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Abstract

Lemmatization aims to reduce the sparse
data problem by relating the inflected
forms of a word to its dictionary form.
Most prior work on ML based lemmati-
zation has focused on high resource lan-
guages, where data sets (word forms) are
readily available. For languages which
have no linguistic work available, espe-
cially on morphology or in languages where
the computational realization of linguistic
rules is complex and cumbersome, machine
learning based lemmatizers are the way to
go. In this paper, we devote our attention
to lemmatisation for low resource, morpho-
logically rich scheduled Indian languages
using neural methods. Here, low resource
means only a small number of word forms
are available. We perform tests to analyse
the variance in monolingual models’ perfor-
mance on varying the corpus size and con-
textual morphological tag data for train-
ing. We show that monolingual approaches
with data augmentation can give competi-
tive accuracy even in the low resource set-
ting, which augurs well for NLP in low re-
source setting.

1 Introduction

Natural Language Processing (NLP) has seen
remarkable growth in all its sub-areas like ma-
chine translation, summarization, question an-
swering and so on. For all these tasks, though,
morphemes remain the most basic form of in-
formation (Otter et al., 2020). Morpheme
identification (lemma and affixes) can assist
these very useful large applications by solving
the data sparsity problem.

Good lemmatisers are invaluable tools for
handling large vocabulary in morphologically
rich languages and thereby boosting perfor-
mance in downstream tasks, but techniques
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are limited by resource availability. This is
a relevant point for Indian languages. For in-
stance, as many as 197 Indian languages are
in the UNESCQ’s Atlas of the "World’s Lan-
guages in Danger, 2010”. Even among the 22
scheduled languages of India, there is a wide
disparity in resource availability, for example,
for Konkani and Kashmiri (Rajan et al., 2020;
Islam et al., 2018).

Techniques like Porter stemmer are indeed
quick solutions, but they are suited only for
alphabetic script languages, like English, and
not abugida, like Bengali (Ali et al., 2017), or
abjad, like Urdu (Kansal et al., 2012), script
languages. Moreover, creating stemmers re-
quires different language specific stemming al-
gorithms. This requirement of language spe-
cific measures comes in the way of scaling the
enterprise of creating stemmers for the hun-
dreds and thousands of languages that exist
in the world. One might think of ML for
stemming- for example, training a neural net
with stems and word forms; but almost none
of the 22 scheduled Indian languages, which is
just a subset of the numerous languages spo-
ken and written in India, have resources suffi-
cient for training deep models (Bhattacharyya
et al., 2019). For a majority of Indian lan-
guages, the absence of dictionaries compounds
the problem.

Most of the current approaches for morpho-
logical analysis use the idea of cross-lingual
transfer learning from a higher resource lan-
guage to the low resource language (McCarthy
et al., 2019) of interest. We show that even
monolingual models can consistently perform
with high accuracy with even as little as 500
samples, without cross-lingual training of neu-
ral models and without structured informa-
tion like dictionaries. We further demonstrate
good performance in extremely low resource
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setting with as few as 100 training examples
samples to train on and show a competitive
performance against cross-lingual models in
the same setting.

2 Related work

In Zeman et al. (2018), lemmatisation was
performed for small treebanks exploiting the
common annotation standard across all lan-
guages, and the same task was implicit in
Nivre et al. (2017). Recently, there has been a
shift to extremely low resource settings with
the SIGMORPHON 2019 shared task (Mc-
Carthy et al., 2019) focusing on cross-lingual
learning. However, their task focuses on the
reverse direction: given a lemma and a set of
morphological features, generate a target in-
flected form.

3 Models

A two-step attention process (Anastasopoulos
and Neubig, 2019) similar to the SIGMOR-
PHON 2019 morphological inflection task (Mc-
Carthy et al., 2019) has been adapted for the
setup, which consists of four components: en-
coder for morphological tags, encoder charac-
ter sequence, attention and a decoder.

