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Abstract

It is challenging to design profitable and prac-
tical trading strategies, as stock price move-
ments are highly stochastic, and the market
is heavily influenced by chaotic data across
sources like news and social media. Existing
NLP approaches largely treat stock prediction
as a classification or regression problem and
are not optimized to make profitable invest-
ment decisions. Further, they do not model
the temporal dynamics of large volumes of di-
versely influential text to which the market re-
sponds quickly. Building on these shortcom-
ings, we propose a deep reinforcement learn-
ing approach that makes time-aware decisions
to trade stocks while optimizing profit using
textual data. Our method outperforms state-of-
the-art in terms of risk-adjusted returns in trad-
ing simulations on two benchmarks: Tweets
(English) and financial news (Chinese) pertain-
ing to two major indexes and four global stock
markets. Through extensive experiments and
studies, we build the case for our method as a
tool for quantitative trading.

1 Introduction

The stock market, a financial ecosystem involv-
ing quantitative trading and investing, observed
a market capitalization exceeding $US 60 trillion
as of the year 2019. Stock trading presents lucra-
tive opportunities for investors to utilize the market
as a platform for investing funds and maximizing
profits. However, making profitable investment de-
cisions is challenging due to the market’s volatile,
noisy, and chaotic nature (Tsay, 2005; Adam et al.,
2016). Research at the intersection of Natural
Language Processing (NLP) and finance presents
encouraging prospects in stock prediction (Jiang,
2020). Conventional work forecasts future trends
by modeling numerical historical stock data (Lu

*Equal contribution.

Figure 1: Here, we show how tweets about Tesla and
Moderna influence investors’ opinions and impact the
stocks over a day and the upcoming week. The tweets
by the Tesla CEO Elon Musk lead to massive price
drops in Tesla’s stock, and Moderna’s positive news at-
tracts investments in its stock. A profitable trading de-
cision would entail selling off Tesla’s shares (if already
held) and buying Moderna’s stock in such a scenario.

et al., 2009; Bao et al., 2017). However, price sig-
nals alone can not capture market surprises, merg-
ers, acquisitions, and company announcements.
Such events, often reported across financial news
and social media, have strong influence over market
dynamics (Laakkonen, 2004). For instance, prices
immediately react to breaking news about the re-
lated company (Busse and Green, 2002). Such
reactions conform to the Efficient Market Hypoth-
esis (EMH), a hypothesis in finance which states
that financial markets are informationally efficient
and prices reflect all available market information
at any given time (Malkiel, 1989).

The abundance of stock affecting information
across news and social media online inspires the
adoption of natural language processing to study
the interplay between textual data and stock prices
(Oliveira et al., 2017; Xu and Cohen, 2018). How-
ever, unlike numerical data, the study of natural
language is more challenging. Individual tweets
or news headlines may not be informative enough,
and analyzing them together can provide a greater
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context, as shown in Figure 1. Moreover, the timing
of their release plays a critical role as stock markets
rapidly react to new information (Foucault et al.,
2016). Furthermore, not each news story or tweet
holds the potential to influence stock trends as texts
have a diverse influence on prices (Hu et al., 2017).
These observations suggest benefits in factoring in
the time-aware dependence and diverse influence
of text while analyzing natural language.

Despite profitability being the prime objective
of quantitative trading, existing natural language
processing methods for stock prediction (Hu et al.,
2017; Xu and Cohen, 2018; Du and Tanaka-Ishii,
2020) are commonly formulated as classification or
regression tasks, and are not directly optimized to-
wards profit generation. Such methods face funda-
mental drawbacks. First, they do not innately incor-
porate the decision making and strategies involved
in quantitative trading, in turn limiting potential
profitability. Second, they have limited practical
applicability as they do not factor in the monetary
resources available and financial assets (stocks)
held with a trader at each trading time step. This
gap presents a new research direction where profit
generation can be directly optimized by modeling
the complex sequential decision-making process in
quantitative trading as a Reinforcement Learning
(RL) task. Owing to its nature, RL formulation
is directly suitable to the problem of quantitative
trading as it provides the potential to automatically
learn the adjustment of investment budgets across
stocks in portfolios while taking into account the
configuration of investments made in the past.

Contributions: We formulate stock prediction
as a reinforcement learning problem (§3) and
present PROFIT: Policy for Return Optimization
using FInancial news and online Text, a deep rein-
forcement learning approach that leverages finan-
cial news and tweets to model stock-affecting sig-
nals and optimize trading decisions for increasing
profitability. PROFIT accounts for the monetary
resources available and the existing portfolio to ex-
ecute profitable trades at any given time. Through
extensive experiments (§5) on English and Chi-
nese text corresponding to the NASDAQ, Shang-
hai, Shenzhen, and Hong Kong markets, we show
that PROFIT outperforms state-of-the-art meth-
ods in terms of risk adjusted returns by over 13%
and minimizes extreme losses by over 16% (§6.1,
§6.2). Using exploratory analyses (§6.3), we show
PROFIT’s practical and real-world applicability.

