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Abstract

Previous work indicates that discourse infor-
mation benefits summarization. In this paper,
we explore whether this synergy between dis-
course and summarization is bidirectional, by
inferring document-level discourse trees from
pre-trained neural summarizers. In particu-
lar, we generate unlabeled RST-style discourse
trees from the self-attention matrices of the
transformer model. Experiments across mod-
els and datasets reveal that the summarizer
learns both, dependency- and constituency-
style discourse information, which is typically
encoded in a single head, covering long- and
short-distance discourse dependencies. Over-
all, the experimental results suggest that the
learned discourse information is general and
transferable inter-domain'.

1 Introduction

Extractive summarization is a common and im-
portant task within the area of Natural Language
Processing (NLP) , which can be useful in a multi-
tude of diverse real-life scenarios. Current extrac-
tive summarizers typically use exclusively neural
approaches, in which the importance of extracted
units (i.e., sentences or clauses) and relationship be-
tween them are learned by the model from a large
amount of data (e.g., Liu and Lapata (2019b)).
Inspired by previous work in pre-neural times,
indicating that discourse information, especially
discourse trees according to the Rhetorical Struc-
ture Theory (RST) (Mann and Thompson, 1988),
can benefit the summarization task (Marcu, 1999),
several very recent neural summarizers have tried
to explicitly encode discourse information to sup-
port summarization. Overall, it seems that adding
these encodings, consistent with pre-neural results,
is beneficial. In particular, injecting discourse
has been shown to either improve performance
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on the extractive summarization task itself (Xu
et al., 2020), or allow for a substantial reduction
in the number of the summarizer’s parameters,
while keeping competitive performance (Xiao et al.,
2020).

The central hypothesis we are exploring in this
paper is whether the synergy between discourse
parsing and summarization is bidirectional. In
other words, we examine if summarization is a
useful auxiliary task to infer discourse structures.
Liu et al. (2019b) performed a preliminary inves-
tigation of this conjecture, showing that structural
information can be inferred from attention mech-
anisms while training a neural model on auxiliary
tasks. However, they did not perform any compari-
son against ground-truth discourse trees. Further,
recent work showed that discourse trees implicitly
induced during training are oftentimes trivial and
shallow, not representing valid discourse structures
(Ferracane et al., 2019).

In this paper, we address these limitations by
explicitly exploring the relationship between sum-
marization and discourse parsing through the infer-
ence of document-level discourse trees from pre-
trained summarization models, comparing the re-
sults against ground-truth RST discourse trees. Be-
sides Liu et al. (2019b), our idea and approach are
inspired by recent works on extracting syntactic
trees from pre-trained language models (Wu et al.,
2020) or machine translation approaches (Raganato
and Tiedemann, 2018), as well as previous work
on knowledge graph construction from pre-trained
language models (Wang et al., 2020). Specifically,
we generate full RST-style discourse trees from
self-attention matrices of a pre-trained transformer-
based summarization model. We use three different
tree-aggregation approaches (CKY (Jurafsky and
Martin, 2014), Eisner (Eisner, 1996) and CLE (Chu
and Liu, 1965; Edmonds, 1967)), generating a set
of constituency and dependency trees representing
diverse discourse-related attributes.
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Our proposal is thereby addressing one of the
key limitations in discourse parsing, namely the
lack of large training corpora. We aim to overcome
this limitation by generating a large number of rea-
sonable quality discourse trees from a pre-trained
summarization model, similar in spirit to what Hu-
ber and Carenini (2020) did with sentiment. Admit-
tedly, the discourse information captured with our
approach is summarization task-specific, however,
our generated discourse treebank can be combined
with further task-dependent treebanks (e.g. from
sentiment) to train more powerful discourse parsers
in a multitask framework.

Generally speaking, the ability to infer discourse
trees as a “by-product” of the summarization task
can also be seen as a form of unsupervised dis-
course parsing, where instead of leveraging pre-
trained language models like in Kobayashi et al.
(2019), we exploit a pre-trained neural summarizer.

We empirically evaluate our method on three
datasets with human RST-style annotations, cover-
ing different text genres. Multiple experiments
show that the summarization model learns dis-
course information implicitly, and that more de-
pendency information are captured, compared to
structural (i.e., constituency) signals. Interestingly,
an additional exploration of the attention matrices
of individual heads suggests that, for all models,
most of the discourse information is concentrated
in a single head, and the best performing head is
consistent across all datasets. We further find that
the dependency information learned in the atten-
tion matrix covers long distance discourse depen-
dencies. Overall, the results are consistent across
datasets and models, indicating that the discourse
information learned by the summarizer is general
and transferable inter-domain.

2 Related Work

Rhetorical Structure Theory (RST) (Mann and
Thompson, 1988) is one of the most popular the-
ories of discourse, postulating that a document
can be represented as a constituency tree, where
leaves are clause-like Elementary Discourse Units
(EDUs), and internal nodes combine their respec-
tive children by aggregating them into a single,
joint constituent. Each internal node also has a
nuclearity attribute®, representing the local im-
portance of their direct child-nodes in the par-
ent context from the set of {Nucleus-Nucleus,

?In this paper we do not consider rhetorical relations.

