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Abstract

Given the clinical notes written in electronic
health records (EHRs), it is challenging to pre-
dict the diagnostic codes which is formulated
as a multi-label classification task. The large
set of labels, the hierarchical dependency, and
the imbalanced data make this prediction task
extremely hard. Most existing work built a bi-
nary prediction for each label independently,
ignoring the dependencies between labels. To
address this problem, we propose a two-stage
framework to improve automatic ICD coding
by capturing the label correlation. Specifically,
we train a label set distribution estimator to
rescore the probability of each label set can-
didate generated by a base predictor. This pa-
per is the first attempt at learning the label set
distribution as a reranking module for medi-
cal code prediction. In the experiments, our
proposed framework is able to improve upon
best-performing predictors on the benchmark
MIMIC datasets. 1

1 Introduction

Clinical notes from electronic health records
(EHRs) are free-from text generated by clinicians
during patient visits. The associated diagnostic
codes from the International Classification of Dis-
eases (ICD) represent diagnostic and procedural
information of the visit. The ICD codes provide an
standardized and systematic way to encode infor-
mation and has several potential use cases (Choi
et al., 2016).

Considering that manual ICD coding has been
shown to be labor-intensive (O’malley et al.,
2005), several approaches for automatic ICD cod-
ing has been proposed and investigated by the re-
search community (Perotte et al., 2013; Kavuluru
et al., 2015). With recent introduction of deep
neural networks, the performance of automatic
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1The source code of this project is available at

https://github.com/MiuLab/ICD-Correlation.
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Figure 1: An example of conflicting predictions. While these
two codes share the same root in the hierarchical ICD struc-
ture and are semantically similar, they are unlikely to appear
together.

ICD coding has been improved significantly (Choi
et al., 2016; Shi et al., 2017; Mullenbach et al.,
2018; Baumel et al., 2018; Xie and Xing, 2018; Li
and Yu, 2020; Vu et al., 2020; Cao et al., 2020).
Prior work on neural models mostly treated the
task of automatic ICD coding as a multi-label clas-
sification problem. These models mostly employ
a shared text encoder, and build one binary clas-
sifier for each label on top of the encoder. This
architecture along side with binary cross-entropy
loss make the prediction of each label independent
of each other, which might lead to incomplete or
conflicting predictions. An example of such er-
ror is shown in Figure 1. This issue is especially
problematic in ICD code prediction, since the ICD
codes share a hierarchical structure. That is, the
low-level codes are more specific, and the high-
level ones are more general. In some cases, the
low-level codes under the same high-level cate-
gory are more likely to be jointly diagnosed. Rare
codes also have more opportunity to be consid-
ered from the frequent codes in the same high-
level class. Prior work considered the hierarchical
dependencies between ICD codes by using hierar-
chical SVM (Perotte et al., 2013) or by introducing
new loss terms to leverage the ICD structure (Tsai
et al., 2019). However, they borrowed the depen-
dency from domain experts and did not consider
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the label correlation in the data.

Inspired by the success of reranking techniques
on automatic speech recognition (Ostendorf et al.,
1991) and dependency parsing (Zhu et al., 2015;
Sangati et al., 2009), we propose a two-stage
reranking framework for ICD code prediction,
which captures the label correlation without any
expert knowledge. In the first stage, we use a
base predictor to generate possible label set can-
didates. In the second stage, a label set reranker
is employed to rerank the candidates. We design
two rerankers to help to capture the correlation be-
tween labels. The experimental results show that
our proposed framework consistently improves the
results of different base predictors on the bench-
mark MIMIC datasets (Saeed et al., 2011; Johnson
et al., 2016). The results also show that the pro-
posed framework is model agnostic, i.e., we can
use any base predictor in the first stage.