2 Background

Reinforcement Learning and Natural Lan-
guage Processing Lately, reinforcement learn-
ing has influenced solutions for a wide variety
of natural language processing tasks and applica-
tions. These include, but are not limited to infor-
mation extraction (Qin et al., 2018), social media
analysis (Zhou and Wang, 2018), text classifica-
tion (Wu et al., 2018a), extractive (Narayan et al.,
2018) and abstractive (Chen and Bansal, 2018) text
summarization, neural machine translation (Wu
et al., 2018b), text-based games (He et al., 2016a;
Ammanabrolu and Riedl, 2019), knowledge-based
question answering (Hua et al., 2020) and much
more. For these tasks and applications, deep rein-
forcement learning methods have been more suc-
cessful in modeling the complexities involved in
natural language, such as the processing of large vo-
cabularies and phrases that otherwise make action
selection (He et al., 2016a,b) arduous for RL meth-
ods that do not exploit deep networks as function
approximators. However, most existing methods
for a variety of tasks face a fundamental drawback
– they do not take into account the influence of the
inherent dynamic temporal irregularities and the
variably influential nature of text while modeling a
time-series of language data over action selection
and sequential decision making.

Reinforcement Learning in Finance Recent
years have witnessed the adoption of reinforcement
learning in the financial realm to solve tasks such as
portfolio management (Filos, 2019; Almahdi and
Yang, 2019), equity asset reallocation (Meng and
Khushi, 2019; Katongo and Bhattacharyya, 2021),
cryptocurrency trading (Jiang et al., 2017; Jiang
and Liang, 2017; Lucarelli and Borrotti, 2019; Ye
et al., 2020) and much more. Existing work heavily
relies on factors such as technical indicators (Wang
et al., 2019; Liu et al., 2020) to model price sig-
nals, or use simple numeric features like sentiment
scores from text (Yang et al., 2018) to model stock
affecting information reflected across news items.
However, these methods experience two significant
drawbacks. Firstly, despite their success, the per-
formance of such methods depend largely on the
quality of external feature representations (for in-
stance, sentence embeddings (Ye et al., 2020)) of
text. Secondly, methods that only use prices exhibit
lower practical applicability to real-world trading,
owing to the lack of information in prices alone.
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3 Problem Description

We formulate stock trading as a reinforcement
learning problem. Let S = {s1, s2, . . . , sN} de-
note a set of N stocks. We aim to design a trading
agent that learns to interact with the stock market
environment by leveraging stock-affecting signals
present across financial news items and tweets to
trade stocks. In the context of an agent, an interac-
tion comprises observing the environment state at
any particular time-step to generate an action, and
reach the next time-step to receive a reward along
with the next state. The typical Markov Decision
Process (MDP) description is widely adopted for
RL tasks where environments are fully-observable.
However, in the stock market, prices are influenced
by numerous macro- and micro-economic factors,
investor opinions about stocks formed through so-
cial media, financial news, and countless other
sources. Thus, it becomes pragmatically and com-
putationally impractical to observe and incorpo-
rate stock affecting information from all possible
sources to make trading decisions. As the stock
markets and the underlying factors that drive stock
prices are not fully-observable, Partially Observ-
able MDP (POMDP) provides a natural general-
ization of the MDP to model the stock trading en-
vironment (Jaakkola et al., 1995). Hence, the key
components of the stock trading environment con-
sidered and developed in this study are as follows:

State observations: At a time-step τ , the state
sτ comprises a trading-account observation oτ ,
and a market-information observation om. The
trading-account observation oτ comprises the ac-
count balance and the number of shares owned
corresponding to each stock at time-step τ . The
market-information observation om comprises
stock-relevant news or tweets released during a
T-day lookback period (days ∈ [τ − T + 1, τ ]).
The text input in om is structured such that it com-
prises all stock relevant text in a lookback window
of length T in a hierarchical fashion within and
across days. The orders made through the trading
actions taken by the reinforcement learning agent
would have minute impacts on the overall market
trends, thus having little to no direct influence on
the market-information observations.

Trading actions: The agent can buy, sell, or hold
the shares for each stock at the time-step τ . We
compute a vector of actions aτ over the set of stocks
S as decisions made by the agent, which result in

an increase, decrease, or no change in the number
of stocks shares h. One of three possible actions is
taken on each stock s:

• Buying k[s] ∈ [1, h[s]] shares results in
hτ+1[s] = hτ [s] + k[s], where k[s] ∈ Z+.

