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Abstract

Representation learning is widely used in NLP
for a vast range of tasks. However, represen-
tations derived from text corpora often reflect
social biases. This phenomenon is pervasive
and consistent across different neural models,
causing serious concern. Previous methods
mostly rely on a pre-specified, user-provided
direction or suffer from unstable training. In
this paper, we propose an adversarial disentan-
gled debiasing model to dynamically decouple
social bias attributes from the intermediate rep-
resentations trained on the main task. We aim
to denoise bias information while training on
the downstream task, rather than completely
remove social bias and pursue static unbiased
representations. Experiments show the effec-
tiveness of our method, both on the effect of
debiasing and the main task performance.

1 Introduction

Supervised neural networks have achieved remark-
able success in a wide range of natural language
processing (NLP) tasks. The fundamental capa-
bility of these neural models is to learn effective
feature representations (Bengio et al., 2013) for
the downstream prediction task. Unfortunately, the
learned representations frequently contain undesir-
able biases with respect to things that we would
rather not use for decision making. We refer to
such inappropriate factors as protected attributes
(Elazar and Goldberg, 2018a). Biased information
has serious real-world consequences. For example,
concerns have been raised about automatic resume
filtering systems giving preference to male appli-
cants when the only distinguishing factor is the
applicants’ gender (Sun et al., 2019). In this paper,
we focus on social bias, such as gender bias which
is the preference or prejudice towards one gender
over the other (Moss-Racusin et al., 2012), race
bias and age bias.

*The first two authors contribute equally. Weiran Xu is
the corresponding author.
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Figure 1: A demonstration of dynamically disentan-
gling gender bias from the representations of down-
stream representations. The left figure shows a biased
profession classifier where the model prefers men as en-
gineers and women as nurses. Our adversarial disentan-
glement model makes the example features approach
the boundary of the gender classifier. Therefore, the
boundary of the profession classifier in the right fig-
ure shifts closer to the horizontal state where gender in-
formation is decoupled from the representations in the
main task.

From the perspective of the debiasing target, pre-
vious debiasing works can be approximately clas-
sified into two types, word embedding (Bolukbasi
et al., 2016; Caliskan et al., 2017; Zhao et al., 2018;
Manzini et al., 2019; Wang et al., 2020; Kumar
et al., 2020) and sentence embedding (Xu et al.,
2017; Elazar and Goldberg, 2018a; Zhang et al.,
2018; Ravfogel et al., 2020). The former aims to
reduce the gender bias in word embedding, either
as a post-processing step (Bolukbasi et al., 2016)
or as part of the training procedure (Zhao et al.,
2018). The latter focuses on removing these pro-
tected attributes from the downstream intermediate
representations (Elazar and Goldberg, 2018a; Rav-
fogel et al., 2020). In this paper, we consider the
latter setting and focus on how to mitigate undesir-
able social bias from the encoded representations
without hurting the performance of the main task.

In terms of debiasing methods, previous models
are either based on projection on a pre-specified,
user-provided direction (Bolukbasi et al., 2016) or
null-space (Xu et al., 2017; Ravfogel et al., 2020),
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or on adding an additional gender discriminator
(Xie et al., 2017; Elazar and Goldberg, 2018a). The
former first trains an intermediate feature extractor
on the main task, then using a separate projection
method to remove social bias from the represen-
tations, finally fine-tuning on the main task. The
debiasing procedure can be regarded as static be-
cause of no direct interaction between the main
task and the debiasing task. Therefore, these meth-
ods have no guarantee that the representations for
predicting the main task do not contain any bias
information. Existing work, (Gonen and Gold-
berg, 2019), has shown that these methods only
cover up the bias and that in fact, the information is
deeply ingrained in the representations. Compared
to these static debiasing methods, gender discrimi-
nator based methods (Elazar and Goldberg, 2018a;
Zhang et al., 2018) use the traditional generative ad-
versarial network (GAN) (Goodfellow et al., 2014)
to distinguish protected gender attributes from en-
coded representations. However, they are notori-
ously hard to train (Ganin and Lempitsky, 2015).
Elazar and Goldberg (2018a) has shown that the
complete removal of the protected information is
nontrivial: even when the attribute seems protected,
different classifiers of the same architecture can
often still succeed in extracting it. Hence, we aim
to dynamically disentangle the social bias from the
encoded representations while jointly training on
the main task in a more stable way, rather than
directly remove protected attributes. In fact, we
show that bias information always remains even af-
ter adversarial debiasing and can be reconstructed
from the encoded representations. The main goal
of debiasing is to prevent downstream models from
utilizing these social bias in the representations,
that is, dynamic disentanglement instead of com-
plete removal, as Fig 1 displays.

