
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 4078–4087

June 6–11, 2021. ©2021 Association for Computational Linguistics

4078

Grey-box Adversarial Attack And Defence For Sentiment Classification

Ying Xu ∗
IBM Research

Australia

Xu Zhong ∗
IBM Research

Australia

Antonio Jimeno Yepes
IBM Research

Australia

Jey Han Lau
University of Melbourne

Australia

Abstract

We introduce a grey-box adversarial attack
and defence framework for sentiment classifi-
cation. We address the issues of differentiabil-
ity, label preservation and input reconstruction
for adversarial attack and defence in one uni-
fied framework. Our results show that once
trained, the attacking model is capable of gen-
erating high-quality adversarial examples sub-
stantially faster (one order of magnitude less
in time) than state-of-the-art attacking meth-
ods. These examples also preserve the origi-
nal sentiment according to human evaluation.
Additionally, our framework produces an im-
proved classifier that is robust in defending
against multiple adversarial attacking meth-
ods. Code is available at: https://github.com/
ibm-aur-nlp/adv-def-text-dist

1 Introduction

Recent advances in deep neural networks have cre-
ated applications for a range of different domains.
In spite of the promising performance achieved
by neural models, there are concerns around their
robustness, as evidence shows that even a slight
perturbation to the input data can fool these mod-
els into producing wrong predictions (Goodfellow
et al., 2014; Kurakin et al., 2016). Research in this
area is broadly categorised as adversarial machine
learning, and it has two sub-fields: adversarial at-
tack, which seeks to generate adversarial examples
that fool target models; and adversarial defence,
whose goal is to build models that are less suscep-
tible to adversarial attacks.

A number of adversarial attacking methods have
been proposed for image recognition (Goodfellow
et al., 2014), NLP (Zhang et al., 2020) and speech
recognition (Alzantot et al., 2018a). These methods
are generally categorised into three types: white-
box, black-box and grey-box attacks. White-box

∗This work was completed during the employment of the
authors in IBM Research Australia.

attacks assume full access to the target models and
often use the gradients from the target models to
guide the craft of adversarial examples. Black-box
attacks, on the other hand, assume no knowledge
on the architecture of the target model and perform
attacks by repetitively querying the target model.
Different from the previous two, grey-box attacks
train a generative model to generate adversarial ex-
amples and only assume access to the target model
during the training phrase. The advantages of grey-
box attacking methods include higher time effi-
ciency; no assumption of access to target model
during attacking phase; and easier integration into
adversarial defending algorithms. However, due
to the discrete nature of texts, designing grey-box
attacks on text data remains a challenge.

In this paper, we propose a grey-box framework
that generates high quality textual adversarial ex-
amples while simultaneously trains an improved
sentiment classifier for adversarial defending. Our
contributions are summarised as follows:

• We propose to use Gumbel-softmax (Jang
et al., 2016) to address the differentiability
issue to combine the adversarial example gen-
erator and target model into one unified train-
able network.

• We propose multiple competing objectives for
adversarial attack training so that the gener-
ated adversarial examples can fool the target
classifier while maintaining similarity with the
input examples. We considered a number of
similarity measures to define a successful at-
tacking example for texts, such as lexical and
semantic similarity and label preservation.1

• To help the generative model to reconstruct
input sentences as faithfully as possible, we in-
troduce a novel but simple copy mechanism to

1Without constraint on label preservation, simply flipping
the ground-truth sentiment (e.g. the movie is great → the
movie is awful) can successfully change the output of a sen-
timent classifier even though it is not a useful adversarial
example.

https://github.com/ibm-aur-nlp/adv-def-text-dist
https://github.com/ibm-aur-nlp/adv-def-text-dist

4079

the decoder to selectively copy words directly
from the input.

• We assess the adversarial examples beyond
just attacking performance, but also content
similarity, fluency and label preservation us-
ing both automatic and human evaluations.

• We simultaneously build an improved senti-
ment classifier while training the generative
(attacking) model. We show that a classifier
built this way is more robust than adversar-
ial defending based on adversarial examples
augmentation.

2 Related Work

Most white-box methods are gradient-based, where
some form of the gradients (e.g. the sign) with
respect to the target model is calculated and added
to the input representation. In image processing,
the fast gradient sign method (FGSM; Goodfellow
et al. (2014)) is one of the first studies in attacking
image classifiers. Some of its variations include
Kurakin et al. (2016); Dong et al. (2018). These
gradient-based methods could not be applied to
texts directly because perturbed word embeddings
do not necessarily map to valid words. Methods
such as DeepFool (Moosavi-Dezfooli et al., 2016)
that rely on perturbing the word embedding space
face similar roadblocks.

To address the issue of embedding-to-word map-
ping, Gong et al. (2018) propose to use nearest-
neighbour search to find the closest words to the
perturbed embeddings. However, this method
treats all tokens as equally vulnerable and replace
all tokens with their nearest neighbours, which
leads to non-sensical, word-salad outputs. A so-
lution to this is to replace tokens one-by-one in
order of their vulnerability while monitoring the
change of the output of the target models. The re-
placement process stops once the target prediction
has changed, minimising the number of changes.
Examples of white-box attacks that utilise this ap-
proach include TYC (Tsai et al., 2019) and HOT-
FLIP (Ebrahimi et al., 2017).