• Holding k[s] ∈ [1, h[s]] shares results in
hτ+1[s] = hτ [s].

• Selling k[s] ∈ [1, h[s]] shares lead to
hτ+1[s] = hτ [s]− k[s].

Note that the trading actions at time-step τ directly
impact the trading-account observation at time-step
τ + 1, oτ+1.

Rewards: We define the reward as the change
in the value when an action is taken at state sτ to
arrive at new state sτ+1. Corresponding to each
state change, we define a return r, as:

r(sτ , aτ , sτ+1) = (bτ+1 + pTτ+1hτ+1)− (bτ + pTτ hτ )− cτ
(1)

where bτ is the account balance, pτ is a vector
that represents the stock prices, hτ denotes the
stock shares in the trading account, and cτ denotes
the transaction costs incurred at time-step τ . To
maximize the earned profit, we aim to design a
reinforcement learning agent that maximizes the
cumulative change r(sτ , aτ , sτ+1).

4 Proposed Approach: PROFIT

We adopt reinforcement learning to optimize prof-
itability in quantitative trading. To this end, we
introduce PROFIT, a deep reinforcement learning
approach for text-based stock trading, as shown in
Figure 2. For this study, we make use of a cus-
tom policy network that hierarchically and atten-
tively learns time-aware representations of news
and tweets to trade stocks. In practice, PROFIT’s
proposed policy network is generalizable across
various actor-critic reinforcement learning methods
that exploit neural networks as function approxi-
mators. Moreover, PROFIT is compatible with any
custom policy network of the same nature that can
handle textual time-series data.

4.1 Deep Reinforcement Learning
We base PROFIT on the Deep Deterministic Pol-
icy Gradient (DDPG) framework (Lillicrap et al.,
2015), which bridges the gap between policy gradi-
ent (Sutton et al., 2000) and value approximation
methods (Watkins and Dayan, 1992) for RL. The
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Figure 2: PROFIT: Trading policy network (top), deep reinforcement learning for stock trading (bottom).

DDPG decouples the trading action selection and
the trading action evaluation processes into two
separate jointly learned networks: the actor net-
work, and the critic network. The actor-network
µ, parameterized by θ, takes the observations at
state sτ as input, and outputs the trading actions aτ .
The critic-network Q, parameterized by φ, takes
the observations at state sτ and trading actions aτ
from the actor as input. It then outputs a scalar
Q(sτ , aτ ) to evaluate the action aτ .

For each state sτ , the agent performs an ac-
tion aτ , receives a reward rτ , and reaches the
next state sτ+1. These transitions represented as
(sτ , aτ , sτ+1, rτ ) are stored in a replay buffer D.
Subsequently, a mini-batch B comprising N tran-
sitions is sampled from D for updating the model.
For each batch B, PROFIT minimizes the follow-
ing loss L with respect to φ to update the critic as:

yτ = rτ + γQφ
′
(sτ+1, µ

θ′(sτ+1)), (2)

L = E[(yτ −Qφ(sτ , aτ ))2] (3)

where yτ is the updated Q-value, γ is a discount
factor, θ and θ′, φ and φ′ are the two copy pa-
rameters of the policy µ and the value function Q,
respectively. The actor is updated using the policy
gradient∇θJ via backpropagation through time as:

∇θJ = E[∇aQφ(sτ , µθ(sτ ))∇θµθ(sτ )] (4)

In the above equations, θ and θ′, φ and φ′ are the
two copy parameters of the policy µ and the value
functionQ, respectively. For a detailed explanation
of the framework, we refer the readers to Lillicrap

et al. (2015). Next, we define the trading policy
network, which takes the observations at state sτ
as input to generate stock trading actions aτ . We
use the same architecture for defining the actor and
the critic networks.

4.2 Trading Policy Network

To generate trading actions, we first learn rep-
resentations for each stock s ∈ S using the T-
day market-information observation om, and the
trading-account observation oτ at the time-step τ .
For this study, we derive inspiration from Hu et al.
(2017); Sawhney et al. (2020, 2021) to design the
policy network. However, it is important to note
that PROFIT is compatible with any general deep
network that is capable of handling time-series of
textual data. We specifically adopt the following
network as it inherently covers a breadth of com-
ponents that are proved beneficial for designing
language-based systems for stock trading.