In this paper, we propose an adversarial disen-
tangled debiasing model to dynamically decouple
social bias attributes from the intermediate repre-
sentations trained on the main task. Our motivation
is to denoise bias information while training on the
downstream task, rather than completely remove
social bias and pursue static unbiased representa-
tions. Previous works (Elazar and Goldberg, 2018a;
Gonen and Goldberg, 2019) show that even debi-
asing models achieve high fairness (Hardt et al.,
2016), a fair amount of protected information still
remains and can be extracted from the encoded
representations. We argue that one can hardly re-
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Figure 2: The overall architecture of our proposed ap-
proach.

move all gender or race directions in the latent
space but only preserve bias-free prediction on the
downstream task. Specifically, we use a protected
attribute classifier to generate model-agnostic ad-
versarial worst-case perturbations to the representa-
tions in the direction that significantly increases the
classifier’s loss. Then we apply the perturbations
to train the model of the downstream task end-to-
end. The main difference between our method and
GAN-based counterparts is that GANs suffer from
unstable training for the two-stage min-max pro-
cedure but our method directly computes gradient-
based perturbations to disentangle bias information
from the representations. We hope to provide new
insights and directions towards solving social bias
issues. !

2 Approach

2.1 Problem Formulation

Our main goal is to disentangle protected attributes
from the representations of downstream tasks so
that biased information can not affect the decision
of the model on the main task. In other words, we
aim to achieve fairness by equalizing the opportu-
nity (Hardt et al., 2016) between individuals with
different protected attributes (e.g. gender/race).
Given a set of input samples x;, and corresponding
discrete attributes Z, z; € {1,...,k} (e.g. gender
or race) 2, we aim to learn unbiased representations

'Our source code is available at https://github.
com/W-1w/debias_adv.

2 Although we focus on the discrete protected attributes
in this paper, our method can be also applied to continuous
attributes.
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h; € R%, so that z; can pose as minimal negative
effect as possible on the main task performance.

2.2 Overall Architecture

Fig 2 shows the overall architecture of our pro-
posed method, including four core steps: protected
forward, debiasing backward, main task forward,
and update parameters. (1) protected forward:
We first pre-train a protected attribute classifier
then compute the classification cross-entropy loss
Lyrotected for each input sample x. (2) debias-
ing backward: We maximize the loss Ly otected
of the protected attribute classifier to obtain the
adversarial decoupling perturbation 4. (3) main
task forward: Then we sum the original input z
and perturbation J to get a new adversarial sample
ZTady- We forward the sample x4, to the main task
classifier to compute the loss L4, of the down-
stream task. (4) update parameters: Finally, the
overall model is updated by the sum of two losses
Lyrotecteds Lmain- We will dive into the details of
each procedure in the following section.

2.3 Adversarial Semantic Disentanglement

Protected Forward In Fig 2, we adopt BiLSTM
as the shared context encoder by the main task clas-
sifier and protected attribute classifier. We first feed
each token to an embedding layer to get token em-
bedding e, then a BILSTM encoder is adopted to
get the context-aware representation h; for each
token ;. Then, we use an attentive pooling layer
to calculate the sentence embedding h. After that,
a fully-connected layer followed by a softmax out-
put layer is used to predict the protected attribute
9;. Finally, we can get the classification cross-
entropy 108 Ly otected- 3 In the experiment, we ob-
serve that pre-training the protected attribute clas-
sifier can effectively accelerate the whole training
progress of debiasing. We also demonstrate that
jointly training the protected attribute classifier and
the main task classifier achieves superior perfor-
mance in Section 4.2.