Data privacy is a major difficulty for medical
NLP research. The personal health information
(PHI) which explains a patient’s ailments, treat-
ments and outcomes is highly sensitive, making it
hard to distribute due to privacy concerns. In addi-
tion, EHRs across multiple hospitals or languages
may contain different writing style, typos and ab-
breviations. It is labor-demanding to train separate
models for each hospital with their in-house data
only. The advantage of our proposed two-stage
framework is that we can train base predictors with
in-house data, while enjoying the universality of
ICD codes to train a reranker on ICD labels from
different sources. This reranker is able to gener-
ally work with various base predictor trained on
health records from any specific hospital.

The contributions of this paper are 3-fold:

• This paper is the first attempt to improve
multi-label classification with a reranking
method for automatic ICD coding.

• The experiments show that the proposed
approaches are capable of improving best-
performing base predictors on the benchmark
datasets MIMIC-2 and MIMIC-3, demon-
strating its great generalizability.

• The proposed framework has the great poten-
tial of benefiting from extra ICD labels, re-
ducing the demand of paired training data to-
wards scalability in the medical NLP field.

2 Related Work

This paper focuses on multi-label medical code
prediction; hence, We briefly describe the related
background about medical code prediction and
multi-label classification.

2.1 Medical Code Prediction

ICD code prediction is a challenging task in the
medical domain. It has been studied since 1998
(de Lima et al., 1998) and several recent work at-
tempted to approach this task with neural mod-
els. Choi et al. (2016) and Baumel et al. (2018)
used recurrent neural networks (RNN) to encode
the EHR data for predicting diagnostic results. Li
and Yu (2020) recently utilized a multi-filter con-
volutional layer and a residual layer to improve
the performance of ICD prediction. On the other
hand, several work tried to integrate external med-
ical knowledge into this task. In order to leverage
the information of definition of each ICD code,
RNN and CNN were adopted to encode the di-
agnostic descriptions of ICD codes for better pre-
diction via attention mechanism (Shi et al., 2017;
Mullenbach et al., 2018). Moreover, the prior
work tried to consider the hierarchical structure of
ICD codes (Xie and Xing, 2018), which proposed
a tree-of-sequences LSTM to simultaneously cap-
ture the hierarchical relationship among codes and
the semantics of each code. Also, Tsai et al.
(2019) introduced various ways of leveraging the
hierarchical knowledge of ICD by adding refined
loss functions. Recently, Cao et al. (2020) pro-
posed to train ICD code embeddings in hyperbolic
space to model the hierarchical structure. Addi-
tionally, they used graph neural network to capture
the code co-occurrences.

2.2 Multi-Label Classification

Multi-label classification problems are of broad
interest to the machine learning community. The
goal is to predict a subset of labels associated
with a given object. One simple solution to a
multi-label classification problem is to transform
the problem into n binary classification problems,
where n denotes the number of labels.

This approach makes an assumption that the
predictions of each label are independent. How-
ever, in practice, the labels are usually dependent,
making these predictors produce undesired predic-
tions.
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Figure 2: Illustration of our proposed framework.

There are numerous methods developed to alle-
viate this issue. Read et al. (2009) proposed clas-
sifier chains (CC), which introduce sequential de-
pendency between predictions by adding the deci-
sion of one classifier to the input of the next clas-
sifier. Cheng et al. (2010) generalized CC to prob-
abilistic classifier chains (PCC), where the pro-
posed approach estimates the joint probability of
labels and provides a proper interpretation of CC.
Nevertheless, the recurrence between classifiers
makes these methods less efficient and not appli-
cable to tasks with large amount of labels.

Another line of research has leveraged the label
dependencies that are known beforehand. Deng
et al. (2014) used label relation graphs for object
classification. Tsai et al. (2019) utilized the hierar-
chical structure of ICD codes to improve the ICD
code prediction. These methods relied on known
structures of the labels, which may not be easily
accessible and less general.

Some prior work tried to learn label correlation
and dependencies directly from the dataset. Zhang
et al. (2018) introduced residual blocks to cap-
ture label correlation. This method requires paired
training data, while our framework can learn from
ICD codes only.