Nucleus-Satellite, Satellite-Nucleus}. “Nucleus"
child-nodes thereby generally play a more impor-
tant role when compared to a “Satellite” child-node.
Although standard RST discourse trees are encoded
as constituency trees, they can be converted into
dependency trees with near isomorphic transforma-
tions. In this work, we infer both, constituency and
dependency trees.

Over the past decades, RST discourse parsing
has been mainly focusing on supervised models,
typically trained and tested within the same domain
using human annotated discourse treebanks, such
as RST-DT (Carlson et al., 2002), Instruction-DT
(Subba and Di Eugenio, 2009) or GUM (Zeldes,
2017). The intra-domain performance of these su-
pervised models has consistently improved, with
a mix of traditional models by Joty et al. (2015)
and Wang et al. (2017), and neural models (Yu
et al., 2018) reaching state-of-the-art (SOTA) re-
sults. Yet, these approaches do not generalize well
inter-domain (Huber and Carenini, 2020), likely
due to the limited amount of available training data.

Huber and Carenini (2019) recently tackled this
data-sparsity issue through automatically generated
discourse structures from distant supervision, show-
ing that sentiment information can be used to infer
discourse trees. Improving on their initial results,
Huber and Carenini (2020) published a large-scale,
distantly supervised discourse corpus (MEGA-DT),
showing that a parser trained on such treebank de-
livers SOTA performance on the more general inter-
domain discourse parsing task. In this paper, we
also tackle the data sparsity problem in discourse
parsing, however, using a significantly different
approach. First, instead of relying on sentiment,
we leverage the task of extractive summarization.
Second, instead of a method for distant supervision,
we propose an unsupervised approach.

The area of unsupervised RST-style discourse
parsing has been mostly underlooked in the past,
with recent neural approaches either taking advan-
tage of pre-trained language models to predict dis-
course (Kobayashi et al., 2019) or using pre-trained
syntactic parsers and linguistic knowledge (Nishida
and Nakayama, 2020) to infer discourse trees in an
unsupervsied manner. Similarly. our proposal only
relies on a pre-trained neural summarization model
to generate discourse trees.

Recent neural summarization models are typi-
cally based on transformers (Liu and Lapata, 2019a;
Zhang et al., 2019). One advantage of these mod-
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els is that they learn the relationship between input
units explicitly using the dot-product self-attention,
which allows for some degree of exploration of
the inner working of these complex and distributed
models. Here, we investigate if the attention matri-
ces of a transformer-based summarizer effectively
capture discourse information (i.e., how strongly
EDUs are related) and therefore can be used to
derive discourse trees for arbitrary documents.

Marcu (1999) pioneered the idea to directly ap-
ply RST-style discourse parsing to extractive
summarization, and empirically showed that RST
discourse information can benefit the summariza-
tion task, by simply extracting EDUs along the
nucleus path. This initial success was followed
by further work on leveraging discourse parsing in
summarization, including McDonald (2007), Hirao
et al. (2013), and Kikuchi et al. (2014). More re-
cently, the benefits of discourse for summarization
have also been confirmed for neural summarizers,
e.g. in Xiao and Carenini (2019) and Cohan et al.
(2018), using the structure of scientific papers (i.e.
sections), and in Xu et al. (2020), successfully in-
corporating RST-style discourse and co-reference
information in the BERTSUM summarizer (Liu
and Lapata, 2019b).

In contrast to previous approaches demonstrating
how discourse can enhance summarization perfor-
mance, we have recently shown that discourse en-
ables the specification of simpler neural summariz-
ers, without affecting their performance (Xiao et al.,
2020). In particular, by using a fixed discourse-
based attention they achieve competitive results
compared to learnable dot-product self-attention
mechanisms, as used in the original transformer
model. Inspired by these findings, suggesting that
transformer-based summarization models learn ef-
fective discourse representations, we explore if use-
ful discourse structures can be inferred from learnt
transformer self-attention weights.

Admittedly, Liu and Lapata (2018) and Liu et al.
(2019b) presented preliminary work on inferring
discourse structures from attention mechanisms,
while training a neural model on auxiliary tasks,
like text classification and summarization. How-
ever, they did not perform any comparison against
ground-truth discourse trees as we do here. More
importantly, we employ a more explicit approach
to infer discourse structures, not as part of the learn-
ing process, but extracting the structures after the
summarization model is completely trained and

applied to new documents.

While our focus is on discourse, extracting syn-
tactic constituency and dependency trees from
transformer-based models has been recently at-
tempted in both, machine translation and language
modelling. In machine translation, Marecek and
Rosa (2019) and Raganato and Tiedemann (2018)
show that trained translation models can capture
syntactic information within their attention heads,
using the CKY and CLE algorithms, respectively.
In pre-trained language models, Wu et al. (2020)
propose a parameter-free probing method to con-
struct syntactic dependency trees based on a pre-
trained BERT model, only briefly elaborating on
possible applications to discourse. In contrast to
our work, they do not directly use attention heads,
but instead build an impact matrix based on the dis-
tance between token representations. Furthermore,
while their BERT-based model cannot deal with
long sequences, our two-level encoder can effec-
tively deal with sequences of any length, which is
critical in discourse.