First, PROFIT’s policy encodes the texts t cor-
responding to a stock s released in a day using
BERT (Devlin et al., 2019). We tokenize and trun-
cate the input text (t) for each news item or tweet
and feed it to BERT. We then aggregate the final
hidden states (the final-layer transformer outputs)
of the input to get the encoded representation (m,
size 768) as as m = BERT(t) ∈ Rd, d=768. We
also experiment with the [CLS] token and other
pooling techniques such as maximum of hidden
states and concatenation of mean and maximum of
hidden states but do not obtain better results.

For each stock s on a day i, a variable number
(K) of tweets (t) are posted at irregular times (k).
LSTMs though able to capture the sequential con-
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text dependencies in text over time, assume inputs
to be equally spaced in time. However, the inter-
vals between release of consecutive news items or
tweets can vary widely, from a few seconds to many
hours, and that can have a drastic impact on their
influence on the market (O’Hara, 2015). Thus, we
use a time-aware LSTM (TLSTM) (Baytas et al.,
2017), to capture the irregularities in the release of
text, and encode them for a stock s on a day i.

All news and tweets in a day might not be equally
informative, and may have diverse influence over
a stock’s trend (Barber and Odean, 2007). We use
an intra-day attention mechanism (Qin et al., 2017)
that allows the trading agent to emphasize texts
likely to have a more substantial impact on price.
The attention mechanism learns to adaptively ag-
gregate the variable number of hidden states of the
t-LSTM into an intra-day text information vector.
We combine these representations across days in a
hierarchical fashion using an LSTM.

We use attention again over the outputs of the
LSTM to obtain a market-information vector pτ
comprising financial signals across tweets or news
items released over the lookback. Lastly, we con-
catenate the trading-account observation oτ at state
sτ , with the market-information vector pτ to form
an overall stock-level representation zτ = [oτ , pτ ].

Trading actions: We concatenate the stock-
representations zτ to form a feature vector Z across
stocks for day τ . We then feed Z to a feed-forward
network, followed by a tanh activation function,
which outputs actions aτ to buy, hold or sell the
shares of each stock s ∈ S at the time-step τ .

5 Experimental Setup

5.1 Datasets and Stock Markets

US S&P 5001 (Xu and Cohen, 2018): Comprises
109, 915 English tweets from the social media plat-
form Twitter spanning January 2014 to December
2015, related to 88 high-trade-volume stocks from
the NASDAQ Exchange forming the S&P 500 in-
dex. NASDAQ is a fairly volatile (Schwert, 2002)
US exchange. The stocks are categorized into
9 industries:2 Basic Materials, Consumer Goods,
Healthcare, Services, Utilities, Conglomerates, Fi-
nancial, Industrial Goods and Technology. Xu and
Cohen (2018) extracted stock specific tweets using

1US S&P 500 dataset: www.github.com/yumoxu/
stocknet-dataset

2https://finance.yahoo.com/industries

regex queries made of stock ticker symbols, for
instance, $AMZN for Amazon, where $ acts as a
cashtag on the platform Twitter).

China & Hong Kong3 (Huang et al., 2018):
Comprises 90, 361 financial news headlines in Chi-
nese. The headlines span January 2015 to De-
cember 2015, and are originally aggregated by
Wind4 from major financial website like Sina5 and
Hexun.6 The news headlines are related to 85
China A-share stocks from the Shanghai, Shen-
zhen and the Hong Kong Stock Exchanges. Huang
et al. (2018) extracted news from major financial
websites covering corporate news across Mainland
China and Hong Kong.

Pre-processing: We pre-process English tweets
using the NLTK7 (Twitter mode), for treatment of
URLs, identifiers (@) and hashtags (#). We adopt
the Bert-Tokenizer for tokenization of tweets. For
the English tweets, we use the pre-trained BERT-
base-cased8 model. For the Chinese news, we
adopt the Chinese-BERT-base8 model, having 12
layers and 110M parameters. We use character-
based tokenization for the Chinese headlines. We
collect prices from Yahoo Finance.9 We align trad-
ing days by dropping data samples that do not pos-
sess tweets for a consecutive 7-day window, and
further align the data across windows for stocks
to ensure that data is available for all days in the
window for the same set of stocks. We split the US
S&P 500 dataset temporally based on date ranges
from January 01, 2014 to July 31, 2015 for training,
August 01, 2015 to September 30, 2015 for valida-
tion, and October 01, 2015 to January 01, 2016 for
testing. We split the China & Hong Kong dataset
temporally based on date ranges from January 01,
2015 to August 31, 2015 for training, September
01, 2015 to September 30, 2015 for validation, and
October 01, 2015 to January 01, 2016 for testing
all models and experiments.