The concept of retrieve-and-rerank has been
widely used in automatic speech recognition (Os-
tendorf et al., 1991), natural language process-
ing (Collins and Koo, 2005) and machine trans-
lation (Shen et al., 2004). Li et al. (2019) pro-
posed to rerank the possible predictions generated
by a base predictor with a calibrator. This method
is conceptually similar to our framework, where
we both follow the retrieve-and-rerank procedure.
The main difference between is that they lever-
aged an extra dataset for training the calibrator,
while we train a distribution estimator on the same
dataset as our base predictor.

3 Proposed Framework

The task of ICD code prediction is usually framed
as a multi-label classification problem (Kavuluru
et al., 2015; Mullenbach et al., 2018). Given a
clinical record x in EHR, the goal is to predict a
set of ICD codes y ⊆ Y , where Y denotes the set
of all possible codes. This subset is typically rep-
resented as a binary vector y ∈ {0, 1}|Y|, where
each bit yi indicates the presence or absence of the
corresponding label.

The proposed framework is illustrated in Fig-
ure 2 and consists of two stages:

1. Label set candidate generation provides
multiple ICD set candidates through a base
binary predictor, which is detailed in Sec-
tion 3.1.

2. Label set candidate reranking estimates the
probability by leveraging the label correla-
tion for reranking the candidates, which is de-
tailed in Section 3.2.

3.1 Candidate Generation
In the first stage of the framework, we employ a
base predictor to perform probabilistic prediction
for all labels, and we use the predicted probabil-
ities to generate top-k most probable label sets.
More formally, given a clinical note x, we perform
a base predictor and obtain the prediction for all
labels:

Pbase(yi = 1 | x, θbase), i = 1, 2, · · · , |Y|,

where θbase denotes the parameters of the base pre-
dictor. The predicted results are used to generate
top-k probable sets, i.e., ŷ ⊆ Y with top-k highest
probability prediction:

Pbase(ŷ | x, θbase) =

|Y|∏
i=1

Pbase(yi = ŷi | x, θbase).

Although there are 2|Y| possible subsets, the top-
k sets can be efficiently generated with dynamic
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Figure 3: Illustration of the proposed reranking process.

programming as described in the prior work (Li
et al., 2016).

3.2 Candidate Reranking

One drawback of the base predictor is the assump-
tion about independent labels. To address this is-
sue, in the second stage of the framework, we in-
troduce a label set reranker to rerank the label set
candidates generated in the previous stage. The
reranker is designed to capture correlation and co-
occurrence between labels. Given a label set can-
didate ŷ, a reranker should be able to provide a
reranking score R(ŷ), where higher score indi-
cates that the label set is more probable to appear.
Similar to prior work (Zhu et al., 2015), We rerank
the candidates according to their new scores de-
fined as

logPbase(ŷ | x, θbase) + α ·R(ŷ),

where α is a hyperparameter. We use the label
set with the highest score after reranking as the
final prediction. Note that that reranking is done
on label sets, not individual labels.

We employ two rerankers and describe them in
the following subsections. Note that we do not re-
strict the design of rerankers to those we proposed;
one can design their own reranker and plug it into
the proposed framework. Our reranking frame-
work is illustrated in Figure 3.

3.2.1 MADE Reranker
One intuitive way to assign scores to ŷ is using
the joint probability P (ŷ). Higher joint proba-
bility indicates that the label set is more probable
to appear, which aligns with our requirement to

rerankers. However, the joint probability P (ŷ) is
often intractable. Therefore, we can only make an
estimation with a density estimator.

Here we employ a masked autoencoder
(MADE) (Germain et al., 2015) as the density
estimator. MADE estimates the joint probability
of a binary vector P (ŷ) by decomposing it in an
autoregressive fashion with a random ordering

PMADE(ŷ) =

|Y|∏
i=1

PMADE(yi = ŷi | ŷo<i, θMADE),

where o denotes a random permutation of
{1, 2, · · · , |Y|}, o(i) denotes the new ordering of
i, ŷo<i = {ŷj | o(j) < o(i)} denotes the set
of all elements precede ŷi in the new ordering,
and θMADE denotes parameters of the MADE
model. MADE introduces a sequential depen-
dency between labels. It enforces this dependency
by masking certain connections in the multi-layer
perceptron, making the output of yi only depends
on ŷo<i.