Different to white-box attacks, black-box attacks
do not require full access to the architecture of the
target model. Chen et al. (2017) propose to estimate
the loss function of the target model by querying its
label probability distributions, while Papernot et al.
(2017) propose to construct a substitute of the tar-
get model by querying its output labels. The latter
approach is arguably more realistic because in most

cases attackers only have access to output labels
rather than their probability distributions. There
is relatively fewer studies on black-box attacks for
text. An example is TEXTFOOLER, proposed by
Jin et al. (2019), that generates adversarial exam-
ples by querying the label probability distribution
of the target model. Another is proposed by Alzan-
tot et al. (2018b) where genetic algorithm is used
to select the word for substitution.

Grey-box attacks require an additional training
process during which full access to the target model
is assumed. However, post-training, the model can
be used to generate adversarial examples without
querying the target model. Xiao et al. (2018) intro-
duce a generative adversarial network to generate
the image perturbation from a noise map. It is,
however, not trivial to adapt the method for text
directly. It is because text generation involves dis-
crete decoding steps and as such the joint generator
and target model architecture is non-differentiable.

In terms of adversarial defending, the most
straightforward method is to train a robust model
on data augmented by adversarial examples. Re-
cently, more methods are proposed for texts, such
as those based on interval bound propagation (Jia
et al., 2019; Huang et al., 2019), and dirichlet neigh-
borhood ensemble (Zhou et al., 2020).

3 Methodology

The purpose of adversarial attack is to slightly
perturb an input example x for a pre-trained tar-
get model (e.g. a sentiment classifier) f so that
f(x) 6= y, where y is the ground truth of x. The
perturbed example x′ should look similar to x,
which can be measured differently depending on
the domain of the input examples.

3.1 General Architecture

We propose a grey-box attack and defence frame-
work which consists of a generator G (updated),
and two copies of a pre-trained target classifier: a
static classifier C and an updated/augmented clas-
sifier C∗.2 During the training phase, the output
of G is directly fed to C and C∗ to form a joint ar-
chitecture. Post-training, the generator G is used
independently to generate adversarial examples (ad-
versarial attack); while the augmented classifier C∗
is an improved classifier with increased robustness
(adversarial defence).

2C and C∗ start with the same pre-trained weights, although
only C∗ is updated during training.

4080

Figure 1: Grey-box adversarial attack and defence
framework for sentiment classification.

The training phase is divided into attacking steps
and defending steps, where the former updates only
the generator G and learns to introduce slight per-
turbation to the input by maximising the objective
function of the target model C. The latter updates
C∗ and G by feeding both original examples and
adversarial examples generated by G. Here, the ad-
versarial examples are assumed to share the same
label with their original examples. Effectively, the
defending steps are training an improved classifier
with data augmented by adversarial examples.

Generating text with discrete decoding steps (e.g.
argmax) makes the joint architecture not differ-
entiable. Therefore we propose to use Gumbel-
softmax (Jang et al., 2016) to approximate the cate-
gorical distribution of the discrete output. For each
generation step i, instead of sampling a word from
the vocabulary, we draw a Gumbel-softmax sample
x∗i which has the full probability distribution over
words in the vocabulary: the probability of the gen-
erated word is close to 1.0 and other words close to
zero. We obtain the input embedding for C and C∗
by multiplying the sample x∗i with the word embed-
ding matrix, MC , of the target model C: x∗i ·MC .
Figure 1 illustrates our grey-box adversarial attack
and defence framework for text.

The generator G can be implemented as an auto-
encoder or a paraphrase generator, essentially dif-
ferentiated by their data conditions: the former uses
the input sentences as the target, while the latter
uses paraphrases (e.g. PARANMT-50M (Wieting
and Gimpel, 2017)). In this paper, we implement G
as an auto-encoder, as our preliminary experiments
found that a pre-trained paraphrase generator per-
forms poorly when adapted to our test domain, e.g.
Yelp reviews.

3.2 Objective Functions
Our auto-encoder G generates an adversarial exam-
ple given an input example. It tries to reconstruct
the input example but is also regulated by an adver-
sarial loss term that ‘discourages’ it from doing so.
The objectives for the attacking step are given as
follows:

Ladv = log pC(y|x, θC , θG) (1)

Ls2s = − log pG(x|x, θG) (2)

Lsem = cos

(
1

n

n∑
i=0

emb(xi),
1

n

n∑
i=0

emb(x∗i)

)
(3)

whereLadv is essentially the negative cross-entropy
loss of C; Ls2s is the sequence-to-sequence loss
for input reconstruction; and Lsem is the cosine
similarity between the averaged embeddings of
x and x∗ (n = number of words). Here, Ls2s

encourages x′ (produced at test time) to be lex-
ically similar to x and helps produce coherent
sentences, and Lsem promotes semantic similar-
ity. We weigh the three objective functions with
two scaling hyper-parameters and the total loss is:
L = λ1(λ2Ls2s + (1− λ2)Lsem) + (1− λ1)Ladv

We denote the auto-encoder based generator trained
with these objectives as AE.

