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Abstract

When developing topic models, a critical ques-
tion that should be asked is: How well will this
model work in an applied setting? Because
standard performance evaluation of topic inter-
pretability uses automated measures modeled
on human evaluation tests that are dissimilar
to applied usage, these models’ generalizabil-
ity remains in question. In this paper, we probe
the issue of validity in topic model evaluation
and assess how informative coherence mea-
sures are for specialized collections used in an
applied setting. Informed by the literature, we
propose four understandings of interpretability.
We evaluate these using a novel experimental
framework reflective of varied applied settings,
including human evaluations using open label-
ing, typical of applied research. These evalu-
ations show that for some specialized collec-
tions, standard coherence measures may not
inform the most appropriate topic model or
the optimal number of topics, and current in-
terpretability performance validation methods
are challenged as a means to confirm model
quality in the absence of ground truth data.

1 Introduction

Topic modeling has become a popular tool for ap-
plied research such as social media analysis, as
it facilitates the exploration of large document-
collections and yields insights that would not be
accessible by manual methods (Sinnenberg et al.,
2017; Karami et al., 2020). However, social media
data can be challenging to model as it is both sparse
and noisy (Zhao et al., 2011). This has resulted in
increased demand for short-text topic models that
can handle these challenges (Lim et al., 2013; Zuo
et al., 2016; Chen et al., 2015).

Topic word-sets, denoted Tws, are considered to
be semantically related words that represent the la-
tent component of the underlying topic’s document-
collection, denoted Tdc. Meaning is derived from
these topics through the interpretation of either the

Tws (Nerghes and Lee, 2019), the corresponding
Tdc (Maier et al., 2018), or both (Törnberg and
Törnberg, 2016). Since meaning requires topics
to be interpretable to humans, empirical assurance
is needed to confirm a novel topic models’ capac-
ity to generate “semantically interpretable” topics,
as well as a method to guide model selection and
other parameters such as the number of topics, K.
This is often achieved by calculating the coherence
scores for Tws (Lau and Baldwin, 2016)

Recent literature contradicts previous evalua-
tions of some short-text topic models that claim su-
perior interpretability (Li et al., 2018; Eickhoff and
Wieneke, 2018; Bhatia et al., 2017). Such rethink-
ing flows from the fact there is no agreement on the
best measure of interpretability (Lau et al., 2014b;
Morstatter and Liu, 2017) and is compounded by
the unclear relationship between human evaluation
methodologies and automated coherence scores
(Lau et al., 2014b). Finally, despite assurances
of generalizability and applicability, topic model
evaluations in machine learning are conducted in
experimental settings that are not representative
of typical applied use. This raises questions of
whether coherence measures are suitably robust to
measure topic interpretability and inform model
selection in applied settings, particularly with chal-
lenging datasets like that of social media.

Advances in topic modeling for static document-
collections have produced non-parametric ap-
proaches such as HDP-LDA, which employ sophis-
ticated hierarchical priors that allow for different
prior proportions (Teh et al., 2006). Non-negative
matrix factorization (Zhou and Carin, 2015), the
use of word embeddings, and neural network meth-
ods (Zhao et al., 2021) are a few of these other
innovations.

To support these advances, it is crucial to estab-
lish the robustness of topic modeling interpretabil-
ity measures, especially given the growing trend
towards evaluating topic models using coherence
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measures, often in the absence of perplexity or
other predictive scores (?). Additionally, increas-
ingly sophisticated methods for automatic topic
labeling have been developed. Beginning with Lau
et al. (2011), this research relies on models which
generate interpretable topics. While these advances
enhance the technologies available to conduct ap-
plied research, they do not address the underlying
question of whether topic interpretability can be
adequately assessed using coherence measures.

In this paper, we demonstrate a research gap in
topic model evaluation methods in light of their
growing use in specialized settings. Previously de-
clared state-of-the-art models are under-performing
in applied settings (Li et al., 2018; Arnold et al.,
2016), and little work has been done to improve
application relevance (Hecking and Leydesdorff,
2019). Following the work of (Lau and Baldwin,
2016; Bhatia et al., 2017; Hecking and Leydesdorff,
2019), this study examines whether coherence is a
valid predictor of topic model interpretability when
interpretability is defined as more than just the abil-
ity to label a Tws, and as the diversity of topic
models, datasets and application tasks increases.

Earlier research has established a correlation be-
tween novel coherence measures and human rank-
ing of interpretability, as measured by qualitative
tests (Cheng et al., 2014; Newman et al., 2010a).
However, since bounded experimental settings con-
strain these tests, they are unlikely to reliably and
consistently indicate topic quality in applied re-
search settings. As a result, we ask the following
question: To what extent can we rely on current
coherence measures as proxies for topic model in-
terpretability in applied settings?

This work has significant practical implications.
It signals the need to re-develop interpretability
measures and reappraise best-practice for validat-
ing and evaluating topic models and their applica-
tions. Our research contributes the following:

1. Introduces a novel human-centered qualita-
tive framework for evaluating interpretability
in model development that mimics those pro-
cesses seen in applied settings.

2. Demonstrates that the ranking of topic quality
using state-of-the-art coherence measures is
inconsistent with those produced through vali-
dation tasks performed in an applied setting.

3. Systematically quantifies the impact of model
behavior, dataset composition, and other pre-

viously reported factors (Morstatter and Liu,
2017; Lau and Baldwin, 2016), on coherence
measures for many topics across four variant
datasets and two topic models.

4. Provide evidence to show that interpretability
measures for evaluating Tws and Tdc for ap-
plied work in specialized contexts (e.g., Twit-
ter) are ill-suited and may hinder model devel-
opment and topic selection.

The remainder of this paper is organized as follows.
Section 2 provides a review of related work around
the interpretability of topic models. Section 3 de-
scribes five propositions that have informed the
design of interpretable topic models and their eval-
uation measures. This is followed by a description
of the experimental framework we designed to test
these propositions. Section 4 provides the results
of these evaluations and Section 5 contains a dis-
cussion of findings.

2 Background

This section provides a brief overview of work re-
lated to interpretability evaluation, followed by a
review of the challenges associated with coherence
optimization for specialized contexts.

2.1 Topic Model Interpretability
Topic model interpretability is a nebulous concept
(Lipton, 2018) related to other topic model quali-
ties, but without an agreed-upon definition. Mea-
sures of semantic coherence influence how easily
understood the top-N Tws are (Morstatter and Liu,
2017; Lund et al., 2019; Newman et al., 2010a;
Lau et al., 2014b). This is also referred to as topic
understandability (Röder et al., 2015; Aletras et al.,
2015).

A coherent topic is said to be one that can be
easily labeled and thus interpreted (Newman et al.,
2011; Morstatter and Liu, 2017), but only if the
label is meaningful (Hui, 2001; Newman et al.,
2010b,a). Some have modeled coherence measures
based on topic meaningfulness (Lau et al., 2014a);
others state that a meaningful topic is not neces-
sarily a useful one (Boyd-Graber et al., 2015). In-
deed, the literature remains divided over whether
usefulness is a property of an interpretable topic
(Röder et al., 2015), or if interpretability is a prop-
erty of a useful topic (Aletras and Stevenson, 2013;
Newman et al., 2010b). Such terminological dis-
agreement suggests that there are challenges to the
progression of this area of research.
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The ease of labeling a topic is assumed to be
an expression of how coherent that topic is and
thus its degree of interpretability. This assump-
tion is challenged when annotators provide differ-
ent labels for a topic. Morstatter and Liu (2017)
presented interpretability from the perspective of
both coherence and consensus, where consensus
is a measure of annotator agreement about a top-
ics’ representation in its Tdc. Alignment is how
representative a topic is of its Tdc and is another
understanding of interpretability (Ando and Lee,
2001; Chang et al., 2009; Mimno et al., 2011; Bha-
tia et al., 2017; Alokaili et al., 2019; Morstatter and
Liu, 2017; Lund et al., 2019). However, the proba-
bilistic nature of topic models impede this measure.
The ambiguity of interpretability as a performance
target raises questions about how topic models are
used and evaluated.