The inputs to the model are inflected words
and morphological tags, and we use self-
attention single layer bidirectional LSTM with-
out positional embeddings as encoders. At
each time step, during decoding, two context
vectors are created via two different attention
matrices over the output from the encoding of
inflected word and morphological tag.

At the decoder, we use a two-step process:
first we create a tag-informed state by attend-
ing over tags using the output from the de-
coder at the previous time step. Second, we
use this to attend over the source characters
to produce the state vector for the decoder at
that time step, which is used for producing
the output character for that time step using
a fully connected layer followed by a softmax.

We also add structural bias to the atten-
tion model that encourages Markov assump-
tion over alignments, that is, if the i-th source
character is aligned to the j-th target one,
alignments from the (i 4 1)-th or ith to (j+1)-
th character are preferred.

We refer the reader to Anastasopoulos and

Neubig (2019) for more details and explana-
tions about the two-step attention process and
Cohn et al. (2016) for more details regarding
structural bias.

4 Experiments

4.1 Data

From the SIGMORPHON 2019 shared task,
we collect language data from the multi-
lingual morphological inflection task for Ben-
gali, Hindi, Kannada, Sanskrit, Telugu, and
Urdu. Out of these, Telugu is the only one
that does not have a large data set (inflected
word forms). We use the same task categoriza-
tion of high or low resource languages as SIG-
MORPHON. Each training sample is a triplet:
(inflected word, lemma, tag), where tag
refers to the set of morphological features for
the inflected word.

A detailed description of the dataset that
we use for training is provided in Table 1.

Language Total  High Low
Bengali (bn) 3,394 3,394 100
Hindi (hi) 10,000 10,000 100
Kannada (kn) 3,506 3,506 100
Sanskrit (sa) 10,000 10,000 100
Telugu (te) 61 - 61

Urdu (ur) 10,000 10,000 100

Table 1: Number of inflected-word lemma pairs
available for each language. Total - original
number of samples, High and Low - training

dataset size in high and low resource settings.

We create the smaller data sets from the
high-resource data sets using the sampling
method based on probability distributions
mentioned in Cotterell et al. (2018). During
training for smaller data sets, we use augmen-
tation from Cotterell et al. (2016). This par-
ticular augmentation method relies on substi-
tuting stems in a word with random sequences
of characters while preserving its length.

We also annotate data sets with tag informa-
tion to create multiple data sets for analysing
the effects of data set size and the importance
of tag information on the accuracy of the mod-
els.

4.2 Training

The model runs in two phases:
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Figure 1: Accuracy when differing amounts of morphological data are used for training the models.
Number of samples used in training are on X-axis (100-aug represents training dataset of 100
augmented to reach 10,000).

Warm-up Phase For each triple (X,Y,T)
in the original data, we create two new tu-
ples (X, X, [COPY]) and (Y,Y,T) and train
the model on the new tuples (Anastasopou-
los and Neubig, 2019). This helps the model
learn a monotonic alignment in the attention
model, which is effective for character level
transduction tasks (Wu and Cotterell, 2019)
while avoiding any explicit modelling of such
a structural bias. The training switches to the
next phase when accuracy on the validation
set exceeds 75%.

(X,Y,T) triplet example for Hindi: (T &,
Rgdl, V;V.PTCP;PST). A Spanish example
would be (bailaba, bailar, V;V.PTCP;PRS).

Main Phase The training tuple (X,Y,T) is
fed into the system, and the model is allowed
to learn the distribution over the data. A cool
down period is also used while training to im-
prove the accuracy of the model. We also em-
ploy early stopping with a higher threshold
than the cool down period so that the train-
ing stops when no further progress is possible.

Hyperparameters for our models are dis-
cussed in appendix A.1. We also release all
our code online for reproducibility and further
research.

5 Results and Discussions

5.1 Variation with number of training
word-pairs

We create three models for each training set

size. They contain (1) no morphological fea-

*
https://github.com/krsrv/lemmatisation

tures, (2) basic PoS tag data, and (3) all mor-
phological features. We report accuracies over
complete string matching for our experiments.