Debiasing Backward This is the primary step
of our adversarial semantic disentanglement. Our
main idea is to perform adversarial attacks (Good-
fellow et al., 2015; Kurakin et al., 2016; Miyato
etal., 2016; Jia and Liang, 2017; Zhang et al., 2019;
Ren et al., 2019) to dynamically decouple social
bias attributes from the intermediate representa-
tions trained on the main task. Specifically, we

31f the protected attribute is continuous, we can apply the
regression objectives.

need to compute a worst-case perturbation d that
maximizes the original classification cross-entropy
loss L, otected Of the protected attribute classifier:

0 = argmax  Lprotected (0, T+ 5’) (D
[16"]1<e

where 0 represents the parameters of the protected
attribute classifier and @ denotes a given sample. €
is the norm bound of the perturbation §. However,
due to model complexity, accurate computation for
4 is costly and inefficient. Similar to Vedula et al.
(2020) and Ru et al. (2020), we apply Fast Gradient
Value (FGV) (Rozsa et al., 2016) to approximate a
worst-case perturbation J:

8 = e where g = Vo L(f(€:0),Y) (2)

gl

where f represents the protected attribute classifier.
We perform normalization to g and then use a small
€ to ensure the approximate is reasonable. Section
4.3 validates a proper value of € can balance the
debiasing effect and the main task performance.
Finally, we can obtain the pseudo adversarial sam-
ple z44, = x + 6. Intuitively we aim to obtain
a debiased representation x,4, by confusing the
protected attribute classifier. Thus, the main task
classifier can make a fair decision conditioned on
the disentangled representation.

Main Task Forward After obtaining the pseudo
adversarial sample z,4,, we forward the sample
Zady to the main task classifier to compute the loss
Lmain of the downstream task, similar to protected
forward. We find the location of adding adversarial
perturbation plays a role in debiasing performance
in Section 4.4. In a nutshell, adding noise to the
word embedding layer achieves the best debiasing
performance.

Update Parameters Finally, we apply the two
classification objectives to update the parameters of
the model as the dashed lines in Fig 2 show. Note
that the loss L, otecteq Of the protected attribute
classifier only updates the MLP and softmax layers
while the loss L4 Of the main task classifier up-
dates all the model parameters, including the low-
level encoding layers. The setting aims to avoid the
negative effect of the protected attribute classifier
on main task performance.

3 Experiments

3.1 Setup

Datasets Following the setup of (Ravfogel et al.,
2020), we test the performance of our debiasing
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Sentiment (Main Task) TPR-GAP (Debias)

Ratio | Original INLP Random Noise Ours | Original INLP Random Noise Ours
0.5 0.76 0.75 0.75 0.75 0.14 0.12 0.14 0.09
0.6 0.75 0.71 0.73 0.72 0.23 0.18 0.17 0.11
0.7 0.74 0.65 0.72 0.72 0.31 0.16 0.26 0.10
0.8 0.71 0.62 0.71 0.73 0.40 0.16 0.37 0.09

Table 1: The Sentiment scores (in accuracy, higher is better) and TPR differences (lower is better) as a function of
the ratio of tweets written by black individuals in the positive-sentiment class.

method on the dialectal tweets (DIAL) corpus col-
lected by Blodgett et al. (2016) in a controlled
setup, and the biography corpus (De-Arteaga et al.,
2019) in a wild setup. The dialectal tweets corpus
consists of 59.2 million tweets, where each tweet
contains "race" information, and emojis correspond
with specific emotion groups. According to the la-
bel of race and sentiment, we split the data into four
classes: African American English (AAE) speaker
with "happy" sentiment, Standard American En-
glish (SAE) speaker with "happy" sentiment, AAE
speaker with "sad" sentiment and SAE speaker with
"sad" sentiment. Following (Elazar and Goldberg,
2018b), we filter the corpus and 176K tweets left
(44k for each class). Then we divide them into 40k
samples for training, 2k for developing, and 2k for
testing, following (Ravfogel et al., 2020). In the
controlled setup, we introduce a bias ratio relevant
to the sentiment and race to control the imbalance
proportion of samples in four groups, following
(Ravfogel et al., 2020). e.g., in the 0.8 condition,
the AAE class contains 80% happy / 20% sad sam-
ples, while the SAE class contains 80% sad / 20%
happy samples. And in the 0.5 conditions, all four
categories contain the same number of samples. In
all experiments, the unbalance factor of the devel-
opment set and test set is set to 0.5.

The biography corpus contains 393,423 biogra-
phies, the corresponding professions (28 classes)
labels and gender (protected attributes) labels. We
split the dataset into 255,710, 39,369, 98,344 sam-
ples for training, validation and testing, as consis-
tent with (De-Arteaga et al., 2019; Ravfogel et al.,
2020).

Baselines We compare our model with these
baselines as follow:

* Original is the main task classifier without
any debiasing procedure as a baseline.