2.2 Related Work

Following the seminal work of Chang et al. (2009),
the development of coherence measures and the
human evaluation tasks that guide their design has
been actively pursued (Newman et al., 2010a; Bha-
tia et al., 2017, 2018; Morstatter and Liu, 2017;
Lau and Baldwin, 2016; Lund et al., 2019; Alokaili
et al., 2019). Newman et al. (2010a) showed that
human ratings of topic coherence (observed co-
herence) correlated with their coherence measure
when the aggregate Pointwise Mutual Information
(PMI) pairwise scores were calculated over the
top-N Tws. In addition to the word intrusion task
(Chang et al., 2009), Mimno et al. (2011) validated
their coherence measure for modeling domain-
specific corpora using expert ratings of topic qual-
ity. The measure takes the order of the top-N Tws

into account using a smoothed conditional proba-
bility derived from document co-occurrence counts.
This performance was further improved by substi-
tuting PMI for Normalized PMI (CNPMI) (Aletras
and Stevenson, 2013; Lau et al., 2014b). Aletras
and Stevenson (2013) used crowdsourced ratings of
topic usefulness to evaluate distributional semantic
similarity methods for automated topic coherence.
Röder et al. (2015) conducted an exhaustive study
evaluating prior work and developing several im-
proved coherence measures.

Similarly, Ramrakhiyani et al. (2017) made use
of the same datasets and evaluations and presented
a coherence measure which is approximated with
the size of the largest cluster produced from embed-

dings of the top-N Tws. Human evaluation tasks
have also been created to measure how representa-
tive a topic model is of the underlying Tdc (Chang
et al., 2009; Bhatia et al., 2017; Morstatter and Liu,
2017; Alokaili et al., 2019; Lund et al., 2019).

2.3 Practical Applications

Within computer science, topic modeling has been
used for tasks such as word-sense disambiguation
(Boyd-Graber and Blei, 2007), hierarchical infor-
mation retrieval (Blei et al., 2003), topic correla-
tion (Blei and Lafferty, 2007), trend tracking (Al-
Sumait and Domeniconi, 2008), and handling short-
texts (Wang et al., 2018). Outside of computer
science, topic modeling is predominantly used to
guide exploration of large datasets (Agrawal et al.,
2018), often with a human-in-the-loop approach.
Here topics are generated before some form of
qualitative method is used to gain insights into
the data. These methods include exploratory con-
tent analysis (Korenčić et al., 2018), critical dis-
course analysis (Törnberg and Törnberg, 2016),
digital autoethnography (Brown, 2019), grounded
theory (Baumer et al., 2017), and thematic analysis
(Doogan et al., 2020; Andreotta et al., 2019).

Qualitative techniques make use of topics in dif-
ferent ways. “Open labeling” of topics by Subject
Matter Experts (SME) is followed by a descriptive
analysis of that topic (Kim et al., 2016; Morstat-
ter et al., 2018; Karami et al., 2018). However,
this method is subjective and may fail to produce
the depth of insight required. Supplementing a
topic analysis with samples from the Tdc increases
the depth of insight (Eickhoff and Wieneke, 2018;
Kagashe et al., 2017; Nerghes and Lee, 2019). Al-
ternatively, the Tdc alone cam be used for in-depth
analysis (Törnberg and Törnberg, 2016). However,
human evaluation tasks that require open labeling
are not generally used to validate new coherence
measures (O’Callaghan et al., 2015; Korenčić et al.,
2018).

3 Evaluating Interpretability

We have generated five propositions about the rela-
tionship between coherence scores, human evalua-
tion of topic models, and the different views of in-
terpretability to explore the research question. We
conduct five experiments to interrogate these propo-
sitions and re-evaluate how informative coherence
measures are for topic interpretability. Because
we are evaluating existing coherence measures, we
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do not employ automatic topic labeling techniques.
Instead, we make use of human evaluation tasks
that reflect those conducted in applied settings.

Proposition 1. If coherence scores are robust, they
should correlate. The battery of coherence mea-
sures for evaluating novel topic models and auto-
mated labeling approaches are inconsistent across
the literature. Each new measure claims superior
alignment to topic model interpretability. As these
measures are evolutionary (Röder et al., 2015), and
there is no convention for which measure should
be used, particularly as a standard measure of qual-
itative performance (Zuo et al., 2016; Zhao et al.,
2017; Zhang and Lauw, 2020), they are consid-
ered notionally interchangeable. Thus, we would
expect that there would be some correlation be-
tween these measures. However, previous studies
have not considered the impact that the data type
or model has on the coherence scores. Particularly
for non-parametric models, these issues may be
compounded by how coherence measures are pre-
sented as an aggregate, e.g., The presentation of the
top-N models. Indeed, studies reporting multiple
coherence measures have demonstrated inconsis-
tencies at the model-level that are obscured during
reporting (Blair et al., 2020).

Proposition 2. An interpretable topic is one that
can be easily labeled. How easily a topic could
be labeled has been evaluated on an ordinal scale
where humans determined if they could hypothet-
ically give a topic a label (Mimno et al., 2011;
Morstatter and Liu, 2017). However, humans are
notoriously poor at estimating their performance,
particularly when they are untrained and do not
have feedback on their performance (Dunning et al.,
2003; Morstatter and Liu, 2017). Thus, a rater’s
perception of whether they could complete a task
is actually less informative than having them com-
plete the task.

Proposition 3. An interpretable topic has high
agreement on labels. Agreement on a topic la-
bel is considered a feature of interpretability by
Morstatter and Liu (2017), who propose “consen-
sus” as a measure of interpretability. A high level
of agreement on topic labels, particularly in crowd-
sourcing tasks, is seen as a means to infer that a
Tws is interpretable. However, in applied tasks, a
topic is described in a sense-making process result-
ing in one coherent label. Thus, the consensus task
is not necessarily a reasonable means to infer inter-

pretability. A robust way to measure agreement on
a topic label is needed. Inter-coder reliability (ICR)
measures are an appropriate means to achieve this.

Proposition 4. An interpretable topic is one where
the document-collection is easily labeled. The
investigation of topic document-collections is an
emerging trend in the applied topic modeling liter-
ature. In these studies, authors have either used a
topics “top documents” to validate or inform the
labels assigned to Tws (Kirilenko et al., 2021), or
have ignored the Tws in favor of qualitative analy-
sis of the richer Tdc (Doogan et al., 2020). The use
of topic modeling for the exploration of document-
collections requires a Tdc to be coherent enough
that a reader can identify intertextual links between
the documents. The label or description given to
the Tdc results from the readers’ interpretation of
individual documents relative to the other docu-
ments in the collection. Tdc that have a high degree
of similarity between their documents will be eas-
iest to interpret and therefore label. The ease of
labeling a Tdc decreases as the documents become
more dissimilar.