The MADE model is trained with the labels
from the training set of the ICD code prediction
task. We use stochastic gradient descent to opti-
mize the parameters θMADE, and the training ob-
jective is to minimize the binary cross-entropy loss
L(ŷ):

− 1

|ŷ|

|ŷ|∑
i=1

(
ŷi logPMADE(yi = 1 | ŷo<i, θMADE)

+(1− ŷi) logPMADE(yi = 0 | ŷo<i, θMADE)
)
.

Because we do not know which ordering per-
forms the best, we can sample n different order-
ings and use the ensemble of these orderings to
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improve estimation:

PMADE(ŷ) =

1

n

n∑
j=i

|Y|∏
i=1

PMADE(yi = ŷi | ŷoj<i, θMADE).

The illustration can be found in the blue box of
Figure 3.

Given a label set candidate ŷ, we define the
score RMADE(ŷ) as

RMADE(ŷ) =
logPMADE(ŷ)

|ŷ|β
,

where |ŷ| denotes the size of the subset ŷ, and β is
a hyperparameter. |ŷ|β serves as a length penalty
similar to the one used in sequence generation (Wu
et al., 2016). We find that this length penalty is
crucial to the reranker, and without it the score
would favor subsets with smaller size.

3.2.2 Masked Self-Attention Reranker
(Mask-SA)

As described in the previous subsection, MADE
uses a sequential factorization to estimate the joint
probability of a label set. This formulation forces
the prediction of yi to only condition on a subset
of inputs ŷo<i. With this restriction, the MADE
model may fail to capture some crucial dependen-
cies.

Inspired by the masked language modeling ob-
jective (Devlin et al., 2019), we propose a masked
self-attention reranker (Mask-SA). Mask-SA takes
as input a set of predicted labels ŷ ⊆ Y , which is
the set representation of the predicted labels. It
employs a cloze-style prediction method, where
we mask one input at a time and ask the model
to predict the masked input. The advantage of this
prediction method is that the output is conditioned
on all inputs except for itself, which solves the re-
striction of the MADE model. This procedure is
very similar to a denoising autoencoder (Vincent
et al., 2008). The illustration can be found in the
green box of Figure 3.

The Transformer architecture (Vaswani et al.,
2017) has been shown to be efficient and effective
in language modeling (Dai et al., 2019). We use
it as the architecture of the Mask-SA model, with
a slight modification where we remove the posi-
tional encodings due to the fact that the predicted
ICD codes have no sequential order.

More formally, Mask-SA estimates a distribu-
tion over the label vocabulary for the masked in-
put given all other elements in the set PMSA(ŷi |
ŷ−{ŷi}, θMSA), where θMSA denotes the param-
eters of the Mask-SA model. θMSA can be op-
timized with stochastic gradient descent to mini-
mize the cross-entropy loss function. Given a label
set candidate ŷ, we compute the scoreRMSA(ŷ) as

RMSA(ŷ) =
log

∏|ŷ|
i=1 PMSA(ŷi | ŷ − {ŷi}, θMSA)

|ŷ|β
,

where β is a hyperparameter. Note that in this for-
mulation, the product of the conditional probabili-
ties is not an exact estimation of the joint probabil-
ity of ŷ, but an analogy to the factorization made
in the MADE model.

4 Experiments

In order to evaluate the effectiveness of our pro-
posed framework, we conduct experiments on two
benchmark datasets. We employ three different
base predictors to validate the generalizability of
the proposed framework.