* INLP (Ravfogel et al., 2020) is a linear debi-
asing method, which removes the protected

information from neural representations by
iterative training the linear classifiers which
predict the protected attributes. *

* Random Noise replaces the debiasing pertur-
bation generated by the protected classifier
with random noise.

Implementation Details To demonstrate the ef-
fectiveness of our method, we use the same model
structure of the main task (sentiment classification)
as (Ravfogel et al., 2020), where the DeepMoji
encoder (Felbo et al., 2017) and an one-hidden-
layer MLP constitute the classifier. Besides, for
simplicity, we use the same structure of classifier
for predicting protected attributes. Both the unbal-
anced training data and the pre-trained DeepMoji
model which has been proven that encodes demo-
graphic information would lead the downstream
MLP classifier to make biased predictions. We then
perform debiasing training for the main-task model
following the process described in section 2.3 on
the imbalanced training set with the imbalance fac-
tor and test the debiased model on the balanced test
set.

Besides, we follow (Ravfogel et al., 2020) to
evaluate our debiasing method on the biography
corpus as a wild setup to verify the validity of our
method in a less artificial setting. In this wild set
up, we construct a similar model structure to the
DeepMoji encoder, with a two-layer bidirectional
RNN as the encoder, except for the attention op-
eration. There are two input representation types
of the encoder: FastText and BERT (Devlin et al.,
2019). In the FastText experiments, we directly use
the trained word embedding that provided by (Rav-
fogel et al., 2020), to represent each biography as a
sequence of vectors. And in the BERT experiments,
we use BERT as a sequence-to-sequence encoder

“Note that the original results reported in the published
version contain some mistakes. We rerun the updated evalu-

ation scripts according to the official code and report all the
results for a fair comparison.
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to obtain the representation of each word in the sen-
tence. Then we feed the sentence representations
into the model and perform the debiasing training
process.

For all the experiments, we train and test our
model on single 2080Ti GPU, and we use Al-
lenNLP framework (Gardner et al., 2017) to imple-
ment our model. The hidden size of the 1-hidden-
layer MLP classifier used in all of the above experi-
ments is set to 300. In a controlled experiment, our
debiasing method takes an average of ten minutes
to run, and the total parameters of our models are
23M, including a DeepMoji encoder, a main task
classifier, and a protected classifier. In the wild ex-
periment, the model size of the FastText experiment
is 127M, which takes an average of 15 minutes to
run. While the model size of the BERT experiment
is 114M, and it takes an average of 55 minutes to
run, due to the use of BERT to encode the sentences.
It’s worth mentioning that our method converges
with only one or two epochs, which is faster than
other debiasing methods. In practice, we empiri-
cally find that the debiasing performance can reach
the best when the L2-Norm of perturbation is be-
tween 1/3 and 2/3 of the corresponding disturbed
vectors’ L2-Norm. For example, in the first experi-
ment, the L2-Norm size of the embedding vector is
around 4, then we could set the normalized scale
to (1.2, 1.8).

Metrics To evaluate the bias in the model, fol-
lowing (Ravfogel et al., 2020; De-Arteaga et al.,
2019), we calculate TPR-GAP to measure the dif-
ference (GAP) in the True Positive Rate (TPR) be-
tween the groups with different protected attributes
which can reflect the unfairness existing in NLP
models:

A

TPR,, =PlY =y|P=p,Y =y] 3)
GAﬂgm::TPRm,—TPRﬂw 4)

where y is the main task label of the input represen-
tation X, and p, p’ denote the protected attribute
P’s two values. Then we use TPR-GAP to measure
the degree of bias, which calculate the root-mean
square of GAPg ; R over all main task label y:

1

yeN

where NN is the label set of all main task (sentiment
or profession). De-Arteaga et al. (2019) did the
experiment on the biography corpus, and proved

FastText BERT

Original 78.1 80.9

Accuracy (profession)  INLP 73.0 75.2
Ours 80.1 77.8

Original  0.184  0.184

TPR-GAP INLP 0.089  0.095

Ours 0.082  0.092

Table 2: Fair classification on the Biographies corpus.

the indicator GAPZ?: ?f R have a strong correlation
with the percentage of a certain gender group in
different profession y, therefore GAPTPREMS
can reflect an overview of bias across all different
main attributes. We use G APTPR-EMS to measure
the bias existing in the models.