Proposition 5. An interpretable topic word-set is
descriptive of its topic document-collection. The
alignment of Tws to Tdc is an expected property
of a “good” topic (Chang et al., 2009), which hu-
man evaluation tasks have been developed to as-
sess. Typically these tasks ask annotators to choose
the most and/or least aligned Tws to a given docu-
ment (Morstatter and Liu, 2017; Lund et al., 2019;
Alokaili et al., 2019; Bhatia et al., 2018), identify
an intruder topic (Chang et al., 2009; Morstatter
and Liu, 2017), rate their confidence in a topic-
document pair (Bhatia et al., 2017), or select appro-
priate documents given a category label (Aletras
et al., 2017). However, none of these methods ad-
dress the need for the topic document-collection to
be evaluated and labeled. Furthermore, they gener-
ally use one document and/or are not comparable
to applied tasks.

3.1 Data

The Auspol-18 dataset was constructed from
1,830,423 tweets containing the hashtag #Auspol,
an established Twitter forum for the discussion of
Australian politics. The diminutives, slang, and
domain-specific content provide a realistic exam-
ple of a specialized context. Four versions of the
dataset were constructed from a subset of 123,629
tweets; AWH (contains the 30 most frequent hash-
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tags), AWM (contains the 30 most frequent men-
tions of verified accounts), AWMH (contains the
30 most frequent hashtags and 30 most frequent
mentions of verified accounts), and AP (contains
neither hashtags nor mentions). Pre-processing
included stopword removal, POS-tagging, lemma-
tization, exclusion of non-English tweets, dupli-
cate removal, removal of tokens with a frequency
n < 10, and removal of tweets with n < 5 to-
kens, and standardization of slang, abbreviations
(Agrawal et al., 2018; Doogan et al., 2020) 1.

3.2 Models and Parameters

To investigate interpretability in an applied setting,
we compare LDA to MetaLDA (Zhao et al., 2017),
a recent non-parametric topic model designed to
improve short-text topic modeling by leveraging
the incorporation of the document and word meta-
information using word embeddings as well as non-
parametrically learning topic proportions. Despite
the many extensions to LDA, the vanilla model
maintains popularity among applied researchers
(Sun et al., 2016), and as the baseline model, it is
necessary to compare LDA with a model purpose-
built for short-text applications. MetaLDA is one
reasonable representative of such models and has
demonstrated effectiveness on Twitter data for ap-
plied work (Doogan et al., 2020). The extensive
effort of human labeling in our experiments (see
Section 3.4) precludes us from adding more models.
LDA and MetaLDA are available in the MetaLDA
package2, which is implemented on top of Mallet
(McCallum, 2002).

Default parameter settings were used for both
LDA and MetaLDA. We use Glove2Vec em-
beddings trained on the Wikipedia corpus (Pen-
nington et al., 2014) for MetaLDA. We con-
structed topic sets with the number of topics K =
{10, 40, 20, 60, 80, 100, 150, 200}.

3.3 Coherence Measures

Several coherence measures were evaluated. These
were CUmass (Mimno et al., 2011), CV, CP (Röder
et al., 2015), CA and CNPMI (Aletras and Steven-
son, 2013). These were calculated for each topic
using the Palmetto package3 using the top ten most
frequent words. Along with the default CNPMI,
which is calculated using Wikipedia, we introduced

1Tweet IDs and pre-processing details are available at:
https://github.com/wbuntine/auspoldata

2https://github.com/ethanhezhao/MetaLDA
3http://aksw.org/Projects/Palmetto.html

CNPMI-ABC, which is calculated using a collection
of 760k Australian Broadcasting Company (ABC)
news articles4 with 150 million words (enough to
make the CNPMI scores stable), and CNPMI-AP cal-
culated using the AP dataset and is used to test
CNPMI but with statistics drawn from the training
data. We report the average scores and the standard
deviations over five random runs.

3.4 Qualitative Experiments

A primary concern in machine learning research
is the need to establish model performance. Fol-
lowing the recent trend to analyze Tdc, we devised
qualitative tests for the assessment of whether the
Tws and Tdc were adequately aligned and whether
current performance measures are informative of
this alignment. We also tested to see if there is a
relationship between topic alignment and the topic
diagnostic statistics; effective number of words5,
and topic proportion, denotedDew andDtp, respec-
tively.

Topic Word-sets: Four SMEs were recruited from
a multidisciplinary pool of researchers who were
representative of the political-ideological spectrum
and who were Australian English speakers. They
were shown the same topics consisting of the top-
10 words ranked by term frequency that were gen-
erated by LDA and MetaLDA on AP, AWH, and
AWM for K=10–60 topics6, producing a total of
3,120 labels (780 for each SME) generated for the
390 topics (130 per model-dataset combination).
Their task was to provide a descriptive label for
each Tws and to use ‘NA’ if they were unable to
provide a label. Appendix A provides an exam-
ple of this task. Two measures were constructed
from these labels. The first was the number of
raters able to label the topic, a count between 0–4
denoted Qnbr. The second was a simple ICR mea-
sure, Percentage Agreement denoted Qagr, which
calculated as the number of times a set of annota-
tors agree on a label, divided by the total number
of annotations, as a percentage.

Topic Document-collections: Two SMEs ana-
lyzed the Tdcs of the 60 topics each modeled by
LDA and MetaLDA on the AP dataset, referred to
hereafter as the qualitative set. Samples of Tdc gen-
erated by each model (K=10–60) were reviewed,
and those generated from both models 60-topic sets

4http://www.abc.net.au/news/archive
5For word proportion vector ~p, this is e−Entropy(~p).
6The AWMH dataset was not included.
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were found to be of equal or higher quality than
those produced by other values of K.

The SMEs reviewed the top-30 tweets represen-
tative of a topic and provided a label for each tweet.
They then inductively determined a label or phrase
describing that Tdc. They noted any key phrases,
names, or other terms that were consistent across
the collection. The SMEs were experienced at an-
notating such datasets and were familiar with the
online #Auspol community. The SMEs then dis-
cussed the results together and agreed on a final
label for each Tdc.

The SMEs were asked to rate on a scale of 1–3
how difficult it was to label each Tdc, where 1 was
difficult, 3 was easy, and 0 was where a label could
be assigned. This qualitative statistic is denoted
Qdif . The researchers then scored, on a scale of
1–5, the degree of alignment between topic labels
and the labels assigned to their corresponding col-
lections. A score of 5 indicated the labels were
identical, and a score of 0 indicated the Tws and/or
Tdc was incoherent. This statistic is denoted Qaln.
Examples of these tasks are in Appendix A.

3.5 Statistical Tests

We measure the strength of the association between
variables using Pearson’s r correlation coefficient
in evaluation 1 (see section 4.1) and Spearman’s ρ
correlation coefficient in evaluations 2–5 (see sec-
tions 4.2, 4.3, 4.4, and 4.5). Pearson’s r is used in
the few papers that evaluate coherence scores over
the same datasets (Röder et al., 2015; Lau et al.,
2014b). The practical reason for using Pearson’s
r for our evaluation of proposition 1 was to make
valid comparisons with these studies. The statisti-
cal justification for using Pearson’s r (rather than
Spearman’s ρ) is that the datasets are continuous
(neither is ordinal, as Spearman’s ρ requires) and
believed to have a bivariate normal distribution.7

Spearman’s ρ is only appropriate when the relation-
ship between variables is monotonic, which has
not been consistently demonstrated for coherence
(Röder et al., 2015; Bovens and Hartmann, 2004).
Spearman’s ρ is appropriate to assess the associ-
ation between coherence scores and human judg-
ments in evaluations 2–5 8. It is a preferred method

7We confirmed this with a Kolmogorov-Smirnov test for
normality on the coherence scores.