4.1 Setup
We evaluate our model on two benchmark datasets
for ICD code prediction.

• MIMIC-2 Following the prior work (Mul-
lenbach et al., 2018; Li and Yu, 2020), we
evaluate our method on the MIMIC-2 dataset.
We follow their setting, where 20,533 sum-
maries are used for training, and 2,282 sum-
maries are used for testing. There are 5,031
labels in the dataset.

• MIMIC-3 The Medical Information Mart
for Intensive Care III (MIMIC-3) (Johnson
et al., 2016) dataset is a benchmark dataset
which contains text and structured records
from a hospital ICU. We use the same setting
as the prior work (Mullenbach et al., 2018),
where there are 47,724 discharge summaries
for training, with 1,632 summaries and 3,372
summaries for validation and testing, respec-
tively. There are 8,922 labels in the dataset.
We also follow the setting in (Shi et al., 2017)
where only the top-50 most frequent codes
are considered. This setting has 8,067 sum-
maries for training, 1,574 summaries for val-
idation, and 1,730 summaries for testing.

We follow the preprocessing steps described
in Mullenbach et al. (2018) with the provided
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Model Top-50 Dev Top-50 Test All Dev All Test

MacroF MicroF MacroF MicroF MacroF MicroF MacroF MicroF

CAML (2018) 54.03 61.76 53.46 61.41 7.70 54.29 8.84 53.87
+ MADE 56.91† 62.31† 56.64† 62.40† 7.79† 54.70† 9.11† 54.29†
+ Mask-SA 56.57† 62.14† 56.33† 62.26† 8.06† 54.53† 9.27† 54.09†

MultiResCNN (2020) 60.77 66.98 60.84 66.78 7.38 56.05 8.50 55.31
+ MADE 62.10† 67.13† 62.00† 67.13† 7.75† 57.08† 8.81† 56.21†

+ Mask-SA 61.52† 67.15† 62.06† 67.22† 7.97† 57.12† 9.28† 56.49†

LAAT (2020) 65.53 70.38 65.05 70.01 7.48 57.18 8.74 56.56
+ MADE 65.92† 70.34 65.29† 70.13† 7.92† 57.80† 9.16† 57.26†
+ Mask-SA 66.10† 70.30 65.44† 70.15† 8.08† 57.76† 9.41† 57.23†

Table 1: Results on the MIMIC-3 (%). † indicates the improvement achieved by the proposed rescoring framework. The best
scores for each base predictor are marked in bold.

Model Macro F1 Micro F1

CAML 4.90 44.79
+ MADE 5.31† 46.11†
+ Mask-SA 5.55† 46.08†

MultiResCNN 5.06 45.89
+ MADE 5.50† 47.49†

+ Mask-SA 5.88† 47.55†

LAAT 6.41 47.54
+ MADE 7.23† 49.15†
+ Mask-SA 7.42† 49.05†

Table 2: Results on the MIMIC-2 test set using all codes (%).
† indicates the improvement achieved by the proposed frame-
work. The best scores are marked in bold.

scripts 2. All discharge summaries are truncated
to a maximum length of 2,500 tokens.

4.2 Base Predictors
In order to validate the generalizability of our pro-
posed framework, we employ three different base
predictors that are proposed in prior work:

• CAML Convolutional attention for multi-
label classification (CAML) is a method pro-
posed in (Mullenbach et al., 2018). CAML
aimed at improving ICD code prediction by
exploiting the textual description of codes
with attention mechanism (Bahdanau et al.,
2014).

• MultiResCNN The multi-filter resid-
ual convolutional neural network (Mul-
tiResCNN) improved the design of CAML
with multiple convolution filters and residual

2https://github.com/jamesmullenbach/
caml-mimic

connections (Li and Yu, 2020).
• LAAT Vu et al. (2020) proposed a label

attention model which augments the label at-
tention mechanism in CAML with additional
transformations. It achieved state-of-the-
art performance on MIMIC-2 and MIMIC-3
datasets.