5.2 PROFIT Training Setup
We conduct all experiments on a Tesla P100 GPU.
We use grid search to find optimal hyperparameters
based on the validation Sharpe Ratio (§5.3) for all

3China & Hong Kong dataset: https://pan.baidu.
com/s/1mhCLJJi

4https://www.wind.com.cn/en/wft.html
5http://finance.sina.com.cn/
6http://www.hexun.com/
7https://www.nltk.org/
8www.github.com/google-research/bert
9Prices from: https://finance.yahoo.com/

www.github.com/yumoxu/stocknet-dataset
www.github.com/yumoxu/stocknet-dataset
https://finance.yahoo.com/industries
https://pan.baidu.com/s/1mhCLJJi
https://pan.baidu.com/s/1mhCLJJi
https://www.wind.com.cn/en/wft.html
http://finance.sina.com.cn/
http://www.hexun.com/
https://www.nltk.org/
www.github.com/google-research/bert
https://finance.yahoo.com/
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models. We build the RL agent in Python program-
ming language using PyTorch and employ Ope-
nAI gym to implement the stock trading environ-
ment. We explore the length of the lookback period
T ∈ range[2, 10] days. Across both the datasets, we
obtain that the model best performs for a week-
long lookback – i.e. 7 days. We explore the hid-
den state dimension for both TLSTM and LSTM
d ∈ [32, 64, 128] (we achieve the best performance
for: d = 64, both for the TLSTM and the LSTM)
across both the datasets. We factor the time elapsed
between the successive posting of texts at the com-
mon finest granularity available across the datasets
– i.e. 1 minute intervals. We use the Xavier initial-
ization (Glorot and Bengio, 2010) to initialize all
network weights. We use an exponential learning
rate scheduler (Li and Arora, 2019) with a decay
rate of 0.001 and an initial learning rate of 7e−5.
For each dataset, we train PROFIT using the Adam
optimizer (Kingma and Ba, 2014).

5.3 Evaluation Metrics
To assess the profitability and trading performance
of all methods, we compute the Sharpe ratio
(SR), its variant Sortino Ratio (StR), the Cumula-
tive Return (CR), and the Maximum Drawdown
(MDD). The Sharpe Ratio is a measure of the re-
turn of a portfolio compared to its risk (Sharpe,
1994). We calculate SR by computing the earned
return Ra in excess of the risk-free return10 Rf , de-
fined as: SR =

E[Ra−Rf ]
std[Ra−Rf ] . The Sortino Ratio is a

variation of the Sharpe Ratio, which uses an asset’s
standard deviation of negative portfolio returns
(downside deviation, σd) as: StR =

E[Ra−Rf ]
σd

.
The StR is a useful way to evaluate an investment’s
return for a given level of bad risk, and provides
a better view of the risk-adjusted return – as posi-
tive volatility is essentially considered beneficial.
The CR is the change in the investment over time
and is computed using the initial (b0) and the final
(bf ) account balance as: CR =

bf−b0
b0
∗ 100. The

MDD measures the maximum loss from a peak
rp to a trough rt of a portfolio, and is defined as:
MDD =

rt−rp
rp
∗ 100. Larger values (in magnitude)

of MDD indicate higher volatility. MDD is an in-
dicator used to assess the relative riskiness of one
stock trading strategy versus another, as it focuses
on capital preservation, which is a key concern for
most investors. For instance, two trading strate-
gies may have the same volatility, average outper-

10T-Bill rates: https://home.treasury.gov/

formance, and tracking error, but their maximum
drawdowns compared to the benchmark can differ
drastically. Investors typically prefer the strategy
with lower maximum drawdowns.

5.4 Practical Trading Constrains

The following assumptions and constraints reflect
concerns for practical stock trading. PROFIT ac-
counts for various elements of the trading process
and the financial aspects like transaction costs, mar-
ket liquidity, and risk-aversion (Yang et al., 2020).

Non-negative account balance: Ideally, the al-
lowed trading actions should not result in a negative
account balance. Based on the stock-level actions
generated at time τ , the stocks are divided into sets
for selling, buying, and holding, non-overlapping
sets. The constraint for non-negative balance is
that for any given time step τ , the sum of account
balance bτ ; the money gained through selling the
stocks in set S; and the money spent for acquiring
the stocks in the buying set: should be positive, or
at minimum zero.

Transaction costs: For each trade, various types
of transaction costs such as exchange fees, execu-
tion fees, and SEC fees are incurred. Further, in
practice, different brokers have different commis-
sion fees, and despite these variations, we assume
our transaction costs to be 0.1% of the value of
each trade (either buy or sell).

5.5 Baseline Approaches

We compare PROFIT with baselines spanning
different formulations: regression, classification,
ranking, and reinforcement learning. We follow
the same preprocessing protocols as proposed by
the original works and adopt their implementations,
if available publicly.