3 Our Model

3.1 Framework Overview

Our main goal is to show the ability of a previously
trained summarization model to be directly applied
to the task of RST-style discourse parsing. Along
this line, we explore the relationship between infor-
mation learned by the transformer-based sumarizer
and the task of discourse parsing. We leverage
the synergies between units learned in the trans-
former model by following Xiao et al. (2020), previ-
ously proposing the use of a transformer document-
encoder on top of a pretrained BERT EDU encoder.
This standard summarization model is presented
in Figure 1 (left). In the transformer-based docu-
ment encoder, each head internally contains a self-
attention matrix, learned during the training of the
summarization model, representing the relationship
between EDUs (Figure 1 (center)). In this paper,
we analyze these learned self-attention matrices,
not only to confirm our intuition that they contain
relevant discourse information, but also to compu-
tationally exploit such information for discourse
parsing. We therefore generate a set of different
(constituency/dependency) discourse trees from the
self-attention matrices, focusing on different at-
tributes of discourse, as shown in Figure 1 (right).
Our generated constituency trees only reveal the
discourse tree structure without additional nucle-
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Figure 1: The pipeline of our whole method.

arity and relation attributes. More interestingly,
we complement the constituency interpretation of
the self-attention by additionally inferring a de-
pendency tree, also partially guided by discourse
structures, but mostly driven by the RST nuclearity
attribute, which is shown to be more related to the
summarization task where the importance of the
different text spans is critical (Hirao et al., 2013).
We present and discuss the different parsing algo-
rithms to extract discourse information from the
self-attention matrix next.

3.2 Parsing Algorithms

Formally, for an input document D = {uy, .., up }
with n EDUs, each attention head returns an at-
tention matrix A € R"*" where entry A;; con-
tains a score measuring how much the i-th EDU
relies on the j-th EDU. Given those bidirectional
scores defining the relationship between every two
EDUs in a document, we build a tree such that
EDU pairs with higher reciprocal attention scores
are more closely associated in the resulting tree. In
the constituency case, this means that EDUs with
higher mutual attention should belong to sub-trees
on lower levels of the tree, while in the dependency
case this implies that the path between such EDUs
should contain less intermediate nodes. In essence,
these requirements can be formalized as searching
for the tree within the set of possible trees, which
maximizes a combined score.

3.2.1 Constituency Tree (C-Tree) Parsing

To generate a constituency tree from the attention
matrix, we follow a large body of previous work in
discourse parsing (e.g., Joty et al. (2015)), where
constituency discourse trees are generated using
the CKY algorithm (Jurafsky and Martin, 2014).
Specifically, we fill a n x n matrix P € R™*"™ gen-
erating the optimal tree in bottom-up fashion using

the dynamic programming approach according to:

0, 1>
ZZ:1(AI<:¢), =]
max)_; (Piy, + Py1)
+ avg(Aik, (k+1):5)
+avg(Apr1)g,in)) /2, <]

where P;; with ¢ = j contains the overall impor-
tance of EDU ¢, computed as the attention paid
by others to unit 7. F;; with ¢ < j represents
the score of the optimal sub-tree spanning from
EDU i to EDU 5. We select the best combination
of sub-trees k, such that the sum of the left sub-
tree spanning [¢ : k| and the right one spanning
[(k+ 1) : j], along with the average score of con-
nections between the two sub-trees is maximized.

CKY Matrix

Attention Matrix

EDU, EDU; EDU; EDUs

Figure 2: Example of CKY constituency parsing.

For example, to pick the structure of the sub-tree
spanning EDUs [3 : 5] (see Fig. 2), we need to
decide between the potential sub-tree aggregation
of ((34)5) and (3(45)). The respective scores are
computed based on the scores in green and blue
blocks in both the CKY and the Attention Matrices.
Following this algorithm, two sub-trees with a high
attention score between them tend to be combined
on lower levels of the tree, indicating they are more
related in the discourse tree.

Besides the standard CKY algorithm described
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Figure 3: Chu-Liu-Edmonds Algorithm with sentence constraints

above, we also explore a hierarchical CKY ap-
proach with sentence and paragraph constraints.
Specifically, we do not aggregate F;; if the span
[i : j] crosses a sentences boundary where either
sentence is incomplete. In the previous example, if
EDUs and EDU,4 were in the same sentence, even
if the score of the blue aggregation candidate was
higher, we would choose the green sub-tree aggre-
gation. Plausibly, this hierarchical approach will
perform better, since the ground-truth treebanks
mostly contain sentences and paragraphs that are
covered by a complete discourse sub-trees.

3.2.2 Dependency Tree (D-Tree) Parsing

For the dependency tree generation, we use the
Eisner (Eisner, 1996) and Chu-Liu-Edmonds al-
gorithm (Chu and Liu, 1965; Edmonds, 1967) to
generate projective and non-projective dependency
trees, respectively>. First, we convert the attention
matrix A into a fully connected graph G = (N, E),
where N contains all the EDUs, and e;;, indicating
how much the ¢-th EDU influences the j-th EDU,
corresponds to A;;, which is the attention that the j-
th EDU pays to the i-th EDU. Based on this graph,
we apply the following algorithms:

Eisner Algorithm: We apply this dynamic pro-
gramming algorithm to generate projective depen-
dency trees. Thereby, we build a matrix P €
R™*"%2X2 in which the first and second dimen-

3“Mixed" approaches, dealing with mildly non-projective
trees (Kuhlmann and Nivre, 2006), are left for future work.

sions contain the start and end indexes of sub-trees,
similar to the CKY algorithm; while the third and
fourth dimensions indicate whether the head is the
start or the end unit, and whether the sub-tree is
completed. As done for constituency parsing, we
also use a hierarchical version of Eisner’s algo-
rithm, in which we restrict inter-sentence connec-
tions for incomplete sentence trees. Since the Eis-
ner algorithm can only generate projective depen-
dency trees, it will be inaccurate for documents
with a non-projective discourse structure.