An observation from our preliminary experi-
ments is that the generator tends to perform imbal-
anced attacking among different classes. (e.g. AE
learns to completely focus on one direction attack-
ing, e.g. positive-to-negative or negative-to-positive
attack). We found a similar issue in white-box
attack methods such as FGSM Goodfellow et al.
(2014) and DeepFool (Moosavi-Dezfooli et al.,
2016). To address this issue, we propose to modify
Ladv to be the maximum loss of a particular class
in each batch, i.e.

Ladv = max
|C|
t=1(L

t
adv) (4)

where Lt
adv refers to the adversarial loss of ex-

amples in the t-th class and |C| the total number of
classes. We denote the generator trained with this
alternative loss as AE+BAL.

For adversarial defence, we use the same objec-
tive functions, with the following exception: we
replace Ladv in Equation (1) with the objective
function of the classifier C∗, i.e.

Ldef = − log pC∗([y, y]|[x, x∗], θC∗ , θG) (5)

4081

We train the model C∗ using both original and
adversarial examples (x and x∗) with their origi-
nal label (y) to prevent C∗ from overfitting to the
adversarial examples.

3.3 Label Preservation

One of the main challenges of generating a tex-
tual adversarial example is to preserve its origi-
nal ground truth label, which we refer to as label
preservation. It is less of an issue in computer
vision because slight noises added to an image
is unlikely to change how we perceive the image.
In text, however, slight perturbation to a sentence
could completely change its ground truth.

We use sentiment classification as context to ex-
plain our approach for label preservation. The goal
of adversarial attack is to generate an adversarial
sentence whose sentiment is flipped according to
the target model prediction but preserves the origi-
nal ground truth sentiment from the perspective of
a human reader. We propose two ways to help label
preservation. The first approach is task-agnostic,
i.e. it can work for any classification problem, while
the second is tailored for sentiment classification.

Label smoothing (+LS). We observe the gen-
erator has a tendency to produce adversarial ex-
amples with high confidence, opposite sentiment
scores from the static classifier C. We explore the
use of label smoothing (Müller et al., 2019) to force
the generator generate examples that are closer to
the decision boundary, to discourage the genera-
tor from completely changing the sentiment. We
incorporate label smoothing in Eq. 1 by redistribut-
ing the probability mass of true label uniformly
to all other labels. Formally, the smoothed label
yls = (1 − α) ∗ y + α/K where α is a hyper-
parameter and K is the number of classes. For
example, when performing negative-to-positive at-
tack, instead of optimising G to produce adversar-
ial examples with label distribution {pos: 1.0, neg:
0.0} (from C), label distribution {pos: 0.6, neg: 0.4}
is targeted. Generator trained with this additional
constraint is denoted with the +LS suffix.

Counter-fitted embeddings (+CF). Mrkšić
et al. (2016) found that unsupervised word embed-
dings such as GloVe (Pennington et al., 2014) often
do not capture synonymy and antonymy relations
(e.g. cheap and pricey have high similarity). The
authors propose to post-process pre-trained word
embeddings with lexical resources (e.g. WordNet)
to produce counter-fitted embeddings that better

capture these lexical relations. To discourage the
generator G from generating words with opposite
sentiments, we experiment with training G with
counter-fitted embeddings. Models using counter-
fitted embeddings is denoted with +CF suffix.

3.4 Generator with Copy Mechanism (+CPY)

White-box or black-box attacking methods are
based on adding, removing, or replacing tokens
in input examples. Therefore maintaining similar-
ity with original examples is easier than grey-box
methods that generate adversarial examples word-
by-word from scratch. We introduce a simple copy
mechanism that helps grey-box attack to produce
faithful reconstruction of the original sentences.

We incorporate a static copy mask to the decoder
where it only generates for word positions that have
not been masked. E.g., given the input sentence
x = [w0, w1, w2], target x∗ = [w0, w1, w2], and
mask m = [1, 0, 1], at test time the decoder will
“copy” from the target for the first input (w0) and
third input token (w2) to produce w0 and w2, but
for the second input token (w1) it will decode from
the vocabulary. During training, we compute cross-
entropy only for the unmasked input words.

The static copy mask is obtained from one of
the pre-trained target classifiers, C-LSTM (Sec-
tion 4.2). C-LSTM is a classifier with a bidirec-
tional LSTM followed by a self-attention layer to
weigh the LSTM hidden states. We rank the in-
put words based on the self-attention weights and
create a copy mask such that only the positions
corresponding to the top-N words with the highest
weights are generated from the decoder. Gener-
ally sentiment-heavy words such as awesome and
bad are more likely to have higher weights in the
self-attention layer. This self attention layer can
be seen as an importance ranking function (Morris
et al., 2020b) that determines which tokens should
be replaced or replaced first. Models with copy
mechanism are denoted with the +CPY suffix.

4 Experiments and Results

4.1 Dataset

We conduct our experiments using the Yelp review
dataset.3 We binarise the ratings,4 use spaCy for
tokenisation,5 and keep only reviews with ≤ 50
tokens (hence the dataset is denoted as yelp50).