8Although Kendall’s τ has been used for similar evalu-
ations (Rosner et al., 2013), it is unreliable when the range
of each dataset varies significantly as in these experiments
(Sanderson and Soboroff, 2007).

for such tasks(Aletras and Stevenson, 2013; New-
man et al., 2010a) as it is unaffected by variability
in the range for each dataset (Lau et al., 2014b).

4 Results

Here we detail the results of our analysis of the five
propositions about interpretability evaluation.

4.1 Evaluation 1: Coherence Measure
Correlations

As per proposition 1, coherence measures should
be robust and highly correlated. To test this proposi-
tion, we conducted a Pearson’s correlation analysis
of paired coherence measures calculated forK=10–
60 for each model-dataset combination. Pooling
the results for K and the three datasets, we calcu-
late the xr for LDA and MetaLDA.

CNPMI and CP scores were strongly correlated
for all datasets. Ranging from xr=0.779–0.902
for LDA, and xr=0.770–0.940 for MetaLDA.
CNPMI and CNPMI-ABC also showed a moderate-
to-strong correlation for all datasets with LDA
ranging from xr=0.719–0.769, and MetaLDA from
xr=0.606–0.716. CNPMI-ABC appears more sensi-
tive to changes in K than CP. No significant trends
were seen between other coherence measures cal-
culated for any dataset. These results are reported
in Appendix B.

Methods to aggregate coherence scores may
mask any differences in the models’ behaviors as
K increases. To test this, aggregate coherence mea-
sures, typical of the empirical evaluation of topic
models, were calculated per value of K. These
were the mean of all topics (Average), the mean
for all topics weighted by the topic proportion
(WeightedAverage), and the mean of the Top-N
percent of ranked topics by coherence score (Top-
Npcnt), where N = {25, 50, 80}.

Both models showed trends in aggregated co-
herence scores calculated on the AP dataset. As
shown in Figure 1, the peak for each measure varies
according to different values of K and between
models. For instance, aggregates of both models
CNPMI and CNPMI-ABC peak at 60 and 10 topics,
respectively. However, CV aggregate peaks are
completely divergent between models, K=200 for
MetaLDA and K=50 for LDA. Indeed, the two
models favored different coherence measures and
aggregate methods. Generally, MetaLDA exhibits
superior performance across all aggregates for
CV and CA, while LDA is superior for CUmass. No-
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Figure 1: Comparison of LDA (triangle) and MetaLDA
(circle) aggregated coherence scores for the AP dataset.
Scores are shown on the y-axis, and K is shown on the
x-axis. Individual points are averaged across five runs,
where the typical sample standard is 0.005, but up to
0.010 for K=20.

tably, MetaLDA shows superior CNPMI, CNPMI-ABC,
CNPMI-AP scores for Top20pcnt, Top50pcnt, and
Top80pcnt aggregations, but is inferior when the
full average of these scores is calculated. Other
datasets are broadly similar and shown in Ap-
pendix B.

We also compare MetaLDA with LDA. Pool-
ing the results for K=10–200 for each of the four
datasets, we get a set of differences in the scores
and compute the p-value for a one-sided student
t-test to determine whether LDA has higher aver-
age coherence scores than MetaLDA. MetaLDA
yields significantly higher CNPMI scores calculated
using the Top20pcnt (p<0.01) and Top50pcnt of
topics (p<0.05). Conversely, LDA yields signifi-
cantly higher CNPMI scores for the other aggregates
(p<0.01). Except for the full average, MetaLDA
achieves significantly higher (p<0.01) CNPMI-ABC,
CNPMI-AP, and CV scores than LDA for the other
aggregate methods.

Disturbingly, the “best” models, or optimal K
varies depending on the coherence measure and the
aggregate measure used to calculate it. This has
implications for topic model selection in applied
settings, where coherence is used to inform K (Kir-
ilenko et al., 2021). When repeating the analysis
using different K, a second trend emerges: Met-

aLDA significantly outperforms LDA in CNPMI for
smaller K on average but loses out for larger K.
Results from our qualitative analysis confirmed this
occurred because LDA had many less frequent top-
ics (e.g., when K = 60, all topics occur about 1/60
of the time), unlike MetaLDA, which mixes more
and less frequent topics.

4.2 Evaluation 2: Labeling Topic Words-sets
Proposition 2 states that if topics can be labeled
they are interpretable. Coherence as a measure of
interpretability should then be predictive of topics
that can be labeled. To evaluate this proposition,
a Spearman’s ρ correlation coefficient was used
to assess the relationship between coherence mea-
sures and the number of raters able to label the
Tws, Qnbr, for each of the 130 topics produced
per model-dataset combination. These results are
available in Appendix C. There was no significant
correlation between any coherence measure and
Qnbr. Interestingly, the SMEs reported several top-
ics they could not label despite their high coherence
scores. For instance, the LDA modeled topic “red,
wear, flag, blue, gold, black, tape, tie, green, iron”
could not be labeled despite being the 9th/60 high-
est ranked topic for CNPMI.

4.3 Evaluation 3: Topic Label Agreement
Proposition 3 states an interpretable topic is one
where there is high agreement between annotators
on its label. As such, coherence should align to
measures of consensus or agreement. To evaluate
this proposition, we calculate the gold-standard
ICR measures, Fleiss’ kappa (κ) (Fleiss, 1971)
and Krippendorff’s alpha (α) (Krippendorff, 2004).
Both allow for multiple coders and produce a
chance-corrected estimate of ICR but do not fa-
cilitate the isolation of low-agreement topics. For
this, we also calculated the Percentage Agreement
Qagr for each topic, as shown in Appendix D.

Generally, α, κ, and Qagr improved as K in-
creased. As shown in Table 1, LDA consistently
outperformed MetaLDA when K=60 across all
three datasets and generally attained higher α,
κ, and Qagr scores than MetaLDA. There was a
moderate-to-strong agreement between SMEs, a
reliable result for an open labeling task (Landis and
Koch, 1977). However, the performance of each
model was notably affected by the datasets. LDA
outperformed MetaLDA on the AP dataset across
all three measures except for κ when K=20, and
for Qagr when K=10. Except for κ when K=40,



3831

MetaLDA achieved higher or comparable scores
to LDA on the AWH dataset when K=20–40, but
outperformed LDA only when K=10–20 on the
AWM dataset.

Kripp. α Fliess κ Pcnt.Qagr

LDA Meta LDA Meta LDA Meta
AP 0.584 0.486 0.578 0.485 0.503 0.492

AWH 0.512 0.498 0.527 0.515 0.439 0.411
AWM 0.513 0.447 0.535 0.492 0.428 0.369

Table 1: Krippendorff’s α, Fleiss’ κ, and Qagr ICR
statistics for topic labeling when K=60.

Spearman’s ρ was calculated to measure the
strength of the relationship between Qagr and the
generated coherence measures. As shown in Ap-
pendix D, results were random with no significant
correlations. As shown in Table 2, there was a sta-
tistically significant correlation between Qagr and
Qnbr when K=60.