Chu-Liu-Edmonds (CLE) Algorithm: Origi-
nally proposed as a recursive approach to find
the maximum spanning tree of a graph given its
root, CLE can generate non-projective trees. In
the unconstrained case, we simply follow the stan-
dard CLE algorithm, selecting the EDU with the
highest importance score, computed similar to Sec.
3.2.1, ie. root = argmax;y ,_;(Ag), as the
root. From there, the algorithm selects the “optimal
edges", i.e. the maximum in-edges for each node
except the root, breaking the cycles recursively.

Again, as we did for CKY and Eisner, we also
apply the additional sentence constraint. Unlike for
the dynamic programming approaches, which build
the trees in a bottom-up fashion and can directly be
constrained to avoid cross-sentence aggregations
of incomplete sentences, we need to substantially
modify CLE to allow for sentence constraints.

In particular, we first build a sentence graph
G* = {N?®, E*} from the EDU graph (Figure 3
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(b)), in which €%, = avgcg 4ep €sd> and record
the maximum edge corresponding to the edge be-
tween sentences, i.e. argmaxgcg gep €sd- After
that, we use the CLE algorithm within the sentence
containing the root EDU as the root sentence to
find the maximum spanning tree in G° (Figure 3
(c)). We then add the corresponding EDU edges
to the final tree (Figure 3 (d)). For example, the
edge (so, s1) in G* corresponds to the EDU edge
(ep, €2) in G. Next, we treat nodes with incoming
edges from other sentences as the root of the sen-
tence itself and run the CLE algorithm within each
sentence (Figure 3 (e)). The final tree (Figure 3 (f))
is eventually formed as the combination of inter-
sentence edges derived in sentence graph G4 and
intra-sentence edges found within each sentence.

4 Experiments and Analysis

4.1 The Summarization Task

In order to show the generality of the discourse
structures learned in the summarization model, we
train our summarizer across a variety of datasets
and hyper-parameter settings. More specifically,
we train on two separate, widely-used news cor-
pora — CNN Daily Mail (CNNDM) (Nallapati et al.,
2016) and NYT (Sandhaus, 2008) —, as well as un-
der three hyper-parameter settings with different
numbers of layers and attention heads: (a) A sim-
ple model with 2 layers and a single head. (b) 6
layers with 8 heads each, proposed in the origi-
nal transformer model(Vaswani et al., 2017). (c)
2 layers with 8 heads each, constituting a middle
ground between the previous two settings. By con-
sidering two corpora (CNNDM and NYT) and the
three settings, we train six models, which we call:
CNNDM-2-1, CNNDM-6-8, CNNDM-2-8, NYT-
2-1, NYT-6-8, NYT-2-8*.

4.2 Discourse Datasets
The quality of the attention-generated trees is as-
sessed on three discourse datasets (see Table 1).
RST-DT is the largest and most frequently used
RST-style discourse treebank (Carlson et al., 2002),
containing news articles from the Wall Street Jour-
nal. Since this is the genre of both our summariza-
tion training corpora, the experiments testing on
this dataset are intra-domain.
Instruction-DT contains documents in the
home-repair instructions domain (Subba and Di Eu-
genio, 2009). We categorize the experiments on

*Complete evaluation results for all six models are pre-
sented in Appendix A.

this dataset as cross-domain.

GUM contains documents from eight domains
including news, interviews, academic papers and
more (Zeldes, 2017). Since the GUM corpus is
multi-domain, the performance on this dataset will
reveal the generalizability of generated trees in a
broader sense.

Dataset # Docs | #EDU/doc | #Sent/doc | #words/doc
RST-DT 385 56.6 22.5 549
Instruction 176 32.7 19.5 318
GUM 127 107 45 874

Table 1: Key RST-style discourse dataset dimensions.

All three discourse datasets contain ground-truth
RST-style consituency trees. While all corpora con-
tain potential non-binary sub-trees, Instruction-DT
also includes multi-root documents. To account
for these cases, we apply the right-branching bi-
narization following Huber and Carenini (2019).
Furthermore, we convert constituency trees with
nuclearity into ground truth dependency trees using
the algorithm proposed in Li et al. (2014) .

4.3 Evaluation Metric

To evaluate how well the generated trees align with
ground-truth trees, we use RST Parseval Scores
for constituency trees and Unlabeled Attachment
Score for dependency trees, measuring the ratio of
matched spans and the ratio of matched dependency
relations, respectively.

4.4 Overall Results

For each model configuration, we run a set of exper-
iments using the average attention matrix across all
heads in a layer, i.e. Agpg = >, A"/ H, with H as
the number of heads. This initial setup is intended
to provide insights into the discourse information
learned in each layer.