3.2 Main Results

Table 1 displays the experimental results on the
DIAL dataset under different ratios of data imbal-
ance proportion which can reflect the degree of
dataset bias. We analyze the results from two per-
spectives, TPR-GAP (Debias) and Sentiment (Main
Task). For TPR-GAP (Debias), our method consis-
tently outperforms other baselines under all ratios,
especially on the more biased dataset. It demon-
strates the effectiveness of our proposed adversarial
semantic disentanglement. We also observe Ran-
dom Noise can hardly mitigate social bias which
confirms the necessity of the protected attribute
classifier. For the performance of the main senti-
ment classification task, our method reaches close
to the original baseline while INLP suffers from a
severe drop under a large ratio. The results prove
that our method can better avoid the negative effect
of the debiasing procedure on main task perfor-
mance. To further evaluate the debiasing effect, we
also show the results of the wild biography classi-
fication dataset in Table 2. Results show that our
method both achieves superior performance than
other baselines on Accuracy of the main task and
TPR-GAP of debiasing. Compared to the signif-
icant improvements on the DIAL dataset, we hy-
pothesize that the bias degree of the dataset makes
a difference to the range of improvements.

4 Qualitative Analysis
4.1 Fixed Encoder vs. Non-fixed Encoder

In previous works, it is common to pre-train the
sentence encoder in advance and keep the encoder
fixed while applying the debias algorithm. How-
ever, it is unclear whether this conventional exper-
iment setup is applicable to our approach. Since
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Figure 3: Performance comparison between fixed and
non-fixed encoders. The above figure shows the
bias decrement under different perturbation intensities
while the below figure shows the classification perfor-
mance of the main task. The experiments are adopted
in the DIAL dataset, with the bias ratio set to 0.6.

our approach dynamically generates perturbation
to decouple social bias from context via adversarial
attacks, we expect the non-fixed encoder to gener-
ate perturbation of higher quality. To check this,
we conduct two groups of experiments in the DIAL
dataset, where one group uses a fixed encoder while
the other group keeps the contextual encoder train-
able. Note that we set the bias ratio to 0.6 in both
two groups of experiments.

Fig 3 shows the experimental results. In Fig
3 above, we observe that our approach with the
non-fixed encoder consistently achieves better de-
bias effectiveness compared to the fixed encoder
counterpart with a large margin. When the perturba-
tion intensity increases, both experimental settings
achieve an increasingly better debias effect.

On the other hand, as shown in Fig 3 below,
the fixed encoder approach suffers a severe perfor-
mance drop in classification accuracy with increas-
ing perturbation intensity. Meanwhile, the classifi-
cation accuracy under the non-fixed encoder setting
is still increasing, and even outperforms the fixed
encoder one when a relatively large perturbation
intensity is applied. We argue that, with a non-fixed
encoder, our approach can learn a high-quality per-
turbation for representation debias, and meanwhile
continuously optimize for the main task.
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Figure 4: Performance comparison between the static
protected classifier and the training on-the-fly protected
classifier. The above figure shows the bias decrement
under different perturbation intensities while the below
figure shows the classification performance of the main
task. The experiments are adopted in the DIAL dataset,
with the bias ratio set to 0.8.

4.2 Protected Classifier: “Static’ vs.
Training on-the-fly

As discussed in the previous section, our proposed
adversarial disentangled debiasing method requires
the protected classifier to learn an accurate decision
boundary of the protected attributes, such that the
debiasing perturbation approximates the direction
that mostly eliminates the model’s discrimination
of the protected attributes. Naturally, we have two
options: either fix the parameters of protected clas-
sifier to generate the relatively static debiasing per-
turbation, or train the protected classifier on-the-fly
during the main classifier training process to offer
a relatively dynamic perturbation.

To verify which one performs better, we adopt
two groups of experiments. In the “static” setting,
we keep the parameters of the protected classifier
fixed. Whether the parameters of the encoder are
fixed or not, the debiasing perturbation generated
by the protected classifier would be relatively static.
It’s worth noting that if the parameters of the en-
coder are fixed, the debiasing perturbation would
be totally static. While in the training on-the-fly
setting, we reserve the gradient of the protected
classifier and update its parameters together with
the main task model (context encoder and main
task classifier). According to the conclusions in
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Figure 5: The debias effectiveness (above) as well as
the classification accuracy on the main task (below) of
our proposed approach in the DIAL dataset, with the
perturbation intensity increases from 0.1 to 7.0. We set
the bias ratio to 0.8 and all parameters trainable.

section 4.1, we make the context encoder trainable
in both settings and use the same objective to train
the main classifier.