3https://www.yelp.com/dataset
4Ratings≥4 is set as positive and ratings≤2 as negative.
5https://spacy.io

https://www.yelp.com/dataset
https://spacy.io

4082

We split the data in a 90/5/5 ratio and downsample
the positive class in each set to be equivalent to
the negative class, resulting in 407,298, 22,536 and
22,608 examples in train/dev/test set respectively.

4.2 Implementation Details

For the target classifiers (C and C∗), we pre-
train three sentiment classification models using
yelp50: C-LSTM (Wang et al., 2016), C-CNN
(Kim, 2014) and C-BERT. C-LSTM is composed
of an embedding layer, a 2-layer bidirectional
LSTMs, a self-attention layer, and an output layer.
C-CNN has a number of convolutional filters of
varying sizes, and their outputs are concatenated,
pooled and fed to a fully-connected layer followed
by an output layer. Finally, C-BERT is obtained
by fine-tuning the BERT-Base model (Devlin et al.,
2018) for sentiment classification. We tune learn-
ing rate, batch size, number of layers and number
of hidden units for all classifiers; the number of at-
tention units for C-LSTM and convolutional filter
sizes and dropout rates for C-CNN specifically.

For the auto-encoder, we pre-train it to recon-
struct sentences in yelp50.6 During pre-training,
we tune learning rate, batch size, number of layers
and number of hidden units. During the training of
adversarial attacking, we tune λ1 and λ2, and learn-
ing rate lr. We also test different temperature τ for
Gumbel-softmax sampling and found that τ = 0.1
performs the best. All word embeddings are fixed.

More hyper-parameter and training configura-
tions are detailed in the supplementary material.

4.3 Attacking Performance

Most of the existing adversarial attacking meth-
ods have been focusing on improving the attack
success rate. Recent study show that with con-
straints adjusted to better preserve semantics and
grammaticality, the attack success rate drops by
over 70 percentage points (Morris et al., 2020a).
In this paper, we want to understand — given a
particular success rate — the quality (e.g. fluency,
content/label preservation) of the generated adver-
sarial samples. Therefore, we tuned all attacking
methods to achieve the same levels of attack suc-
cess rates; and compare the quality of generated
adversarial examples. 7 Note that results for adver-

6Pre-trained BLEU scores are 97.7 and 96.8 on yelp50
using GloVe and counter-fitted embedding, respectively.

7We can in theory tune different methods to achieve higher
success rate, but we choose the strategy to use lower suc-
cess rates so that all methods generate relatively fair quality

sarial attack are obtained by using the G + C joint
architecture, while results for adversarial defence
are achieved by the G + C + C∗ joint architecture.

4.3.1 Evaluation Metrics
In addition to measuring how well the adversarial
examples fool the sentiment classifier, we also use a
number of automatic metrics to assess other aspects
of adversarial examples, following Xu et al. (2020):

Attacking performance. We use the standard
classification accuracy (ACC) of the target classi-
fier (C) to measure the attacking performance of
adversarial examples. Lower accuracy means better
attacking performance.

Similarity. To assess the textual and seman-
tic similarity between the original and correspond-
ing adversarial examples, we compute BLEU (Pa-
pineni et al., 2002) and USE (Cer et al., 2018).8

For both metrics, higher scores represent better
performance.

Fluency. To measure the readability of gener-
ated adversarial examples, we use the acceptability
score (ACPT) proposed by Lau et al. (2020), which
is based on normalised sentence probabilities pro-
duced by XLNet (Yang et al., 2019). Higher scores
indicate better fluency.

Transferability. To understand the effective-
ness of the adversarial examples in attacking an-
other unseen sentiment classifier (TRF), we eval-
uate the accuracy of C-BERT using adversarial
examples that have been generated for attacking
classifiers C-LSTM and C-CNN. Lower accuracy
indicates better transferability.

Attacking speed. We measure each attacking
method on the amount of time it takes on average
(in seconds) to generate an adversarial example.

4.3.2 Automatic Evaluation
Comparison between AE variants. We first
present results on the development set where we
explore different variants of the auto-encoder (gen-
erator) in the grey-box model. AE serves as our
base model, the suffix +BAL denotes the use of an
alternative Ladv (Section 3.2), +LS label smoothing
(Section 3.3), +CF counter-fitted embeddings (Sec-
tion 3.3), and +CPY copy mechanism (Section 3.4).

We present the results in Table 1. Attacking
performance of all variants are tuned to produce

examples that annotators can make sense of during human
evaluation.

8USE is calculated as the cosine similarity between the
original and adversarial sentence embeddings produced by the
universal sentence encoder (Cer et al., 2018).

4083

ACC BLEU SENT
ALL POS NEG SUC POS NEG AGR UKN DAGR

AE 66.0 99.8 28.4 55.3 71.7 58.7 – – –
AE+BAL 75.6 72.3 78.8 65.9 73.9 70.9 0.12 0.80 0.08
AE+LS 74.3 77.8 70.4 80.3 84.6 86.3 0.46 0.44 0.10
AE+LS+CF 76.6 66.5 86.7 79.9 82.5 85.0 0.64 0.28 0.08
AE+LS+CF+CPY 77.4 70.9 83.8 85.7 90.6 90.2 0.68 0.30 0.02

Table 1: Performance of adversarial examples gener-
ated by five AE variants on yelp50 development set.

approximately 70% – 80% accuracy for the target
classifier C (C-LSTM). For ACC and BLEU, we
additionally report the performance for the positive
and negative sentiment class separately. To under-
stand how well the adversarial examples preserve
the original sentiments, we recruit two annotators
internally to annotate a small sample of adversarial
examples produced by each of the auto-encoder
variants. AGR and DAGR indicate the percentage
of adversarial examples where they agree and dis-
agree with the original sentiments, and UKN where
the annotators are unable to judge their sentiments.