The results of the three tree-generation algo-
rithms are shown in Table 2, 3 and 4 along with the
performance of a random baseline obtained by run-
ning the algorithms on 10 random matrices. Here,
we present the results of three selected models, lim-
ited to the performance of the first two layers for
the 6-layer models, to allow for a direct compari-
son to the 2-layer models’. Across evaluations, the
layer-wise performance within the same models are
rather distinct, indicating that different properties
are learned in the layers. This finding is in line
with previous work (Liu et al., 2019a), especially

SResults for all six models can be found in Appendix B.
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No Cons.
Attn#0 [ Attn#1

RST-DT
CNNDM-2-1 61.2 59.7 76.2 74.6
CNNDM-6-8 60.3 60.8 75.4 75.0

Sent Cons.

Model Aun#0 | Atn#l

NYT-6-8 62.4 62.2 76.7 75.6
Random 58.6+0.1 74.1+0.1
Instruction
CNNDM-2-1 61.1 59.8 714 | 1703
CNNDM-6-8 60.3 61.2 71.2 70.9
NYT-6-8 61.3 61.3 71.3 | 170.0
Random 59.540.3 70.540.1
GUM

CNNDM-2-1 58.7 57.7 72.7 71.9

CNNDM-6-8 58.9 59.3 72.4 72.7
NYT-6-8 59.6 59.3 72.2 71.6
Random 57.540.1 71.54+0.2

Table 2: RST Parseval Scores of generated con-
stituency trees on the three datasets, expressed as *Avg.
+ Std’. Green means the result is better than Random,
and Red along with | means worse. Results for Ran-
dom are obtained by applying the parser to random ma-
trices for 10 times. Attn#0/1 are the first two layers.

given that the performance of each layer is consis-
tent across constituency and dependency parsing
outputs for all datasets. Furthermore, the more lay-
ers the summarization model contains, the smaller
the performance gap between layers becomes. We
believe that this could be caused by the discourse
information being further spread across different
layers. Generally, we observe that models trained
on the CNNDM dataset perform better than mod-
els trained on the NYT corpus, despite the larger
size of the NYT dataset. Plausibly, the superior
performance of our models trained on CNNDM
potentially reflects a higher diversity within docu-
ments in the CNNDM dataset.

Comparing the constituency tree performance
in Table 2 against the dependency tree results in
Tables 3 and 4, we can clearly see that the improve-
ment of the constituency parsing approach over the
random baseline is much smaller than the improve-
ments for the generated dependency parse-trees.
Presumably, this larger improvement for the de-
pendency trees is due to the fact that dependency
relationships (strongly encoding the nuclearity at-
tribute) are more directly related to the summa-
rization task than the plain structure information.
This is in line with previous work on applying de-
pendency trees to the summarization task (Hirao
et al., 2013; Xu et al., 2020) and indicates that the
learned attention matrices contain valid discourse
information.

Model No Cons. Sent Cons.
Attn#0 | Attn#l | Attn#0 | Atin#l
RST-DT
CNNDM-2-1 23.7 1 4.8 28.2 | |18.2
CNNDM-6-8 $7.9 205 | | 13.8 27.8
NYT-6-8 15.7 12.5 243 | | 18.9
Random 11.24+0.2 20.3+0.2
Instruction
CNNDM-2-1 31.1 144 293 | | 135
CNNDM-6-8 1 8.5 19.5 $9.9 22.0
NYT-6-8 162 | | 12.1 228 | 164
Random 13.1+£0.3 19.3£0.4
GUM
CNNDM-2-1 213 | 224 273 | J16.1
CNNDM-6-8 3 4.7 158 | J11.5| 24.80
NYT-6-8 12.6 19.6 2341 }17.1
Random 10.4+0.2 19.2+0.3

Table 3: Unlabeled Attachment Scores of dependency
trees generated by the Eisner algorithm.

Model No Cons. Sent Cons.
Atn#0 | Attn#l [ Atn#0 [ Atn#l
RST-DT
CNNDM-2-1 21.6 1.5 29.3 19.6
CNNDM-6-8 7.3 173 | J16.1 28.5
NYT-6-8 13.7 10.6 25.0 21.1
Random 1.7£0.1 18.740.1
Instruction
CNNDM-2-1 28.1 $2.1 37.4 18.1
CNNDM-6-8 6.9 159 | [ 149 25.8
NYT-6-8 14.8 9.8 25.4 21.1
Random 2.9+0.2 17.9+0.4
GUM
CNNDM-2-1 19.5 10.7 28.8 17.9
CNNDM-6-8 4.0 13.1 | } 149 25.4
NYT-6-8 10.7 8.2 23.0 19.5
Random 0.9+0.05 17.0£0.2

Table 4: Unlabeled Attachment Scores of dependency
trees generated by the CLE algorithm

As for the two approaches to dependency pars-
ing, although Eisner generally outperforms CLE,
the improvement over random trees is larger for
CLE. We believe that this effect is due to the re-
duced constraints imposed on the CLE algorithm,
which is not limited to generate projective trees.

Considering all three methods, the results of the
CLE-generated dependency tree seem most promis-
ing. A possible explanation is that both CKY and
Eisner build the discourse tree in a bottom-up fash-
ion with dynamic programming. This way, only
local information is used on lower levels of the tree.
On the other hand, the CLE algorithm uses global
information, potentially more aligned with the sum-
marization task, where all EDUs are considered to
predict importance scores.
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Figure 4: The Unlabeled Attachment Score of trees generated by the attention matrix per head on three datasets

under two conditions with the CNNDM-6-8 model.

4.5 Performance of Heads

While all previous results rely on the average atten-
tion matrices, we now analyze whether discourse
information is evenly distributed across attention
heads, or if a subset of the heads contains the ma-
jority of discourse related information.