LDA 10 20 40 60
ρ p ρ p ρ p ρ p

AP 0.240 0.504 0.548 0.012 0.431 <0.01 0.475 <0.01
AWH 0.000 0.000 0.458 0.042 0.561 <0.01 0.644 <0.01
AWM 0.506 0.136 0.345 0.136 0.490 <0.01 0.697 <0.01
Meta 10 20 40 60
LDA ρ p ρ p ρ p ρ p
AP 0.544 0.104 0.147 0.535 0.445 <0.01 0.690 <0.01

AWH 0.532 0.113 0.478 0.033 0.147 0.366 0.629 <0.01
AWM 0.548 0.101 0.414 0.069 0.743 <0.01 0.700 <0.01

Table 2: The Spearman’s ρ correlation coefficients for
pairwise combinations ofQagr andQnbr for all learned
models.

Coherence measures did not correlate with Qagr,
and in some cases, were contradictory. For ex-
ample, Qagr generally increases with K (and our
experts reported that labeling was often easier for
smaller topics), but coherence measures such as
CA and CNPMI-ABC tended to decrease (in Figure 1).
These results show that the two models show dif-
ferent sensitivities to dataset preparation and the
value of K.

4.4 Evaluation 4: Labeling Topic
Document-collections

Proposition 4 states that topics that are interpretable
have a Tdc that is easily labeled. To evaluate this
proposition, a Spearman’s ρ was used to assess
the relationship between coherence measures and
SME ratings of Tdc labeling difficulty, Qdif . The
full set, Top25pcnt, top50pcnt, and bottom 15%
(Bot15pcnt) of ranked Qdif scores were analyzed.
The only notable correlation was between the
Bot15pcnt of LDA Tdc for CNPMI-ABC (ρ=-0.817,

p=<0.01). Interestingly, when ranked by topic di-
agnostic Dew, the Top25pcnt and Top50pcnt of
Tdcs showed moderate correlation with Qdif for
MetaLDA (ρ=-0.764, p<0.01; ρ=-0.630, p<0.01).

A repeat analysis with topic diagnostic Dtp did
not yield any statistically significant results. How-
ever, we observed that for Tdcs produced by Met-
aLDA, the three largest and three smallest top-
ics could not be labeled. By contrast, the LDA
Tdcs that were not interpretable were from the
smallest 20% of topics. We hypothesize that this
distinction results from MetaLDA’s broadly dis-
tributedDtp (0.017±0.155), which features several
very large and very small topics. By comparison,
LDA Dtp is approximately uniformly distributed
(0.017± 0.001).

4.5 Evaluation 5: Topic Label Alignment

Proposition 5 states that an interpretable topic is
one that is descriptive of the Tdc. To test this propo-
sition, we constructed an alignment score Qaln,
which rate the similarity between the standardized
topic label from Tws and the label from Tdc. Simi-
lar to the evaluation of Proposition 4, we conducted
a Spearman’s ρ to test for a relationship between
Qaln, coherence measures, and diagnostic scores.

The following illustrates a high scoring, but
poorly aligned topic with a CNPMI of 0.073. Tws:
“law, bill, power, gun, democracy, control, freedom,
rule, protect, legislation” was labeled “Gun con-
trol”, but the Tdc was labeled “Foreign Interference
Act”. Appendix F contains additional examples.

LDA showed a strong relationship between
Qaln and CNPMI-ABC for the Top25pcnt of topics
(ρ=0.825, p<0.01), but the relationship was weak
for other coherence measures. No coherence mea-
sures were correlated with MetaLDA Qaln scores.

As per section 4.4, we repeated the analysis
by ranking topics by Dew. MetaLDA showed
a strong-to-moderate correlation between Dew

and Qaln for the Top25pcnt (ρ=-0.776, p=<0.01),
Top50pcnt (ρ=-0.646, p<0.01), and Bot15pcnt
(ρ=0.693, p=0.039) of topics, making Dew a poten-
tially useful proxy for alignment for MetaLDA.

5 Discussion

We repeated the work of Zhao et al. (2017), who
demonstrated that when the top-ranked topics by
CNPMIare considered, MetaLDA produces higher
CNPMIscores than LDA. However, when CNPMIwas
measured using alternative aggregate methods, we
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discovered that LDA outperformed MetaLDA. This
is likely to be because the smaller topics in Met-
aLDA can be effectively ignored or scrapped, while
in LDA, all topics are of comparable size and are
used by the model. Other non-parametric topic
models are belived to behave similarly. While
MetaLDA generated higher CNPMI-ABC scores than
LDA for all aggregates, it was highly dependent
on dataset heterogeneity and the value of K. This
should indicate that MetaLDA is more adaptive to
specialized language, an effect expected in other
topic models supported by word embeddings.

The comparative performance of coherence mea-
sures can vary significantly depending on the ag-
gregate calculation method used and the way the
data has been prepared. This latter point has been
well established in the literature, most notably for
Twitter data (Symeonidis et al., 2018), but is often
overlooked when evaluating novel topic models.
This is a cause for concern, given the growing re-
liance on coherence measures to select the optimal
model or K in applied settings (Xue et al., 2020;
Lyu and Luli, 2021).

Propositions 2 and 3 addressed Tws interpretabil-
ity. We have demonstrated the difference between
comprehending a topic and providing a topic label
that is both informative and reliable. However, co-
herence measures may not be informative of these
qualities. Propositions 4 and 5 addressed Tdc in-
terpretability. We have demonstrated that the ease
of labeling a Tdc and the alignment between Tws

and Tdc does not correlate with coherence mea-
sures. Additionally, we identified several areas for
future research into the use of diagnostic statis-
tics in applied settings. We observed unexpected
behaviors in the distributions of Dew and Dtp af-
ter a comparative analysis between LDA and the
non-parametric model MetaLDA, affecting the in-
terpretability of both Tws and Tdc. Correlations
between Qdif/Qaln and Dew/Dtp for MetaLDA,
for example, indicate that these topic diagnostics
could assist in evaluating Tdc interpretability.

6 Conclusion

We have shown that coherence measures can be un-
reliable for evaluating topic models for specialized
collections like Twitter data. We claim this is be-
cause the target of “interpretability” is ambiguous,
compromising the validity of both automatic and

human evaluation methods9.
Due to the advancements in topic models, co-

herence measures designed for older models and
more general datasets may be incompatible with
newer models and more specific datasets. Our ex-
periments show that non-parametric models, such
as MetaLDA, which employs embeddings to im-
prove support for short-texts, behaves differently
to LDA for these performance and diagnostic mea-
sures. This is critical because recent research has
focused on sophisticated deep neural topic mod-
els (Zhao et al., 2021), which make tracing and
predicting behaviors more challenging. Abstractly,
we may compare the use of coherence measures
in topic modeling to the use of BLEU in machine
translation. Both lack the finesse necessary for a
complete evaluation, as is now the case with BLEU
(Song et al., 2013).

Additionally, our study demonstrated that an ex-
amination of the Tdc could provide greater insights
into topic model behaviors and explained many of
the observed problems. We argue for the represen-
tation of topics as a combination of thematically
related Tdc and Tws, and the further adoption of
empirical evaluation using specialized datasets and
consideration of Tdc interpretability. To date, few
papers have attempted this combination (Korenčić
et al., 2018).