Looking at the “POS” and “NEG” performance
of AE and AE+BAL, we can see that AE+BAL is
effective in creating a more balanced performance
for positive-to-negative and negative-to-positive at-
tacks. We hypothesise that AE learns to perform
single direction attack because it is easier to gener-
ate positive (or negative) words for all input exam-
ples and sacrifice performance in the other direc-
tion to achieve a particular attacking performance.
That said, the low AGR score (0.12) suggests that
AE+BAL adversarial examples do not preserve the
ground truth sentiments.

The introduction of label smoothing (AE+LS)
and counter-fitted embeddings (AE+LS+CF) ap-
pear to address label preservation, as AGR im-
proves from 0.12 to 0.46 to 0.64. Adding the copy
mechanism (AE+LS+CF+CPY) provides also some
marginal improvement, although the more signifi-
cant benefit is in sentence reconstruction: a boost
of 5 BLEU points. Note that we also experimented
with incorporating +BAL for these variants, but
found minimal benefit. For the rest of the experi-
ments, we use AE+LS+CF+CPY as our model to
benchmark against other adversarial methods.

Comparison with baselines. We next present
results on the test set in Table 2. The benchmark
methods are: TYC, HOTFLIP, and TEXTFOOLER

(described in Section 2). We choose 3 ACC thresh-
olds as the basis for comparison: T1, T2 and T3,
which correspond to approximately 80-90%, 70-

80% and 60-70% accuracy.9

Generally, all models trade off example quality
for attacking rate, as indicated by the lower BLEU,
USE and ACPT scores at T3.

Comparing C-LSTM and C-CNN, we found that
C-CNN is generally an easier classifier to attack,
as BLEU and USE scores for the same threshold
are higher. Interestingly, TEXTFOOLER appears to
be ineffective for attacking C-CNN, as we are un-
able to tune TEXTFOOLER to generate adversarial
examples producing ACC below the T1 threshold.

Comparing the attacking models and focusing
on C-LSTM, TEXTFOOLER generally has the up-
per hand. AE+LS+CF+CPY performs relatively
well, and usually not far behind TEXTFOOLER.
HOTFLIP produces good BLEU scores, but sub-
stantially worse USE scores. TYC is the worst per-
forming model, although its adversarial examples
are good at fooling the unseen classifier C-BERT
(lower TRF than all other models), suggesting that
there may be a (negative) correlation between in-
domain performance and transferability. Overall,
most methods do not produce adversarial examples
that are very effective at attacking C-BERT.10

Case study. In Table 3, we present two ran-
domly selected adversarial examples (positive-to-
negative and negative-to-positive) for which all
five attacking methods successfully fool C-LSTM.
TYC produces largely gibberish output. HOTFLIP

tends to replace words with low semantic similarity
with the original words (e.g. replacing hard with
ginko), which explains its high BLEU scores and
low USE and ACPT scores. Both TEXTFOOLER

and AE+LS+CF+CPY generate adversarial exam-
ples that are fluent and generally retain their origi-
nal meanings. These observations agree with the
quantitative performance we see in Table 2.

Time efficiency. Lastly, we report the time it
takes for these methods to perform attacking on
yelp50 at T2. The average time taken per ex-
ample (on GPU v100) are: 1.2s for TYC; 1s for
TEXTFOOLER; 0.3s for HOTFLIP; and 0.03s for
AE+LS+CF+CPY. TYC and TEXTFOOLER are the
slowest methods, while HOTFLIP is substantially
faster. Our model AE+LS+CF+CPY is the fastest
method: about an order of magnitude faster com-
pared to the next best method HOTFLIP. Though
one should be noted that our grey-box method re-

9We tune hyper-parameters for each attacking method to
achieve the 3 attacking thresholds.

10The sentiment classification accuracy for C-BERT on
yelp50 is originally 97.0.

4084

C-LSTM: 96.8 C-CNN: 94.3
Model ACC BLEU USE ACPT TRF ACC BLEU USE ACPT TRF

T1

TYC 83.8 48.3 11.6 -18.9 87.1 87.6 41.2 29.4 -21.8 91.5
HOTFLIP 80.3 85.6 47.9 -7.0 93.3 81.5 92.5 77.1 -3.8 95.1
TEXTFOOLER 86.5 92.6 88.7 -1.8 94.6 87.7 91.9 94.2 -2.1 96.2
AE+LS+CF+CPY 87.7 86.8 83.5 -3.8 95.0 85.1 87.8 80.7 -4.1 94.8