The results are displayed in Fig 4. We can find
that both settings have the ability to debiasing in
the DIAL dataset, showing the effectiveness of our
approach in both settings. However, the training on-
the-fly strategy consistently outperforms the “static”
strategy under various perturbation intensities. We
hypothesize that the difference is mainly because
under the training on-the-fly strategy, the protected
classifier will have a chance to adjust the decision
boundary when the context encoder updates, and
thus continuously generates better dynamic debias-
ing perturbation via adversarial attacks.

4.3 Influence of Perturbation Intensity

To explore how the perturbation intensity influ-
ences the debias effectiveness and the performance
of main task, we run multiple experiments with
only changing the perturbation intensity. We exper-
iment with a wide range of perturbation intensity,
from 0.1 to 7.0.

The experimental results are illustrated in Fig
5. From the figure above, we find that the bias
decrement rapidly increases at the beginning pe-
riod with the intensity increasing from 0.1 to 0.7.
Then, between a wide range from 0.7 to 6.6, the
bias decrement keeps relatively stable, oscillate in a

DIAL bias ratio — 0.5 06 0.7 0.8

Original 0.75 0.75 0.74 0.71
Accuracy Tosentemb 0.75 0.72 0.72 0.72
Towordemb 0.73 0.72 0.72 0.73
Original 0.14 0.23 031 040
TPR-GAP Tosentemb 0.09 0.14 0.19 0.21
Towordemb 0.09 0.11 0.10 0.09

Table 3: Analysis on which representation space is best
for debiasing. “To sent emb” indicates the perturbation
is added to the sentence embedding space, while “To
word emb” indicates the perturbation is added to the
word embedding space. The perturbation intensity is
set to 0.7.

small range of 0.275 - 0.325, reflecting the stability
of our approach. However, when the perturbation
intensity exceed some threshold (6.6 in this case),
the bias decrement drops again. Meanwhile, with
the perturbation intensity increasing, the classifi-
cation accuracy of main task keeps falling (figure
below), indicating that the perturbation with high
intensity will also disturb the main task, leading to
a low classification accuracy. The result provides a
principle of how to choose a suitable perturbation
intensity - the minimal intensity while effective
enough for debiasing.

4.4 Which Representation Space to Apply
Debiasing

Another pivotal consideration for our dynamically
disentangling approach is - which representation
space should we add the perturbation to? Typically,
we have two choices: a) adding the perturbation
to the sentence embedding space or b) adding the
perturbation to the word embedding space. The
sentence embedding is closer to the output space
with the key information condensed into a single
vector, while the word embedding is closer to the
input side, keeping separated for each token. To
check out which one performs better for social
debiasing, we conduct experiments in the DIAL
dataset with different bias ratio.

Table 3 illustrates the experiment results. Com-
pared the result of “To sent emb” to “To word emb”,
we found adding the perturbation to word embed-
ding space often gains better debiasing results, es-
pecially when the bias ratio of the dataset is large.
For example, when the bias ratio is 0.8, adding to
word embedding space achieves a GAPTPR.EMS
of 0.09, while adding to sentence embedding space
achieves 0.21. We believe that, when applying
our debiasing approach to a deeper representation
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DIAL bias ratio — 05 06 07 08 DIAL bias ratio - 0.5 0.6 0.7 0.8
Original 0.75 0.75 0.74 0.71 RIM INLP 0.143 0.164 0.362 0.473
Accuracy  Entropy 0.74 071 0.70 0.72 Ours 0.357 0482 0.650 0.814
Cross entropy 0.75 0.72 0.72 0.73
Original 0.14 023 031 040 Table 5: The debiasing effect under our proposed Rela-
TPR-GAP Entropy 0.13 0.15 0.17 0.17 tive Improve Metric (RIM). We show that our approach

Cross entropy  0.09 0.11 0.10 0.09

Table 4: Experimental results on accuracy and debias-
ing effect with different objectives of the protected clas-
sifier. We respectively apply the Cross-Entropy loss
and the Entropy loss to the protected classifier when
calculating the objective of the protected classifier for
generating the perturbation for debiasing. Note that
the protected classifier is pre-trained and fixed, and the
entropy loss doesn’t require ground truth protected at-
tributes during the training of the main task.

space, the perturbation is also context-aware (since
the context encoder is also related when calculat-
ing the gradient) and thus more dynamic for the
complex data distribution.