4.3 Training and Evaluation Details

We train our rerankers with the label sets in the
training set for 30 epochs. Adam is chosen as
the optimizer with a learning rate of 2e − 5. The
batch-size is set to 64. The MADE reranker has
one hidden layer with 500 neurons, and we find
that using n = 10 different orderings provides
good estimation without using too much compu-
tation power. The Mask-SA reranker employs the
transformer architecture with 6 self-attention lay-
ers, each with 8 attention heads. The hidden size
is set to 256. For each pair of the base predictor
and the reranker, we apply a grid search over pos-
sible values of α and β on the validation set to find
the best-performing hyperparameters, and we use
them to perform evaluation on the test set. Dur-
ing reranking, we generate top-50 label set can-
didates to rerank. Note that our approach is to
rerank the label set candidates instead of modify-
ing the predicted probabilities from the base pre-
dictors. Therefore, common metrics considering
the predicted probabilities of each label, such as
Precision@K and AUC, are not suitable for our
evaluation. Instead, we evaluate our methods with
two metrics, macro F1 and micro F1.

https://github.com/jamesmullenbach/caml-mimic
https://github.com/jamesmullenbach/caml-mimic


4049

45.5

46

46.5

47

47.5

48

1 2 3 5 10 15 20 30 50 100

F1
 sc

or
e

# Candidates

Figure 4: F1 scores (%) with different number of candidates.

4.4 Results

The results on the MIMIC-3 and MIMIC-2
datasets are shown in Table 1 and Table 2 re-
specitively. All results are obtained by averaging
the scores of 5 different training runs. We list the
results before reranking in the first row of each
base predictor.

In all scenarios, our proposed reranking frame-
work achieves consistent improvement over the
base predictors except for LAAT, where the macro
F-score on MIMIC-3 top-50 dev set slightly de-
creased. The relative improvement in macro F-
score for all-code settings are more significant,
ranging from 1% to 16%. Considering that the
all-code setting is much more challenging and
macro F-score is difficult to improve due to the
data imbalance issue, the achieved improvement
demonstrates the great potential of the proposed
framework for better practicality. The MADE and
Mask-SA reranker are both effective for the pur-
pose of reranking. Their gains are similar across
different settings and datasets. We believe that this
trend is reasonable given that their formulations
are similar, i.e., they both calculate score as prod-
uct of conditional probabilities. We also observe
that in the settings using all ICD codes, Mask-SA
reranker provides larger improvement to the macro
F-score consistently.

Our proposed framework improves upon the
best-performing methods on all settings. Note that
the proposed framework is complementary to the
base predictor. The results show that our reranking
method can improve upon any predictor that is de-
signed with the independent assumption, demon-
strating the great flexibility and generalizability of
our method.

Model Avg. Rank

LAAT 24.58
+ MADE 19.73
+ Mask-SA 19.50

Table 3: Average rank of the best-performing label set among
the top-50 candidates.

4.5 Effect of Candidate Numbers

The reranking results reported in Table 1 and Ta-
ble 2 are generated with top-50 candidates. In
order to investigate the effect of number of can-
didates to the final performance, we plot the per-
formance with regard to different number of can-
didates in Figure 4. As shown in the figure, the
reranked score increases consistently when the
number of candidates is less than 10. No signif-
icant improvement is observed when the number
of candidates is larger than 10.

We hypothesize that this phenomenon is due to
our formulation of the final score. When calculat-
ing the final scores, we combine the original score
from the base predictor and the score from the
reranker. For the candidates that originally ranked
after 10 by the base predictor, the original score
may be too low; hence it is almost impossible to
be selected after reranking.

4.6 Effectiveness of Reranking

The ultimate goal of our reranker is to bring the
best-performing label set to the highest rank. In
order to further examine the effectiveness of our
rerankers, we calculate the average ranking of the
best-performing label set, i.e. the set with the
highest micro F-score with respect to the ground
truth, before and after reranking. The results are
shown in Table 3, implying that the proposed
model can bring the best candidate from the 24-
th place to the 19-th place for better practical-
ity in terms of the systems with doctors’ interac-
tions. Our rerankers improve the average ranking
by more than 20% relative, demonstrating that the
reranking process is effective.