We describe this analysis only for CLE for two
reasons: (a) the summarization model seemingly
captures more dependency-related discourse infor-
mation than structure information; (b) compared
with Eisner, the CLE approach is more flexible, by
also covering non-projective dependency trees.

Since the results across all summarization mod-
els are consistent, we only show the accuracy
heatmap for the CNNDM-6-8 model on the three
RST-style discourse datasets in Figure 4. Remark-
ably, for all three datasets, there is one head in
the model capturing the vast majority of discourse
information, especially in the unconstrained case.
Furthermore, the performance of the best single
attention head is much better than the one of the
average attention matrix shown in section 4.4 (e.g.
34.53 compared to 19.51 on the GUM dataset with-
out sentence constraints). These intriguing findings
will be further explored in future work.

4.6 Analysis of Generated Trees

Localness of Trees: To further verify that the
generated trees are non-trivial, for instance simply
connecting adjacent EDUs, we analyze the qual-
ity of the trees produced with the second attention
head on the second layer, which is the top per-
former among all the heads shown in Figure 4.
First, we separate all dependency relationships into
two classes: local, holding between two adjacent
EDUs, and distant, including all other relations
between non-adjacent EDUs. Then we compute
the ratio of the correctly predicted dependencies
which are local (Local Ratio Corr.), as well as the

Measurement(%) ‘ No Cons. ‘ Sent Cons.

RST-DT
Local Ratio Corr. 77.78 ‘ 79.17
Local Ratio GT 53.22
Local Ratio Ours | 4652 | 5835
Instruction
Local Ratio Corr. 81.15 ‘ 84.90
Local Ratio GT 59.82
Local Ratio Ours 47.90 ‘ 60.54
GUM
Local Ratio Corr. [ 77.99 [  80.20
Local Ratio GT 53.28
Local Ratio Ours | 3997 | 53.76

Table 5: Measurements on the locality of the generated
dependency trees, all numbers are in %. Corr. repre-
sents all the correct predictions, GT the ground-truth
trees, and Ours the generated tree respectively.

ratio of local dependencies in the generated trees
(Local Ratio Ours), and in the ground-truth trees
(Local Ratio GT). The results of this analysis are
shown in Table 5. For all datasets, the ratio of
correctly predicted local dependencies (Local Ra-
tio Corr.) (being > 50) is larger than the ratio for
distant relations, which appears reasonable, since
local dependency predictions are easier to predict
than distant ones. Further, comparing (Local Ratio
GT) and (Local Ratio Ours) without the sentence
constraint (first column) shows that the number
of local dependency relations in the ground-truth
discourse trees is consistently larger than the pre-
dicted number. This indicates that the discourse
information learned in the attention matrices goes
beyond the oftentimes predominant local positional
information. However, even without the sentence
constraint (first column), when the CLE algorithm
can predict trees of any form, more than 40% of the
relations are predicted as local, suggesting that the
standard CLE approach can already capture local
information well.

Adding the sentence constraint (second column),
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‘ Branch ‘ Height

RST-DT
Ours(Sent Cons) 1.50 27.06 | 0.37 | 0.10 3%
Ours(No Cons) 1.74 25.76 | 0.49 | 0.12 3%
GT Tree 2.10 8.19 | 0.51]0.13 2%
Instruction
Ours(Sent Cons) 1.56 15.74 | 0.39 | 0.13 3%
Ours(No Cons) 1.80 14.35 | 0.50 | 0.14 3%
GT Tree 1.59 8.49 | 041 | 0.15 1%
GUM
4494 | 0.40 | 0.05 0%
43.08 | 0.54 | 0.08 0%
12.17 | 0.51 | 0.04 0%

Leaf ‘ Arc ‘ vac. (%)

Ours(Sent Cons) 1.61
Ours(No Cons) 2.14
GT Tree 2.02

Table 6: Statistics of our generated trees and the gold
standard trees in terms of the average branch width, av-
erage height, average leaf ratio (micro), average nor-
malized arc length of the trees and percentage of the
Vacuous trees.

we find that the local dependency ratio of the gen-
erated trees (Local Ratio Ours) further increases
by more than 10% across all three datasets. This
makes intuitive sense, since the sentence constraint
forces the generated trees to purely focus on local
aspects within each sentence. To sum up, we find
that the learned attention matrices contains both
local and distant dependency information, although
local dependency predictions perform better.

Properties of Trees: Following Ferracane et al.
(2019), we structurally inspect the generated depen-
dency trees, and compare them with the gold trees
on all three datasets. This comparison is presented
in Table 6, showing the average branch width, aver-
age height, average leaf ratio (micro) and average
normalized arc length of the trees as well as the
percentage of vacuous trees in each dataset®.

Looking at Table 6, it appears that our tree struc-
ture properties are similar to the ground-truth prop-
erties in regards to all measures except the height
of the tree, which indicates that our trees tend to be
generally deeper than gold standard trees, despite
having a similar branch width and leaf ratio. Fur-
thermore, our trees are even deeper when using the
sentence constraint. Plausibly, by forcing each sen-
tence to have its own sub-tree can make shallower
inter-sentential structures less likely. Exploring
potential causes for the difference in tree-height,
possibly due to the summarization task itself, are
left as future work.