Figure 1 shows the graphs for accuracy ver-
sus data. When the complete set of morpho-
logical features is included in training, most
languages achieve extremely high accuracy (at
least 95%, except for Kannada), even when
data set sizes are as small as 1000. When the
data set size is 500, the accuracy drop to the
range 80-90% but are still competitive wrt rule-
based lemmatisers across languages (Bhat-
tacharyya et al., 2014) like Sanskrit(Raulji and
Saini, 2019), Hindi(Paul et al., 2013), Ben-
gali(Shakib et al., 2019), Urdu(Gupta et al.,
2015) and Kannada(Prathibha and Padma,
2015). However, the performance drops dras-
tically when the data set size is reduced to
100. Performance on the augmented data sets
shows a marked increase in accuracy over the
unaugmented 100 training samples, but is still
below the performance of models trained on
500 samples.

Telugu is not included in Figure 1 due to
the lack of training samples. We train only
one model over the available 61 samples (aug-
mented to 10,000). The model achieves an ac-
curacy of 80% on the SIGMORPHON Task 1
test set for Telugu.

5.2 Variation with morphological
information

Comparing Figure 1(a) and 1(b), we see that
tag data does not provide substantial addi-
tional information to the model when the data
set size exceeds 2000, barring the case for San-
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2000 1000 500 100 100-aug
No tag PoS | Notag PoS | Notag PoS | Notag PoS | Notag PoS
bn| -3.60 0.00 | -5.72 -2.74| -3.49 1.89 12.77  50.00 2.13 17.02
hi 2.44 997 | -897 261 | -6.65 -5.10 | -5.17 -27.59 | -30.77 -3.85
kn | -470 4.04 | -18.15 -3.08 | -7.47 -1.87 | 97.60 33.33 | -4.76 -11.90
sa | -11.30 -4.86 | -5.52 -5.52 | -4.32 -40.16 | 40.91 -22.73 | -9.52  14.29
ur | -2.93 -040 | -1.73 -1.53 | -841 -0.22 | 141.53 82.20 | -36.84 -21.05

Table 2: Each column represents the percentage change in accuracy compared to the accuracy when
all morph tags were used. No tag - no morph tag, PoS - basic PoS tag data as inputs. The topmost row
represents the number of samples.

skrit. At 500, there is a spike in accuracy for
Sanskrit which is probably explained by the
fact that Sanskrit is a morphologically and se-
mantically systematic language with very few
ambiguities (evident from its linguistic and
grammar text Astadhyay1 by Panini), and thus
is the language with highest responsiveness
to augmentation with tag data. Below 4000,
the morphological tag data substantially im-
proves the accuracy. Sanksrit and Kannada
both show worse results compared to other lan-
guages, which is likely due to the complex in-
flection patterns in both languages.

The gains from including tag information
are better visualised in Table 2. A negative
value in the table indicates that the model’s
performance decreases in absence of tag data.
In general, we see that full-tag informed mod-
els perform the best, followed by basic PoS tag
informed models and finally models without
tag information.

The table also shows that the importance of
tag data increases considerably with decrease
in the training set size. However, an anomaly
occurs with 100 training samples, when the
absence of tag information improves the per-
formance. A possible explanation is that the
number of training samples is too low and the
model is not able to learn what to focus on
effectively. This anomaly disappears when we
augment the data before training the model.

Note that achieving 100% accuracy on
lemmatization without any tag information is
not possible with any data set size. Some
words can have multiple lemmas and require
context for disambiguation: #1 (kee) can map
to either ¥ (karana) or &I (kaa) depending
on whether it is used as a postposition or a
verb.

bn hi kn sa ur Avg mono
Cross
bn| - 60 59 57 59| 588 55
hi | 45 - 45 45 45| 45 26
kn | 52 53 - 44 48 | 49.3 42
sa | 70 68 74 - 70| 70.5 72
ur | 24 23 20 10 - | 19.3 38

Table 3: Accuracy of the cross-lingual model on
different language pairs. Columns: high resource
languages, Rows: low resource languages.
(Accuracy is measured via a complete string
match.)