However, we believe coherence measures and
automated labeling techniques will continue to play
a critical role in applied topic modeling. Contex-
tually relevant measures like CNPMI-ABC and topic
diagnostics like Dew can be key indicators of inter-
pretability. Aside from the empirical evaluation
of novel topic models, new automated labeling
techniques, having proven themselves useful for
labeling Ttw, should be extended for Tdc.
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APPENDIX: Topic Model or Topic Twaddle? Re-evaluating Semantic
Interpretability Measures
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A Examples of tasks for Qualitative Experiments

Topic word-set labeling

Figure 2: Example of topic word-set labeling task. Topic 40 from AP modeled on LDA.
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Topic document-collection labeling

Figure 3: Example of topic document-collection labeling task. Only the top 10 tweets have been shown
for brevity.
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Difficulty of topic document-collection labeling

Figure 4: Example question asking SME to rate how difficult it was to label a topic document-collection.
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Topic word-set and topic document-collection label alignment

Figure 5: Example question asking SME to rate how aligned a topic word-set label was to topic document-
collection label.
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B Evaluation 1: Coherence Measures

Pearson’s correlation coefficients between paired coherence measures

LDA 10 20 40 60
AP ρ p ρ p ρ p ρ p

CNPMI and CNPMI-ABC 0.671 0.034 0.749 < 0.01 0.762 < 0.01 0.727 < 0.01
CNPMI and CUmass 0.661 0.037 0.752 < 0.01 0.579 < 0.01 0.447 < 0.01

CNPMI and CNPMI-AP 0.383 0.275 0.394 0.086 0.258 0.108 0.256 0.048
CNPMI and CP 0.897 < 0.01 0.912 < 0.01 0.919 < 0.01 0.878 < 0.01
CNPMI and CA 0.692 0.027 0.523 0.018 0.547 < 0.01 0.556 < 0.01
CNPMI and CV 0.127 0.726 0.117 0.624 -0.071 0.663 0.089 0.498

CNPMI-ABC and CNPMI-AP 0.538 0.109 0.541 0.014 0.343 0.030 0.375 0.003
MetaLDA 10 20 40 60

AP ρ p ρ p ρ p rp p
CNPMI and CNPMI-ABC 0.778 0.008 0.783 < 0.01 0.625 < 0.01 0.651 < 0.01

CNPMI and CUmass 0.834 0.003 0.738 < 0.01 0.715 < 0.01 0.590 < 0.01
CNPMI and CNPMI-AP 0.523 0.121 0.096 0.686 -0.084 0.606 0.005 0.972

CNPMI and CP 0.929 < 0.01 0.959 < 0.01 0.949 < 0.01 0.923 < 0.01
CNPMI and CA 0.788 0.007 0.435 0.055 0.623 < 0.01 0.505 < 0.01
CNPMI and CV -0.471 0.170 -0.078 0.742 -0.284 0.075 -0.145 0.269

CNPMI-ABC and CNPMI-AP 0.100 0.784 0.190 0.423 0.125 0.443 0.172 0.188

Table 3: Pearson’s r and p-values reported for the analysis of correlations between coherence measures
for the AP dataset

Aggregate mean for coherence measures

LDA AP AWH AWM
CNPMIand CNPMI-ABC 0.727±0.040 0.719±0.050 0.769±0.115

CNPMIand CUmass 0.601±0.129 0.395±0.406 0.419±0.088
CNPMIand CNPMI-AP 0.323±0.076 0.507±0.189 0.387±0.123

CNPMIand CP 0.902±0.018 0.779±0.101 0.855±0.043
CNPMIand CA 0.578±0.076 0.391±0.094 0.626±0.069
CNPMIand CV 0.066±0.092 -0.108±0.053 0.253±0.118

CNPMI-ABCand CNPMI-AP 0.449±0.105 0.565±0.056 0.423±0.073
MetaLDA AP AWH AWM

CNPMIand CNPMI-ABC 0.709±0.083 0.606±0.126 0.716±0.104
CNPMIand CUmass 0.719±0.100 0.539±0.086 0.272±0.249

CNPMIand CNPMI-AP 0.135±0.269 0.258±0.267 0.181±0.153
CNPMIand CP 0.940±0.017 0.770±0.149 0.884±0.037
CNPMIand CA 0.588±0.154 0.360±0.183 0.285±0.187
CNPMIand CV -0.245±0.174 -0.138±0.273 0.087±0.217

CNPMI-ABCand CNPMI-AP 0.147±0.042 0.362±0.223 0.390±0.159

Table 6: The aggregate mean Pearson’s correlation coefficient for LDA and MetaLDA across all topics.



3842

LDA 10 20 40 60
AWH ρ p ρ p ρ p ρ p

CNPMI and CNPMI-ABC 0.794 0.006 0.702 0.01 0.693 < 0.01 0.688 < 0.01
CNPMI and CUmass 0.714 0.020 -0.193 0.414 0.454 0.003 0.606 < 0.01

CNPMI and CNPMI-AP 0.746 0.013 0.545 0.013 0.438 0.005 0.297 0.021
CNPMI and CP 0.628 0.052 0.816 < 0.01 0.846 < 0.01 0.826 < 0.01
CNPMI and CA 0.315 0.375 0.316 0.174 0.421 0.007 0.511 < 0.01
CNPMI and CV -0.093 0.798 -0.176 0.459 -0.112 0.490 -0.049 0.709

CNPMI-ABC and CNPMI-AP 0.586 0.075 0.619 0.004 0.567 < 0.01 0.488 < 0.01

MetaLDA 10 20 40 60
AWH ρ p ρ p ρ p rp p

CNPMI and CNPMI-ABC 0.719 0.019 0.613 0.004 0.428 0.006 0.663 < 0.01
CNPMI and CUmass 0.593 0.071 0.459 0.042 0.473 0.002 0.631 < 0.01

CNPMI and CNPMI-AP 0.450 0.192 0.476 0.034 0.204 0.208 -0.098 0.458
CNPMI and CP 0.547 0.102 0.844 < 0.01 0.855 < 0.01 0.835 < 0.01
CNPMI and CA 0.089 0.808 0.407 0.075 0.469 0.002 0.476 < 0.01
CNPMI and CV 0.034 0.925 -0.491 0.028 0.115 0.479 -0.209 0.108

CNPMI-ABC and CNPMI-AP 0.489 0.151 0.580 0.007 0.303 0.058 0.076 0.565

Table 4: Pearson’s r and p-values reported for the analysis of coherence measures correlations for the
AWH dataset

Graphs of aggregate coherence measures for LDA vs MetaLDA

Figure 6: Comparison of LDA (triangle) and MetaLDA (circle) aggregated coherence scores for the AWH
dataset. Scores are shown on the y-axis and K is shown on the x-axis.
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LDA 10 20 40 60
AWM ρ p ρ p ρ p rp p

CNPMI and CNPMI-ABC 0.894 < 0.01 0.821 < 0.01 0.734 < 0.01 0.627 < 0.01
CNPMI and CUmass 0.512 0.131 0.450 0.047 0.303 0.058 0.410 < 0.01

CNPMI and CNPMI-AP 0.294 0.409 0.389 0.090 0.560 < 0.01 0.304 0.018
CNPMI and CP 0.898 < 0.01 0.886 < 0.01 0.816 < 0.01 0.821 < 0.01
CNPMI and CA 0.725 0.018 0.584 0.007 0.620 < 0.01 0.576 < 0.01
CNPMI and CV 0.341 0.335 0.105 0.660 0.354 0.025 0.210 0.108

CNPMI-ABC and CNPMI-AP 0.364 0.301 0.391 0.088 0.528 < 0.01 0.407 < 0.01

MetaLDA 10 20 40 60
AWM ρ p ρ p ρ p ρ p

CNPMI and CNPMI-ABC 0.866 < 0.01 0.687 0.001 0.684 < 0.01 0.625 < 0.01
CNPMI and CUmass 0.302 0.396 -0.080 0.736 0.500 0.001 0.366 < 0.01

CNPMI and CNPMI-AP 0.289 0.418 0.133 0.576 0.315 0.048 -0.015 0.912
CNPMI and CP 0.939 < 0.01 0.860 < 0.01 0.861 < 0.01 0.875 < 0.01
CNPMI and CA 0.080 0.825 0.333 0.151 0.207 0.201 0.518 < 0.01
CNPMI and CV -0.109 0.765 0.384 0.094 -0.033 0.839 0.105 0.425

CNPMI-ABC and CNPMI-AP 0.417 0.231 0.516 0.020 0.469 0.002 0.160 0.222

Table 5: Pearson’s r and p-values reported for the analysis of correlations between coherence measures
for the AWM dataset

Figure 7: Comparison of LDA (triangle) and MetaLDA (circle) aggregated coherence scores for the AWM
dataset. Scores are shown on the y-axis and K is shown on the x-axis.
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Figure 8: Comparison of LDA (triangle) and MetaLDA (circle) aggregated coherence scores for the
AWHM dataset. Scores are shown on the y-axis and K is shown on the x-axis.

