biases are designed to make the
generation conditioned on both source sentences
and specific styles such that the model can rewrite
the source texts with the target style while still pre-
serve the content information of the source texts.

Efforts are also made to design training objec-
tives to improve performance. For example, Back-
translation (Zhang et al., 2018; Prabhumoye et al.,
2018), denoising auto-encoding (Lample et al.,
2019) and the cycle-consistency loss (Luo et al.,
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2019; Dai et al., 2019; Pang and Gimpel, 2019)
have been shown effective for improving the model
performance. Li et al. (2018) proposes a retrieve-
based pipeline, which contains three stages, namely,
delete, retrieve and generate. Sudhakar et al. (2019)
extends this pipeline by using GPT (Radford et al.,
2018) as the generator. Compared to these methods,
we propose a more direct and effective approach to
encourage semantic-preserving transfer by directly
measuring the semantic similarity of the source
texts and system outputs.

Recently, other works have been proposed for
unsupervised text style transfer (Jin et al., 2019; Lai
et al., 2019; Wu et al., 2019; Li et al., 2020). He
et al. (2020) proposes a probabilistic view which
models the non-parallel data from two domains
as a partially observed parallel corpus. Madaan
et al. (2020) proposes a tag-and-generate pipeline,
which firstly identifies style attribute markers from
the source texts, then replaces them with a spe-
cial token, and generates the outputs based on the
tagged sentences. Zhou et al. (2020) focuses on
exploring the word-level style relevance which is
assigned by a pre-trained style classifier. They pro-
pose a reward for content preservation which is
based on the weighted combination of the word
embeddings of the source texts and system outputs.
Compared to this reward, our proposed content re-
ward is specifically designed for semantic similarity
and pre-trained on large corpora, which makes it
more robust across different datasets.

6 Conclusion

In this paper, we propose a direct approach of im-
proving content preservation for text style transfer
by leveraging a semantic similarity metric as the
content reward. Using a large pre-trained language
model (GPT-2) with our proposed rewards that tar-
get the different aspects of the output quality, our
approach achieves strong performance on both au-
tomatic and human evaluation. Recently, several se-
mantic similarity metrics (Zhao et al., 2019; Sellam
et al., 2020; Gao et al., 2020) based on pre-trained
language models have shown promising results. In-
troducing these metrics in our proposed method as
the content preservation reward may bring further
improvements.

Moreover, we identify several problems in the
commonly used automatic evaluation metrics and
datasets, and propose several practical strategies to
mitigate these problems, which makes these met-

rics more effective rewards for model training. Con-
sidering the weaknesses of the automatic metrics
presented in this work, we believe that more rigor-
ous discussion and investigation on the criteria of
"successful transferring" is essential for this field
of work. Since existing works mostly relied on
model-based metrics to determine the success of
style transfer models, methods such as adversarial
training could be introduced to make the model-
based metrics more robust and faithful indicators
of the success of style-transferring, which would be
beneficial for both model training and evaluation.
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