T2

TYC 75.3 41.2 -7.6 -20.7 78.2 73.4 38.9 -15.3 -21.4 75.9
HOTFLIP 75.3 80.0 38.1 -7.8 91.7 70.8 84.7 63.4 -7.1 93.4
TEXTFOOLER 73.6 88.5 84.1 -2.9 92.8 – – – – –
AE+LS+CF+CPY 77.1 83.5 74.6 -5.6 92.6 78.3 82.6 70.2 -5.7 92.5

T3

TYC 65.5 30.1 -7.3 -26.4 68.7 – – – – –
HOTFLIP 62.5 77.7 36.3 -9.9 91.2 67.1 81.8 57.2 -8.0 92.8
TEXTFOOLER 62.2 85.6 82.6 -3.7 91.7 – – – – –
AE+LS+CF+CPY 66.5 80.2 67.0 -7.3 90.1 69.1 76.4 61.7 -7.7 91.7

Table 2: Results based on automatic metrics, with C-LSTM and C-CNN as target classifiers. Dashed line indicates
the model is unable to generate adversarial examples that meet the accuracy threshold. The numbers next to the
classifiers (C-LSTM and C-CNN) are the pre-trained classification accuracy performance.

Direction neg-to-pos

Original unresonable and hard to deal with ! avoid when look-
ing into a home . plenty of headaches .

TYC homeschoolers and tantrumming to marker with !
australasia blerg quotation into a home . plenty of
headaches .

HOTFLIP unresonable and ginko to deal with ! avoid when
looking into a home . plenty of headaches .

TEXTFOOLER unresonable and tough to deal with ! avoids when
looking into a home . plenty of headaches .

AE+LS+CF+CPY unresonable and hard to deal with ! canceling when
looking into a home . plenty of headaches .

Direction pos-to-neg

Original i wish more business operated like this . these guys
were all awesome . very organized and pro

TYC relly tthe smushes gazebos slobbering americanised
expiration 3.88 magan colered 100/5 bellevue des-
tine 3.88 very 02/16 wonderfuly whelms

HOTFLIP i wish more business operated a this . these guys cpp
all stereotypic . very provisioned and pro

TEXTFOOLER i wish more business operated iike this . these guys
were all magnificent . very organized and pro

AE+LS+CF+CPY i wish more business operated like this . these guys
were all impresses . very organized and pro

Table 3: Adversarial examples generated by different
methods when attacking on yelp50 at threshold T2.

quires an additional step of training that can be
conducted offline.

4.3.3 Human Evaluation
Automatic metrics provide a proxy to quantify the
quality of the adversarial examples. To validate that
these metrics work, we conduct a crowdsourcing
experiment on Appen.11

We test the 3 best performing models (HOTFLIP,
TEXTFOOLER and AE+LS+CF+CPY) on 2 attack-
ing thresholds (T2 and T3). For each method, we
randomly sampled 25 positive-to-negative and 25
negative-to-positive successful adversarial exam-
ples. For quality control, we annotate 10% of the

11https://www.appen.com

samples as control questions. Workers are first pre-
sented with a 10-question quiz, and only those who
pass the quiz with at least 80% accuracy can work
on the task. We monitor work quality throughout
the annotation process by embedding a quality-
control question in every 10 questions, and stop
workers from continuing on the task whenever their
accuracy on the control questions fall below 80%.
We restrict our jobs to workers in United States,
United Kingdom, Australia, and Canada.

We ask crowdworkers the following questions:
1. Is snippet B a good paraphrase of snippet A?

Yes # Somewhat yes # No

2. How natural does the text read?
Very unnatural # Somewhat natural
Natural

3. What is the sentiment of the text?
Positive # Negative # Cannot tell

We display both the original and adversarial ex-
amples for question 1, and only the adversarial
example for question 2 and 3. As a baseline, we
also select 50 random original sentences from the
test set and collect human judgements for these
sentences on question 2 and 3.

We present the human evaluation results in Fig-
ure 2. Looking at the original examples (top-2
bars), we see that they are fluent and their per-
ceived sentiments (by the crowdworkers) have a
high agreement with their original sentiments (by
the review authors). Comparing the 3 methods,
TEXTFOOLER produces adversarial sentences that
are most similar to the original (green) and they are
more natural (blue) than other methods. HOTFLIP

is the least impressive method here, and these obser-
vations agree with the scores of automatic metrics
in Table 2. On label preservation (red), however,

https://www.appen.com

4085

(a) Original examples

(b) ACC threshold: T2

(c) ACC threshold: T3

Figure 2: Human evaluation results.

our method AE+LS+CF+CPY has the best perfor-
mance, implying that the generated adversarial sen-
tences largely preserve the original sentiments.

The consistency between the automatic and hu-
man evaluation results indicate that the USE and
ACPT scores properly captured the semantic sim-
ilarity and readability, two important evaluation
aspects that are text-specific.

4.4 Defending Performance

Here we look at how well the generated adversar-
ial examples can help build a more robust classi-
fier. Unlike the attacking performance experiments
(Section 4.3), here we include the augmented clas-
sifier (C∗) as part of the grey-box training.12 The
augmented classifier can be seen as an improved
model compared to the original classifier C.