5.3 Comparison with cross-lingual
models

We also train cross models using the same
method as monolingual training and incor-
porate the training procedure described by
Artetxe et al. (2020) (the hyperparameters are
listed in appendix A.2). We simulate a low
resource language by choosing 100 samples at
random and use all the other languages as high
resource languages. Macro averaged accuracy
for a simulated low resource language shows
that monolingual models give comparable ac-
curacies when compared to cross-lingual mod-
els, with the exception of Hindi. Performance
of Sanskrit and Urdu, especially Urdu, seem
to be better when the mono-lingual models are
used.

The complete list of accuracies for the cross-
lingual models are listed in Table 3. The
macro-averaged difference between the cross-
lingual and monolingual model is -2 in the
cross-lingual models’ favor.

6 Conclusion

We have given a methodology for lemmatiza-
tion of low resource (i.e., availability of small
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number of word forms) in this paper. For most
languages, a monolingual model trained on ap-
proximately 1000 training samples gives com-
petitive accuracy, while training on 500 sam-
ples gives results at par with rule-based linguis-
tic systems. For extremely-low resource set-
tings as well, monolingual models perform well
with the help of data augmentation. Even in
these scenarios, monolingual models can give
competitive results compared to cross-lingual
models, a result that is supported by research
in other tasks such as morphological inflection
(Anastasopoulos and Neubig, 2019).

Additionally, in the low resource setting, ad-
ditional features are an important source of in-
formation. Even PoS tags benefit the training
process.

6.1 Areas of improvement

The model currently does not exploit any lin-
guistic knowledge available to improve its per-
formance. Incorporating morphological rules
or using bilingual knowledge to create trans-
fer models could grant accuracy gains (Ge-
breselassie et al., 2020; Faruqui et al., 2015).
Moreover, transformers have been shown to
improve performance on character level tasks
which would be applicable method here (Wu
et al., 2020). Another potential area of im-
provement could be the usage of different data
hallucination techniques like in Shcherbakov
et al. (2016), which uses phonetics instead of
relying on characters for predictions.

7 Ethical Considerations

The work in this paper can be useful for ex-
panding the power of language understand-
ing to ethnic/local languages. This can conse-
quently bring these low-resource language do-
mains within the umbrella of widespread NLP
applications in edge computing devices. By
focusing on low-resource domains, we under-
stand how lightweight models fare in these set-
tings, thereby leading to potential trimming
down of model sizes, training time, compute
costs etc., which is a significant step towards
maintaining energy and carbon costs.

Such developments also spur the progress of
languages and the civilisations associated with
them by bringing them into the advanced tech-
nological manifolds, and thereby bring more

equitable distribution of technology and qual-
ity of life across the globe.
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A Appendix

All our models were trained on a single 12 GB
Nvidia GeForceGTX TitanXGPU and finished

training within an hour.

A.1 Hyperparameters

We use the Adam optimiser with the default
parameters except for learning rate. The train-
ing time for each model was between 1 to 3
hours. We list out the hyperparameters used
by use during training:

« Batch size: 10
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e Training epochs: 10
e Activation function: Squish
e Learning rate: 10e-3

All the hyperparameters were tuned using the
validation set over all languages over a uniform
distribution and the best models were selected
based on accuracy.

A.2 Cross-lingual models

The cross-lingual method that we use corre-
sponds to the method described by Artexte et
al. (2019) and so there are 4 phases of training.
We list out the hyperparameters as comma sep-
arated values:

o Batch size: 10

e Training epochs: 10,10,10,10

e Activation function: Squish

¢ Learning rate: 10e-3,10e-3,10e-3,10e-3
The 4 phases refer to the following:

e P1 : training on high resource language,
with same output and input (copying
phase for high resource language)

e P2 : training on low resource language,
with same output and input (copying
phase for low resource language)

e P3 : training on high resource language,
with expected input (inflected word +
tag) and output (lemma)

e P4 : training on low resource language,
with expected input (inflected word +
tag) and output (lemma)
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