Regression (REG) These methods regress return
ratios from past data and trade the top stocks.

• W-LSTM: LSTMs with stacked autoencoders
that encode noise-free data obtained through
wavelet transform of prices (Bao et al., 2017).

• AZFinText: Proper noun-based text representa-
tions fed to Support Vector Regression for fore-
casting returns (Schumaker and Chen, 2009).

Classification (CLF) The following methods
classify movements as [up, down, neutral] and
trade the stocks where prices are expected to rise.

https://home.treasury.gov/
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Formulation US S&P 500 China & Hong Kong
CR↑ SR↑ StR↑ MDD↓ CR↑ SR↑ StR↑ MDD↓

Regression 9.62± 2.16 0.76± 0.21 0.99± 0.40 18.98± 4.56 24.81± 11.56 1.02± 0.29 1.49± 0.37 14.34± 5.63
Classification 10.06± 2.73 0.89± 0.26 1.15± 0.51 19.06± 5.07 25.72± 13.29 1.03± 0.22 1.56± 0.43 15.88± 5.58
Ranking (Sawhney et al., 2021) 21.45± 6.78 0.95± 0.11 1.35± 0.27 16.93± 5.58 33.25± 15.12 1.19± 0.16 1.67± 0.34 10.45± 2.36
Reinforcement Learning 29.64± 8.22 1.03± 0.24 1.87± 0.65 5.01± 4.21 40.88± 13.04 1.29± 0.32 1.99± 0.61 6.78± 6.09

Table 1: Trading performance over different problem formulations (mean of 5 runs). All formulations use the same
base architecture defined in PROFIT’s policy network to model stock affecting text over the lookback period.

• TSLDA: Topic Sentiment Latent Dirichlet Al-
location, a generative model jointly exploiting
topics and sentiments in textual data (Nguyen
and Shirai, 2015).

• StockEmb: Stock embeddings acquired using
prices, and dual vector (word-level vectors and
context-level vectors) representation of texts
(Du and Tanaka-Ishii, 2020).

• SN - HFA: StockNet - HedgeFundAnalyst, a
variational autoencoder with attention on texts
and prices (Xu and Cohen, 2018).

• MAN-SF (text only): BERT based hierarchi-
cal encoder for financial text using hierarchical
temporal attention (Sawhney et al., 2020).

• Chaotic: A Hierarchical Attention Network us-
ing GRU encoders with temporal attention ap-
plied on text within days, and the days in the
lookback period (Hu et al., 2017).

Ranking (RAN) The following methods rank
stocks to select most profitable trading candidates.

• R-LSTM: Utilizes 5-day, 10-day, 20-day, and
30-day averages and closing prices of stocks to
train an LSTM model (Feng et al., 2019).

• RankNet: A DNN that utilizes sentiment-based
shock and trend scores to optimize a probabilis-
tic ranking function (Song et al., 2017).

Reinforcement Learning (RL) The following
approaches optimize quantitative trading through
reinforcement learning.

• iRDPG: An imitative Recurrent Deterministic
Policy Gradient (RDPG) algorithm exploiting
temporal stock price features, while optimizing
the Sharpe Ratio as the reward (Liu et al., 2020).

• AlphaStock: An LSTM based network to
model prices, comprising attention to model
inter-stock cross relations (Wang et al., 2019).

• S-Reward: Inverse reinforcement learning
method to model relations between sentiments
and returns (Yang et al., 2018).

• SARL: A Deterministic Policy Gradient with
augmented states, comprising stock prices and
encoded news (Ye et al., 2020).

6 Results and Discussion

6.1 Stock Trading Problem Formulation
We experiment with four different formulations for
neural stock trading in Table 1. For each formula-
tion, we treat our custom policy trading network as
the base architecture for modeling stock affecting
textual information over the lookback period. We
find that classification and regression formulations
generate relatively low profits compared to others.
This is likely as trades in such methods are not opti-
mized for the overall profit as a reward. Moreover,
another limitation of classification and regression
approaches is that the trading strategy needs to be
defined manually. Next, we find that reinforce-
ment learning provides the best performance as it
allows PROFIT to enjoy a more granular control
over trading actions and learn to optimize the strat-
egy directly for making profitable trades using text.
Further, we also observe that trading under RL for-
mulation experiences the lowest MDD, likely as
the agent has more flexibility in selecting the trades,
which leads to lower losses. Next, we study how
different baseline stock trading networks across the
four formulations perform compared to PROFIT.