To validate the performance of adversarial de-
fence, we evaluate the accuracy of the augmented
classifiers against different attacking methods. We
compared our augmented classifier C∗ to the aug-
mented classifiers adversarially trained with ad-
versarial examples generated from HOTFLIP and
TEXTFOOLER. Our preliminary results show that
training C∗ without the copy mechanism provides
better defending performance, therefore we use the

12During training, we perform one attacking step for every
two defending steps.

C CHOTFLIP CTEXTFOOLER C∗

Original Perf. 96.8 96.6 96.9 97.2
TYC 75.3 69.5 73.1 76.0
HOTFLIP 75.3 61.2 80.1 97.1
TEXTFOOLER 73.6 66.4 74.5 76.5
AE+LS+CF 74.0 83.2 86.3 90.0

Table 4: Defending performance.

AE+LS+CF architecture to obtain C∗.
For fair comparison, our augmented classifier

(C∗) is obtained by training the generator (G) to
produce an attacking performance of T2 accuracy
(70%) on the static classifier (C). For the other
two methods, we train an augmented version of
the classifier by feeding the original training data
together with the adversarial examples 13 generated
by HOTFLIP and TEXTFOOLER with the same T2
attacking performance; these two classifiers are
denoted as CTEXTFOOLER and CHOTFLIP, respectively.

At test time, we attack the three augmented clas-
sifiers using TYC, HOTFLIP, TEXTFOOLER and
AE+LS+CF, and evaluate their classification accu-
racy. Results are presented in Table 4. The second
row “Original Perf.” indicates the performance
when we use the original test examples as input to
the augmented classifiers. We see a high accuracy
here, indicating that the augmented classifiers still
perform well on the original data.

Comparing the different augmented classifiers,
our augmented classifier C∗ outperforms the other
two in defending against different adversarial at-
tacking methods (it is particularly good against
HOTFLIP). It produces the largest classifica-
tion improvement compared to the original clas-
sifier C (0.7, 21.8, 2.9 and 16.0 points against
adversarial examples created by TYC, HOTFLIP,
TEXTFOOLER and AE+LS+CF respectively). Inter-
estingly, the augmented classifier trained with HOT-
FLIP adversarial examples (CHOTFLIP) produces a
more vulnerable model, as it has lower accuracy
compared to original classifier (C). We suspect this
as a result of training with low quality adversarial
examples that introduce more noise during adver-
sarial defending. Training with TEXTFOOLER ex-
amples (CTEXTFOOLER) helps, although most of its
gain is in defending against other attacking meth-
ods (HOTFLIP and AE+LS+CF).

To summarise, these results demonstrate that
our grey-box framework of training an augmented
classifier together with a generator produces a more

13one per each training example

4086

robust classifier, compared to the baseline approach
of training a classifier using data augmented by
adversarial examples.

5 Conclusion

In this paper, we proposed a grey-box adversarial
attack and defence framework for sentiment classi-
fication. Our framework combines a generator with
two copies of the target classifier: a static and an
updated model. Once trained, the generator can be
used for generating adversarial examples, while the
augmented (updated) copy of the classifier is an im-
proved model that is less susceptible to adversarial
attacks. Our results demonstrate that the generator
is capable of producing high-quality adversarial
examples that preserve the original ground truth
and is approximately an order of magnitude faster
in creating adversarial examples compared to state-
of-the-art attacking methods. Our framework of
building an improved classifier together with an at-
tacking generator is also shown to be more effective
than the baseline approach of training a classifier
using data augmented by adversarial examples.

The combined adversarial attack and defence
framework, though only evaluated on sentiment
classification, should be adapted easily to other
NLP problems (except for the counter-fitted em-
beddings, which is designed for sentiment anal-
ysis). This framework makes it possible to train
adversarial attacking models and defending mod-
els simultaneously for NLP tasks in an adversarial
manner.

6 Ethical Considerations

For the human evaluation in Section 4.3.3, each as-
signment was paid $0.06 and estimated to take 30
seconds to complete, which gives an hourly wage
of $7.25 (= US federal minimum wage). An as-
signment refers to scoring the sentiment/coherence
of a sentence, or scoring the semantic similarity of
a pair of sentences.

Our research has obvious ethical considerations,
in that our adversarial generation technology can be
extended and used to attack NLP systems at large.
That said, this concern is a general concern for any
forms of adversarial learning that isn’t unique to
our research. The general argument for furthering
research in adversarial learning is that it advances
our understanding of the vulnerabilities of machine
learning models, paving the path towards building
safer and more secure models.

Additionally, our grey-box framework is ar-
guably better for defense (i.e. improving a machine
learning model) than for offense (i.e. attacking a
machine learning model), as it requires access to
the architecture of the target model to learn how to
generate adversarial examples, which isn’t a real-
istic condition if we were to use it to attack a live
system. In contrast, such a condition is less of an
issue if we are using it to improve the robustness
of a system that we are developing.

References
Moustafa Alzantot, Bharathan Balaji, and Mani Srivas-

tava. 2018a. Did you hear that? adversarial exam-
ples against automatic speech recognition. arXiv
preprint arXiv:1801.00554.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,
Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018b. Generating natural language adversarial ex-
amples. arXiv preprint arXiv:1804.07998.