6 A vacuous tree is a special tree in which the root is one
of the first two EDUs, with all nodes are children of the root.

4.7 Additional Results on Model Sensitivity
to Initialization and Summarizer Quality

To investigate whether the performance is consis-
tent cross different random initializations, and to
explore the influence of the results with respect to
the quality of the summarizer, we perform addi-
tional experiments with the ’*CNNDM-6-8” model’.
Overall, we find that the performance is rather sim-
ilar across random initializations. Interestingly, a
single head consistently shows better performance
than all other heads across different initialization as
well as datasets; however, while the position of the
top-performing head is not always the same, it is
often located in the second layer of the model. Re-
garding the second experiment exploring sensitivity
to the summarizer quality, we create summarizers
of increasing quality by providing more and more
training. As expected, we find that as the summa-
rization model is trained for additional steps, more
accurate discourse information is learnt, concen-
trated in a single head.

5 Conclusions and Future Work

We present a novel framework to infer discourse
trees from the attention matrices learned in a
transformer-based summarization model. Experi-
ment across models and datsets indicates that both
dependency and structural discourse information
are learned, that such information is typically con-
centrated in a single head, and that the attention
matrix also covers long distance discourse depen-
dencies. Overall, consistent results across datasets
and models suggest that the learned discourse in-
formation is general and transferable inter-domain.

In the future, we want to explore if simpler sum-
marizers like BERTSUM (Liu and Lapata, 2019b)
can also capture discourse info; specifically study-
ing if the importance of the heads corresponds
to the captured discourse info, which may help
pruning summarization model by incorporating dis-
course info, in spirit of Xiao et al. (2020).

With respect to dependency tree generation pos-
sible improvements could come by looking for ad-
ditional strategies balancing between guidance and
flexibility, as Kuhlmann and Nivre (2006) explore
for syntactic dependency parsing.

To address the problem of data sparsity in dis-
course parsing, we want to synergistically leverage
other discourse-related tasks, in addition to senti-
ment and summarization, like topic modeling.

"More details can be found in Appendix C.
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A Performance of the Summarization
Task

Table.7 shows the performance of different sum-
marization models. In general, adding additional
layers and heads does not consistently increase the
performance on the summarization task itself.

Dataset | #Layer | #Head | R-1 R-2 R-L
CNNDM 2 1 40.92 | 18.69 | 37.85
CNNDM 2 8 41.02 | 18.78 | 37.96
CNNDM 6 8 41.03 | 18.69 | 37.86

NYT 2 1 43.64 | 25.58 | 36.87
NYT 2 8 44.11 | 26.08 | 37.34
NYT 6 8 43.93 | 25.99 | 37.15

Table 7: The in-domain performance of the summariz-
ers.

B Full Results on Overall Tree Parsing

We show the overall results of all the six summa-
rization models on constituency/dependency pars-
ing in Table.8, the results of three of them are
shown in Table.2, Table.3 and Table.4 in the main

paper.

C Results on Sensitivity to Initialization
and Summarizer Quality

To explore if the models with different random ini-
tialization have consistent performances, we train 5
models with 6 layers and 8 heads on the CNNDM
dataset with different initialization, and the results
of each layer for constituency/dependency parsing
are shown in Table.9. We can find that the results
are relatively consistent across different initializa-
tion, and additional exploration on the performance
of all the heads (Fig.5) show that, with different
initialization of the model, there is consistently one
head containing most of the discourse information,
but the position of that head is not fixed.

We further do the experiments on dependency
parsing during training the summarizer, to see how
the performance changes as the summarizer be-
come better, and show the max and mean UAS
over three datasets for all attention heads in the
’cnndm-6-8” model by the CLE algorithms after
training for (0, 1k, 5k, 10k, 20k) steps in Fig.6.
We also show the heatmaps of the average UAS
across three datasets for all the heads in Fig.7. We
can find that as the summarizer is trained for more
steps, more discourse information is learned, and
it’s more concentrated in one head. Interestingly,

the mean UAS of dependency trees generated by
CLE algorithm with sentence constraints show a
different trend, which may due to the concentra-
tion of the discourse information on single head
as the model trained for more steps, as it shows in
Figure.7.
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Model Const Eisner CLE
No Cons. Sent Cons. No Cons. Sent Cons. No Cons. Sent Cons.
RSTDT

CNNDM-2-1 | 61.16/59.67 | 76.23/74.63 | 23.65/4.80 | 28.24/18.23 | 21.56/1.45 | 29.29/19.56

CNNDM-2-8 | 62.65/59.75 | 76.42/74.28 | 22.09/8.40 | 26.23/21.29 | 20.31/6.13 | 26.57/22.67

CNNDM-6-8 | 60.33/60.79 | 75.44/75.04 | 7.89/20.48 | 13.83/27.78 | 7.28/17.30 | 16.10/28.50
NYT-2-1 60.27/60.23 | 75.57/75.29 | 9.76/14.84 | 23.18/20.61 | 6.18/12.68 | 21.06/21.73
NYT-2-8 63.20/59.65 | 76.63 /7523 | 7.35/9.74 | 16.04/21.27 | 6.44/7.09 16.72 /22.90
NYT-6-8 62.42/62.17 | 76.65/75.58 | 15.74/12.51 | 24.30/18.90 | 13.71/10.59 | 25.04/21.14
Random 58.60 (0.1) 74.10 (0.1) 11.16 (0.2) 20.28 (0.2) 1.67 (0.08) 18.72 (0.11)