4.7 Effect on Infrequent Labels

The task of ICD code prediction is extremely hard
due to the large set of labels and the imbalanced
data: the top-50 most frequent codes take up more
than a third of all the outputs. To investigate the ef-
fect of the proposed framework on the infrequent
labels, we bucket the labels according to their fre-
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Baseline + Rescoring

Sample 1 427.1 427.41 427.5 693.0 99.6 995.0
(+ Mask-SA) 427.1 427.41 427.5 693.0 99.6 995.0 99.62 96.04 96.71

Sample 2 571.5 733.00 733.09 96.04 96.72 V66.7
(+ MADE) 571.5 733.00 733.09 96.04 96.72 V66.7 305.1 431 96.6

Table 4: Sample results before and after reranking from MIMIC-3 data.
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Figure 5: F1 scores (%) with regard to the frequencies of
labels. We bucket labels by their frequencies into 6 buckets.

quencies, and calculate the performance for each
bucket. We plot the performance of MultiResCNN
on MIMIC-3 full set with regard to label frequen-
cies in Figure 5. The figure demonstrates that with
reranking, the performance of the infrequent la-
bels also increases. This result indicates that the
reranking method is helpful for the extreme multi-
label classification problem.

5 Qualitative Analysis

After comparing the results produced from two
rerankers, we find that both methods have similar
tendency of prediction. In other words, the orig-
inal candidate sets would be improved by adding
or deleting similar ICD codes after rescoring from
both MADE and Mask-SA. To further analyze pre-
diction change, Table 4 shows the original and
reranked results for two data samples.

5.1 Addition and Deletion of Predictions

For the first sample, we find that the reranking
module tends to add missing ICD codes to the pre-
dicted set. Specifically, the first sample has no 96
category in the original prediction, and the rescor-
ing process adds 96.04 and 96.71 (highlighted in
blue) in the candidate set for better performance.
By checking their meanings, we could know that

96.04 is about insertion of endotracheal tube and
96.71 is about invasive mechanical ventilation,
and both treatments are important for patients in
ICU maintaining their respiratory function. Due to
their strong dependency, we find that these codes
frequently co-occur in the training data. Appar-
ently, the reranker learn the correlation and is ca-
pable of improving the prediction in terms of both
diversity and accuracy.

In the second sample, it can be found that our
module can also help remove the unreasonable
codes. Specifically, the code 733.09 (highlighted
in red) is not proper to be the selected code due to
the appearance of 733.00, which is the correct dis-
ease from the record. Therefore, the reranker can
help not only provide additional accurate codes
but also delete unreasonable ones for better per-
formance.

5.2 Reranking Analysis

We further analyze our methods from the top-10
ranking candidates sets in the second sample to
confirm if the sets with more accurate ICD codes
would be at the top of the reranked sets. In this
sample, the unreasonable ICD code 733.09 ap-
pears in every top-10 predictions before reranking.
With reranking, our reranker is able to bring the set
without 733.09 to the top-1. This example demon-
strates that the reranker’s ability to identify con-
flicting predictions and that we are able to correct
them with the proposed framework.

6 Conclusions

This paper proposes a novel framework to improve
multi-label classification for automatic ICD cod-
ing, which includes candidate generation and can-
didate reranking modules. In the first stage, a base
predictor is performed to generate top-k probable
label set candidates. In the second stage, we pro-
pose a reranker to capture the correlation between
ICD labels without any external knowledge. Two
types of the reranker, MADE and Mask-SA, are
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employed to rerank the candidate sets. Our ex-
periments show that both rerankers can consis-
tently improve the performance of all predictors
in MIMIC-2 and MIMIC-3 datasets, demonstrat-
ing the generalizability of our framework and the
great potential of the flexible usage.
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