C Evaluation 2: Labeling Topics

The Spearman’s ρ correlation coefficients for pairwise combinations of Q(nbr) and coherence
measures for all learned models.
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LDA 10 20 40 60
AP ρ p ρ p ρ p ρ p

CNPMI 0.058 0.873 0.264 0.261 0.144 0.374 -0.165 0.209
CNPMI-ABC 0.522 0.122 0.379 0.099 0.245 0.128 -0.038 0.774

CUmass 0.522 0.122 0.104 0.663 -0.022 0.892 -0.384 < 0.01
CNPMI-AP 0.406 0.244 0.626 0.003 0.638 < 0.01 0.217 0.096

CP 0.174 0.631 0.355 0.125 0.245 0.128 -0.062 0.636
CA 0.406 0.244 0.409 0.073 0.383 0.015 0.246 0.058
CV 0.058 0.873 0.138 0.562 0.254 0.114 0.472 < 0.01
Dtp -0.174 0.631 0.046 0.846 0.017 0.919 0.056 0.671
Dew -0.522 0.122 -0.814 < 0.01 -0.535 < 0.01 -0.223 0.087

MetaLDA 10 20 40 60
AP ρ p ρ p ρ p ρ p

CNPMI 0.623 0.054 -0.069 0.774 0.253 0.115 0.336 < 0.01
CNPMI-ABC 0.337 0.340 0.096 0.686 0.098 0.547 0.403 < 0.01

CUmass 0.623 0.054 -0.302 0.195 0.099 0.544 0.348 < 0.01
CNPMI-AP 0.450 0.192 0.054 0.822 0.220 0.172 0.329 0.010

CP 0.623 0.054 -0.088 0.714 0.339 0.032 0.307 0.017
CA 0.701 0.024 -0.022 0.927 0.600 < 0.01 0.304 0.018
CV -0.545 0.103 0.320 0.169 0.172 0.289 0.118 0.371
Dtp 0.078 0.831 -0.250 0.288 0.069 0.670 0.230 0.077
Dew -0.017 0.962 -0.211 0.372 -0.082 0.616 -0.099 0.45

Table 7: Spearman’s ρ and p-values reported for the analysis of correlations between coherence measures
and Q(nbr) for the AP dataset

LDA 10 20 40 60
AWH ρ p ρ p ρ p ρ p
CNPMI 0.000 nan 0.371 0.107 -0.045 0.784 0.101 0.441

hline CNPMI-ABC 0.000 nan 0.328 0.158 0.160 0.325 0.181 0.165
CUmass 0.000 nan -0.280 0.232 -0.078 0.634 -0.003 0.980

CNPMI-AP 0.000 nan 0.182 0.443 0.355 0.025 0.216 0.097
CP 0.000 nan 0.375 0.104 -0.016 0.921 0.066 0.615
CA 0.000 nan 0.103 0.665 0.179 0.270 0.319 0.013
CV 0.000 nan 0.043 0.857 0.192 0.235 0.235 0.071
Dtp 0.000 nan -0.131 0.581 0.024 0.884 0.193 0.140
Dew 0.000 nan -0.589 < 0.01 -0.345 0.029 -0.157 0.230

MetaLDA 10 20 40 60
AWH ρ p ρ p ρ p ρ p
CNPMI -0.522 0.122 0.074 0.758 -0.051 0.753 0.394 < 0.01

CNPMI-ABC -0.406 0.244 0.217 0.357 0.401 0.010 0.305 0.018
CUmass -0.290 0.416 0.127 0.594 -0.039 0.813 0.297 0.021

CNPMI-AP -0.174 0.631 0.676 < 0.01 0.490 < 0.01 0.011 0.934
CP -0.522 0.122 -0.031 0.897 -0.087 0.595 0.392 < 0.01
CA -0.406 0.244 0.322 0.166 0.240 0.135 0.404 < 0.01
CV 0.290 0.416 -0.088 0.713 0.338 0.033 -0.013 0.920
Dtp 0.174 0.631 0.200 0.399 0.132 0.417 0.321 0.0120
Dew 0.058 0.873 -0.255 0.279 -0.374 0.017 -0.049 0.708

Table 8: Spearman’s ρ and p-values reported for the analysis of correlations between coherence measures
and Q(nbr) for the AWH dataset
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LDA 10 20 40 60
AWM ρ, p ρ, p ρ, p ρ, p ρ, p ρ, p ρ, p, ρ, p
CNPMI 0.142 0.696 -0.039 0.871 0.092 0.573 0.014 0.914

CNPMI-ABC 0.321 0.366 0.063 0.792 0.141 0.386 0.207 0.112
CUmass -0.142 0.696 0.015 0.952 0.083 0.609 -0.314 0.015

CNPMI-AP 0.321 0.366 0.285 0.223 0.323 0.042 0.295 0.022
CP 0.306 0.390 -0.119 0.619 -0.007 0.968 -0.045 0.730
CA 0.350 0.321 -0.056 0.816 0.237 0.140 0.286 0.027
CV 0.634 0.049 -0.099 0.677 0.149 0.357 0.228 0.080
Dtp 0.007 0.984 0.312 0.180 0.059 0.719 0.432 < 0.01
Dew -0.500 0.141 -0.508 0.022 -0.408 0.009 -0.203 0.120

MetaLDA 10 20 40 60
AWM ρ p ρ p ρ p ρ p
CNPMI 0.151 0.678 0.187 0.429 0.492 < 0.01 0.407 < 0.01

CNPMI-ABC 0.243 0.499 -0.002 0.993 0.228 0.158 0.159 0.224
CUmass 0.125 0.732 -0.289 0.216 -0.067 0.680 -0.015 0.908

CNPMI-AP 0.321 0.365 -0.099 0.678 -0.055 0.734 0.047 0.721
CP 0.282 0.430 0.153 0.520 0.527 < 0.01 0.481 < 0.01
CA -0.164 0.651 -0.085 0.722 0.053 0.747 0.267 0.039
CV -0.164 0.651 0.332 0.153 0.053 0.745 0.220 0.091
Dtp 0.085 0.815 0.004 0.986 0.594 < 0.01 0.372 < 0.01
Dew -0.125 0.732 -0.040 0.868 0.274 0.087 0.224 0.085

Table 9: Spearman’s ρ and p-values reported for the analysis of correlations between coherence measures
and Q(nbr), for the AWM dataset
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D Evaluation 3: Topic Label Agreement