Daniel Cer, Yinfei Yang, Sheng yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil.
2018. Universal sentence encoder.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi,
and Cho-Jui Hsieh. 2017. Zoo: Zeroth order opti-
mization based black-box attacks to deep neural net-
works without training substitute models. In Pro-
ceedings of the 10th ACM Workshop on AI and Secu-
rity, pages 15–26. ACM.

Jacob Devlin, M.W Chang, Kenton Lee, and Kristina
Toutanova. 2018. Bert: Pre-training of deep bidirec-
tional transformers for language understanding.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su,
Jun Zhu, Xiaolin Hu, and Jianguo Li. 2018. Boost-
ing adversarial attacks with momentum. In Proceed-
ings of the IEEE CVPR, pages 9185–9193.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and De-
jing Dou. 2017. Hotflip: White-box adversarial
examples for text classification. arXiv preprint
arXiv:1712.06751.

Zhitao Gong, Wenlu Wang, Bo Li, Dawn Song, and
Wei-Shinn Ku. 2018. Adversarial texts with gradient
methods. arXiv preprint arXiv:1801.07175.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572.

Po-Sen Huang, Robert Stanforth, Johannes Welbl,
Chris Dyer, Dani Yogatama, Sven Gowal, Krish-
namurthy Dvijotham, and Pushmeet Kohli. 2019.

http://arxiv.org/abs/1803.11175
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805

4087

Achieving verified robustness to symbol substitu-
tions via interval bound propagation. arXiv preprint
arXiv:1909.01492.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categor-
ical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and
Percy Liang. 2019. Certified robustness to
adversarial word substitutions. arXiv preprint
arXiv:1909.00986.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is bert really robust. A Strong Base-
line for Natural Language Attack on Text Classifica-
tion and Entailment. arXiv e-prints, page.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio.
2016. Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533.

Jey Han Lau, Carlos S. Armendariz, Shalom Lap-
pin, Matthew Purver, and Chang Shu. 2020. How
furiously can colourless green ideas sleep? sen-
tence acceptability in context. arXiv e-prints, page
arXiv:2004.00881.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi,
and Pascal Frossard. 2016. Deepfool: a simple and
accurate method to fool deep neural networks. In
Proceedings of the IEEE CVPR, pages 2574–2582.

John X Morris, Eli Lifland, Jack Lanchantin, Yangfeng
Ji, and Yanjun Qi. 2020a. Reevaluating adversar-
ial examples in natural language. arXiv preprint
arXiv:2004.14174.

John X Morris, Eli Lifland, Jin Yong Yoo, and Yan-
jun Qi. 2020b. Textattack: A framework for adver-
sarial attacks in natural language processing. arXiv
preprint arXiv:2005.05909.

Nikola Mrkšić, Diarmuid O Séaghdha, Blaise Thom-
son, Milica Gašić, Lina Rojas-Barahona, Pei-
Hao Su, David Vandyke, Tsung-Hsien Wen, and
Steve Young. 2016. Counter-fitting word vec-
tors to linguistic constraints. arXiv preprint
arXiv:1603.00892.

Rafael Müller, Simon Kornblith, and Geoffrey E Hin-
ton. 2019. When does label smoothing help? In
NeurIPS, pages 4696–4705.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z Berkay Celik, and Ananthram Swami.
2017. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM ASI-
ACCS, pages 506–519.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th ACL, pages 311–318.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the EMNLP (2014),
pages 1532–1543.

Yi-Ting Tsai, Min-Chu Yang, and Han-Yu Chen. 2019.
Adversarial attack on sentiment classification. In
Proceedings of the 2019 ACL Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 233–240.

Yequan Wang, Minlie Huang, Li Zhao, et al. 2016.
Attention-based lstm for aspect-level sentiment clas-
sification. In Proceedings of the 2016 conference on
EMNLP, pages 606–615.

John Wieting and Kevin Gimpel. 2017. Paranmt-50m:
Pushing the limits of paraphrastic sentence embed-
dings with millions of machine translations. arXiv
preprint arXiv:1711.05732.

Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He,
Mingyan Liu, and Dawn Song. 2018. Generating ad-
versarial examples with adversarial networks. arXiv
preprint arXiv:1801.02610.

Ying Xu, Xu Zhong, Antonio Jimeno Yepes, and
Jey Han Lau. 2020. Elephant in the room: An evalu-
ation framework for assessing adversarial examples
in nlp.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
XLNet: Generalized autoregressive pretraining for
language understanding. CoRR, abs/1906.08237.

Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi,
and Chenliang Li. 2020. Adversarial attacks on
deep-learning models in natural language process-
ing: A survey. ACM TIST, 11(3):1–41.

Yi Zhou, Xiaoqing Zheng, Cho-Jui Hsieh, Kai-wei
Chang, and Xuanjing Huang. 2020. Defense against
adversarial attacks in nlp via dirichlet neighborhood
ensemble. arXiv preprint arXiv:2006.11627.

http://arxiv.org/abs/2004.00881
http://arxiv.org/abs/2004.00881
http://arxiv.org/abs/2004.00881
http://arxiv.org/abs/2001.07820
http://arxiv.org/abs/2001.07820
http://arxiv.org/abs/2001.07820