Instruction

CNNDM-2-1 | 61.06/59.84 | 71.39/70.29 | 31.07/4.39 | 29.33/13.45 | 28.06/2.08 | 37.38/18.12

CNNDM-2-8 | 61.44/60.55 | 71.13/71.09 | 26.98/8.89 | 24.72/14.75 | 24.56/5.23 | 28.70/20.58

CNNDM-6-8 | 60.32/61.22 | 71.24/70.88 | 8.53/19.51 | 9.93/21.96 | 6.92/15.85 | 14.93/25.78
NYT-2-1 60.31/61.30 | 71.40/71.43 | 10.67/21.15 | 18.99/21.19 | 7.82/17.59 | 21.30/24.54
NYT-2-8 61.27/60.51 | 70.80/70.90 | 6.26/12.59 | 13.64/19.34 | 5.25/7.96 13.39/21.92
NYT-6-8 61.32/61.27 | 71.30/70.03 | 16.22/12.14 | 22.79/16.37 | 14.81/9.81 | 25.44/21.10
Random 59.49 (0.3) 70.53 (0.1) 13.14 (0.33) | 19.31 (0.44) 2.94 (0.24) 17.88 (0.42)

GUM

CNNDM-2-1 | 58.74/57.69 | 72.73/71.92 | 21.28/2.24 | 27.26/16.12 | 19.50/0.70 | 28.77/17.92

CNNDM-2-8 | 59.98/58.43 | 72.69/71.95 | 19.45/4.98 | 25.00/19.25 | 18.03/2.92 | 25.07/20.40

CNNDM-6-8 | 58.92/59.30 | 72.40/72.69 | 4.74/15.80 | 11.53/24.79 | 4.01/13.14 | 14.85/25.37
NYT-2-1 57.81/58.84 | 71.95/72.23 | 5.64/12.84 | 19.94/20.19 | 2.92/9.79 18.23/19.68
NYT-2-8 60.17/58.22 | 71.98/71.82 | 5.66/7.22 15.21/18.81 | 4.54/3.96 15.25/19.31
NYT-6-8 59.62/59.25 | 72.19/71.56 | 12.58/9.61 | 23.35/17.14 | 10.67/8.23 | 22.99/19.53
Random 57.47 (0.1) 71.50 (0.2) 10.37 (0.23) | 19.15(0.26) 0.92 (0.05) 17.01 (0.2)

Table 8: The RST Parseval Scores of generated constituency trees, Unlabeled Attachment Score of generated
dependency trees by Eisner algorithm and CLE algorithm on the three datasets. The numbers in each cell are
represented as the performance of (Layer O / Layer 1) the results of Random are obtained by applying the parser
on random generated matrices for 10 times, and are represented as ’Average (Std)’.

Model Const Eisner CLE
No Cons. ‘ Sent Cons. No Cons. ‘ Sent Cons. No Cons. ‘ Sent Cons.
RSTDT

CNNDM-6-8 61.13/61.63 | 75.81/75.41 | 10.32/20.99 | 16.42/27.08 | 9.40/18.16 18.89/28.33
(1.11) /(1.35) | (0.26)/(0.34) | (4.03)/(2.80) | (3.62)/(1.37) | (3.92)/(3.25) | (4.19)/(1.59)

Random 58.6 (0.1) 74.10 (0.1) 11.16 (0.2) 20.28 (0.2) 1.67 (0.08) 18.72 (0.11)

Instruction

CNNDM-6-8 61.87/61.06 | 70.84/70.94 | 11.50/19.78 | 12.91/22.45 | 9.79/16.53 17.81/26.30
(1.17)/(0.98) | (0.51)/(0.34) | (5.71)/.17) | (4.39)/(1.48) | (5.31)/(2.73) | (4.70)/(1.64)

Random 59.49 (0.3) 70.53 (0.1) 13.14 (0.33) 19.31 (0.44) 2.94 (0.24) 17.88 (0.42)

GUM

CNNDM.-6-8 58.19/58.71 | 72.28/72.48 | 7.62/15.69 14.62/24.02 | 6.77/13.23 17.32/25.13
(0.82)/(0.97) | (0.27)/(0.16) | (3.97)/(2.87) | (3.77)/(1.36) | (3.96)/(3.29) | (3.85)/(1.22)

Random 57.47 (0.1) 71.50 (0.2) 10.37 (0.23) 19.15 (0.26) 0.92 (0.05) 17.01 (0.2)

Table 9: The average RST Parseval Scores of generated constituency trees, the average Unlabeled Attachment
Scores of generated dependency trees by the Eisner and CLE algorithms, on the three datasets with 5 random
initialization, the numbers in parenthesis are the standard deviation across different run
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Figure 5: The heatmap of average UAS across three discourse datasets for all attention heads in the models with
different initialization by the CLE algorithm.
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Figure 6: Max and Mean UAS of dependency trees generated by CLE algorithm on all attention heads (48) of
the model ’cnndm-6-8’, after training for (0,1,5,10,20,23) K steps on RST-DT(top), Instructional(middle) and
GUM(bottom) datasets. The corresponding ROUGE scores are increasing.
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Figure 7: The heatmaps of the average UAS across the three discourse datasets for all the heads during training the
summarization model.
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