Inter-coder Reliability results

Kripp. 10 20 40 60
alpha LDA Meta LDA Meta LDA Meta LDA Meta

AP 0.398 0.363 0.250 0.361 0.402 0.361 0.584 0.486
AWH 0.283 0.391 0.294 0.327 0.368 0.405 0.512 0.498
AWM 0.267 0.344 0.323 0.322 0.366 0.361 0.513 0.447
Fleiss 10 20 40 60
kappa LDA Meta LDA Meta LDA Meta LDA Meta

AP 0.387 0.363 0.156 0.332 0.411 0.344 0.578 0.485
AWH 0.265 0.406 0.290 0.305 0.381 0.371 0.527 0.515
AWM 0.258 0.394 0.321 0.353 0.362 0.356 0.535 0.492
Qagr 10 20 40 60

LDA Meta LDA Meta LDA Meta LDA Meta
AP 0.417 0.433 0.167 0.292 0.342 0.283 0.503 0.492

AWH 0.283 0.400 0.258 0.258 0.286 0.296 0.439 0.411
AWM 0.217 0.250 0.275 0.292 0.296 0.279 0.428 0.369

Table 10: The ICR for labels of each topic set using Krippendorff’s α, Fleiss’ κ, and Percentage Agree-
ment Qagr

E Evaluation 4: Ease of Labeling Collections

Difficulty labeling document-collections

This section presents all the correlations with Qaln and Qdif .
LDA MetaLDA LDA MetaLDA
Qaln Qaln Qdif Qdif

All ρ p ρ p ρ p ρ p
CNPMI-ABC -0.0423 0.7486 0.141 0.283 -0.1454 0.2676 0.1688 0.197
CNPMI-AP 0.3394 0.008 0.39 0.002 0.2224 0.0877 0.3694 0.004

CNPMI -0.2156 0.0981 0.148 0.259 -0.1291 0.3257 0.2342 0.072
CA 0.123 0.3491 0.297 0.021 -0.0672 0.61 0.2276 0.080
CP -0.1016 0.4397 0.226 0.082 -0.0712 0.5887 0.1334 0.310
CV 0.2376 0.0676 0.147 0.264 -0.079 0.5485 0.2321 0.074

CUmass -0.397 0.0017 0.029 0.827 -0.1671 0.2018 0.0131 0.921
Proportion 0.0717 0.5861 0.09 0.493 0.0037 0.9774 0.0536 0.684
Effwords -0.2657 0.0402 -0.239 0.066 -0.1528 0.2438 -0.285 0.027

LDA MetaLDA LDA MetaLDA
Qaln Qaln Qdif Qdif

Top25pcnt ρ p ρ p ρ p ρ p
CNPMI-ABC 0.8245 0.0002 0.08 0.778 0.1643 0.5586 -0.1956 0.485
CNPMI-AP 0.4838 0.0677 0.11 0.697 0.2918 0.2914 -0.2999 0.278

CNPMI 0.5904 0.0205 0.347 0.206 0.0545 0.8469 0.2962 0.284
CA -0.3135 0.2552 -0.014 0.961 -0.3557 0.1932 -0.3181 0.248
CP 0.568 0.0272 0.236 0.397 0.1609 0.5667 0.24 0.389
CV -0.3442 0.209 0.119 0.674 -0.2046 0.4645 0.4085 0.131

CUmass -0.2858 0.3017 -0.326 0.235 -0.2283 0.4132 -0.3965 0.143
Dtp -0.0897 0.7505 -0.592 0.02 0.2163 0.4388 -0.5307 0.042
Dew -0.1391 0.621 -0.776 0.001 -0.1171 0.6778 -0.7638 0.001
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LDA MetaLDA LDA MetaLDA
Qaln Qaln Qdif Qdif

Top50pcnt ρ p ρ p ρ p ρ p
CNPMI-ABC 0.079 0.6781 0.213 0.259 -0.0166 0.9308 0.0862 0.651
CNPMI-AP 0.2038 0.2801 0.045 0.815 0.2194 0.2441 -0.1221 0.521

CNPMI 0.3603 0.0505 0.227 0.228 0.0184 0.9233 0.1811 0.338
CA -0.0986 0.6041 0.12 0.528 -0.1881 0.3194 0.0143 0.940
CP -0.0628 0.7415 0.342 0.065 -0.1011 0.5949 0.221 0.241
CV 0.0694 0.7157 -0.217 0.248 -0.1216 0.5223 0.019 0.921

CUmass -0.4059 0.026 -0.023 0.904 -0.3119 0.0933 0.1051 0.581
Dtp 0.2278 0.2261 -0.338 0.068 0.0306 0.8726 -0.256 0.172
Dew -0.2545 0.1748 -0.65 0 -0.2132 0.2581 -0.6298 0.000

LDA MetaLDA LDA MetaLDA
Qaln Qaln Qdif Qdif

Bot15pcnt ρ p ρ p ρ p ρ p
CNPMI-ABC 0.5317 0.1407 0.037 0.924 0.8165 0.0072 -0.2282 0.555
CNPMI-AP 0.1581 0.6845 -0.091 0.815 0.1862 0.6315 -0.0797 0.839

CNPMI -0.0851 0.8276 0 1 0.2294 0.5527 -0.0913 0.815
CA 0.0769 0.844 -0.159 0.682 -0.1491 0.7019 -0.01 0.980
CP -0.4473 0.2274 -0.169 0.663 -0.1101 0.778 0 1.000
CV 0.2946 0.4416 0.356 0.347 -0.2092 0.5891 0.2926 0.445

CUmass 0.4873 0.1833 -0.186 0.631 -0.3119 0.0933 0 1.000
Dtp -0.523 0.1486 0.523 0.149 -0.3486 0.3579 0.2739 0.476
Dew 0.2305 0.5507 0.693 0.039 0.3578 0.3444 0.2635 0.493

LDA MetaLDA LDA MetaLDA
Qaln Qaln Qdif Qdif

Bot10pcnt ρ p ρ p ρ p ρ p
CNPMI-ABC 0.6377 0.1731 0.463 0.355 0.6768 0.1398 -0.0926 0.862
CNPMI-AP -0.0304 0.9545 0 1 -0.206 0.6954 0.1014 0.848

CNPMI -0.3189 0.5379 0.44 0.383 -0.0304 0.9545 0.8783 0.021
CA 0.239 0.6483 0.101 0.848 -0.2 0.6059 0 1.000
CP 0.7537 0.0835 -0.44 0.383 0.8024 0.0547 0.0976 0.854
CV 0.1543 0.7704 0.741 0.092 -0.3719 0.4679 0.7407 0.092

CUmass 0.7537 0.0835 -0.216 0.681 0.8024 0.0547 0.414 0.414
Dtp -0.8452 0.0341 0.828 0.042 -0.8452 0.0341 0.6831 0.135
Dew -0.0883 0.8679 0.82 0.046 -0.4414 0.3809 0.4938 0.320

F Examples

Examples of poorly aligned topics are shown in Table 11.

Topic Label Collection Label Topic NPMI
Gun Control Foreign interference act law, bill, power, gun, democracy, control, freedom,

rule, protect, legislation
0.0734

Cost of Liv-
ing

Politician’s rental prop-
erty

house, free, property, home, rent, pay, live, buy, move,
money

0.0814

Addiction
help

Legalization of drugs health, drug, care, test, medical, doctor, access, alco-
hol, live, death

0.0702

Table 11: Topics which did not align well with the document-collection despite having a high coherence.