6.2 Performance Comparison with Baselines
We now compare PROFIT’s profitability (Sharpe
Ratio) and risk in investment (Maximum Draw-
down) against baseline approaches in Table 2.
PROFIT generates higher risk-adjusted returns and
experiences lower losses than all methods, as we
show in Figure 3. We find methods that incorporate
stock affecting information from textual sources
generate profits higher or comparable to price-only
methods. These results indicate that textual sources
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US S&P 500 China & Hong Kong
Models & Components SR↑ MDD↓ SR↑ MDD↓

R
E

G W-LSTM (Bao et al., 2017) P 0.41 ± 0.15 32.91 ± 7.91 0.49 ± 0.13 30.86 ± 10.98
AZFinText (Schumaker and Chen, 2009) T + P 0.40 ± 0.10 31.46 ± 5.91 0.50 ± 0.09 19.09 ± 1.56

C
L

F

TSLDA (Nguyen and Shirai, 2015) T + P 0.39 ± 0.08 31.72 ± 6.71 0.51 ± 0.12 38.75 ± 15.92
StockEmb (Du and Tanaka-Ishii, 2020) T + P + A 0.51 ± 0.14 22.01 ± 10.87 0.74 ± 0.21 20.19 ± 9.39
SN - HFA (Xu and Cohen, 2018) T + P + A 0.81 ± 0.08 12.15 ± 2.01 0.93 ± 0.09 8.17 ± 1.97
MAN-SF (Text only) (Sawhney et al., 2020) T + A 0.80 ± 0.11 18.09 ± 7.24 1.01 ± 0.15 8.95 ± 6.19
Chaotic (Hu et al., 2017) T + A 0.86 ± 0.21 15.49 ± 5.38 0.95 ± 0.37 18.30 ± 6.44

R
A

N R-LSTM (Feng et al., 2019) P 0.78 ± 0.19 21.42 ± 3.21 0.96 ± 0.05 13.86 ± 4.74
RankNet (Song et al., 2017) T 0.87 ± 0.09 10.40 ± 2.90 0.95 ± 0.10 8.13 ± 1.14

R
L

iRDPG (Liu et al., 2020) P 0.79 ± 0.14 17.71 ± 9.56 1.03 ± 0.28 13.73 ± 5.62
AlphaStock (Wang et al., 2019) P + A 0.71 ± 0.24 11.54 ± 6.91 0.95 ± 0.24 9.96 ± 7.15
S-Reward (Yang et al., 2018) T 0.73 ± 0.16 10.46 ± 7.22 1.08 ± 0.39 13.27 ± 7.32
SARL (Ye et al., 2020) T + P 0.91 ± 0.13 8.38 ± 4.95 1.10 ± 0.19 16.67 ± 7.47
PROFIT (Ours) T + A 1.03 ± 0.24 5.01 ± 4.21 1.29 ± 0.32 6.78 ± 6.09

Table 2: Profitability comparison against baseline approaches (mean of 5 runs) (§5.5). Within Components, T =
Text, P = Prices, A = Attention across modalities. Green and blue depict best and second-best results, respectively.

can augment neural stock prediction, as they po-
tentially help capture classic financial anomalies
such as the over- and under-reaction of asset prices
to news (Bondt and Thaler, 1985; Corgnet et al.,
2013). This observation also follows prior research
that shows financial text are generally better indi-
cators of market volatility, compared to price sig-
nals (Atkins et al., 2018). In general, we observe
that ranking and reinforcement learning methods
generate high returns as they are directly optimized
towards profit generation. Further, reinforcement
learning approaches are typically more profitable
as the trading agents optimize every trading action
for profit generation directly, unlike ranking, where
the task is only to select profitable stocks to trade.
These observations validate the premise of formu-
lating quantitative trading as a reinforcement learn-
ing problem, compared to conventionally adopted
regression and classification formulations.

Despite the 2015-16 Chinese Market Turbulence
Recession11 (Liu et al., 2016), the lower MDD of
PROFIT indicates the trading agent’s ability to re-
spond to bearish markets12, and its performance
is attributable to the following reasons. Amongst
competitive baselines, PROFIT’s policy design dif-
ferentiates it from others, as it captures the hier-
archical dependencies in the news and attentively
learns to emphasize crucial trading indicators dur-
ing such turbulent economies. The attention mecha-
nisms potentially account for financial phenomena
such as the calendar (Jacobs and Levy, 1988) and

11https://www.vox.com/2015/7/8/8908765/
chinas-stock-market-crash-explained

12Bearish markets are those that experience prolonged price
declines, experience high volatility and risk on investments.

0 10 20 30 40 50 60
0.8

1

1.2

1.4

·105

Trading Days (China & Hong Kong, Oct-Dec’15)

C
um

ul
at

iv
e

W
ea

lth
PROFIT RankNet SARL SN-HFA AZFinText

Figure 3: Capital growth (initial $100, 000) through
PROFIT’s trades compared against baseline methods.

the day-of-the-week (Halil, 2001) effects, and bet-
ter distinguish noise inducing text from relevant
market signals to minimize false evaluations and
overreactions (De Long et al., 1989). Further, Jiao
et al. (2020) show that frequent news media cover-
age is an indicator of a decrease in stock volatility.
Through its time-aware mechanism, the agent can
incorporate such frequencies and learn to trade less
volatile stocks to execute low-risk and high-profit
trades even in bearish market scenarios.

6.3 Parameter Analysis: Probing Sensitivity

Lookback period length T Here, we study how
PROFIT’s performance varies with the length of
lookback period T ∈ [2, 10] days in Figure 4. Lower
performance indicates the inability of shorter look-
backs to capture stock affecting market information,
as public information requires time to absorb into
price movements (Luss and D’Aspremont, 2015).
As we increase T , we observe a deterioration in

https://www.vox.com/2015/7/8/8908765/chinas-stock-market-crash-explained
https://www.vox.com/2015/7/8/8908765/chinas-stock-market-crash-explained
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Figure 4: Sensitivity to parameters T and b0

the trading performance. This indicates that larger
lookbacks allow the inclusion of stale information
from older days having relatively lower influence
on prices (Bernhaedt and Miao, 2004). We observe
optimal performance for mid-sized lookbacks.

Initial trading balance b0 To further analyze
PROFIT’s trading performance, we simulate the
cumulative returns for different initial trading
amounts. Financial studies highlight that larger
investments are prone to higher risk (Stout, 1995),
as higher budgets allow increased risk-taking abil-
ities. Ghysels et al. (2005) find significantly posi-
tive relations between larger risk and higher returns
(risk-return tradeoff).13 PROFIT’s performance is
akin to this phenomena as we observe generally
high rewards even for riskier decisions taken on
larger investments, as shown in Figure 4. We at-
tribute PROFIT’s versatility to its policy design that
allows diverse trading choices based on resource
availability. These results indicate that PROFIT
holds practical applicability to investors across di-
verse economic milieus: from individual traders to
larger firms having greater investment margins.

7 Conclusion

We propose PROFIT, a deep RL approach for quan-
titative trading using textual data across online
news and tweets. To model the market informa-
tion, PROFIT hierarchically learns temporally rele-
vant signals from texts in a time-aware fashion, and
directly optimizes trading actions towards profit
generation. Through extensive analyses on English
tweets and Chinese news spanning four markets,
we highlight PROFIT’s real-world applicability. In
trading simulations on the S&P 500 and China A-
shares indexes, PROFIT outperforms baselines in
terms of profitability and risk in investment.

13https://www.investopedia.com/terms/r/
riskreturntradeoff.asp

8 Ethical Considerations

There is an ethical imperative implicit in this grow-
ing influence of automation in market behavior, and
it is worthy of serious study (Hurlburt et al., 2009;
Cooper et al., 2020). Since financial markets are
transparent (Bloomfield and O’Hara, 1999), and
heavily regulated (Edwards, 1996), we discuss the
ethical considerations pertaining to our work. Fol-
lowing (Cooper et al., 2016), we emphasize on
three ethical criteria for automated trading systems
and discuss PROFIT’s design with respect to these
criteria.

Prudent System A prudent system "demands ad-
herence to processes that reliably produce strate-
gies with desirable characteristics such as min-
imizing risk, and generating revenue in excess
of its costs over a period acceptable to its in-
vestors" (Longstreth, 1986). PROFIT is directly
optimized towards profit-generation and minimiz-
ing investor risk by selectively investing in the less
volatile stocks (§6.2), and generates risk-adjusted
returns: Sharpe Ratio, as shown in Table 2.

Blocking Price Discovery A trading system
should not block price discovery and not inter-
fere with the ability of other market participants to
add to their own information (Angel and McCabe,
2013). For example, placing an extremely large
volume of orders to block competitor’s messages
(Quote Stuffing) or intentionally trading with itself
to create the illusion of market activity (Wash Trad-
ing). PROFIT does not block price discovery in
any form.

Circumventing Price Discovery A trading sys-
tem should not hide information, such as by partici-
pating in dark pools or placing hidden orders (Zhu,
2014). We evaluate PROFIT only on public data in
highly regulated stock markets.

Despite these considerations, it is possible for
PROFIT, just as any other automated trading sys-
tem, to be exploited to hinder market fairness. We
follow broad ethical guidelines to design and evalu-
ate PROFIT, and encourage readers to follow both
regulatory and ethical considerations pertaining to
the stock market.
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