4.5 Cross-Entropy vs. Entropy

As mentioned in Section 2.3, we need to calculate a
cross-entropy 1oss L, tected t0 generate the debias-
ing perturbation via FGV. Thus, during the training
of the main task, we must obtain the protected at-
tribute for each training example to calculate the
cross-entropy loss. This severely limits the useful-
ness of our approach, as it may be difficult to obtain
the ground truth protected attribute when training
the main task. To this end, we also propose to use
the entropy loss (Zheng et al., 2020) to substitute
the cross-entropy loss:

Eprotected = _/H(P(yprotected"r)) (6)

where 7{ indicates the Shannon entropy and
P(Y,rotecteal) 18 the distribution output by pro-
tected classifier. This objective forces the protected
classifier to obtain high entropy, which means the
classifier is not confident and almost distributed uni-
formly across all values of the protected attributes.

In Table 4, we compare the debiasing effective-
ness of using entropy with cross-entropy. From
the table, we observe that using the entropy ob-
jective also works for debiasing as the TPR-GAP
also drops compared with the baseline. However,
the debiasing effect still can’t exceed our approach
with cross-entropy. This seems reasonable since
the cross-entropy objective introduces extra infor-
mation about the protected attribute. With the extra
supervision signal, our approach generates pertur-

is far beyond the INLP under the evaluation of RIM.

(b) Ours

(a) Original

Figure 6: t-SNE projection of BiLSTM sentence rep-
resentations for the positive sentiment. The left repre-
sents the baseline and the right represents our method.
We display the representation distribution of different
races in the latent space. Different races are colored in
the figure.

bation towards a more precise direction for elimi-
nating the representation of the protected attributes.

4.6 Performance on Different Bias Ratio

To more clearly show the performance differences
of our model over data sets with varying degrees
of bias, we introduce a new metric named Relative
Improve Metric (RIM):

Acc' — Acc GAP — GAP'
RIM = Acc + GAP @)

where Acc and Acc’ represent the main task ac-
curacy of the model before and after debiasing re-
spectively, and GAP, GAP' represent the TPR-
GAP indicator of the model before and after debi-
asing respectively. RIM could synthetically reflect
the stability of the main task and the debiasing per-
formance of a debiasing method. We calculate the
RIM indicator of our model and INLP based on the
results in Table 1, and the new results are shown
in Table 5. We can observe that the stronger bias
in the dataset, the better performance of the two
methods. Besides, we can find that our debiasing
method is more robust.

4.7 Visualization

To better understand the effectiveness of our
method, we display a feature visualization of sen-
tence representations in Fig 6. We can observe
that the different race classes are no longer linearly
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separable after debiasing. Therefore, downstream
tasks can not make decisions conditioned on the
race information in the representations.

5 Related Work

The objective of controlled removal of specific
types of information from neural representations
is tightly related to the task of disentanglement
of the representations (Bengio et al., 2013), that
is, controlling and separating the different kinds
of information encoded in them. Previous models
are either based on projection on a pre-specified,
user-provided direction (Bolukbasi et al., 2016) or
null-space (Xu et al., 2017; Ravfogel et al., 2020),
or adding an additional gender discriminator (Xie
et al., 2017; Elazar and Goldberg, 2018a), or the
impact of data decisions (Beutel et al., 2017). The
former first train an intermediate feature extractor
on the main task, then use a separate projection
method to remove social bias from the represen-
tations, finally finetune on the main task. Com-
pared to these static debiasing methods, gender
discriminator based methods (Elazar and Goldberg,
2018a; Zhang et al., 2018) use the traditional gen-
erative adversarial network (GAN) (Goodfellow
et al., 2014) to remove protected gender attributes
from encoded representations. However, they are
notoriously hard to train (Ganin and Lempitsky,
2015). Elazar and Goldberg (2018a) has shown that
the complete removal of the protected information
is nontrivial: even when the attribute seems pro-
tected, different classifiers of the same architecture
can often still succeed in extracting it. Therefore,
in this paper, we aim to dynamically disentangle
the social bias from the encoded representations
while jointly training on the main task in a more
stable way, rather than directly remove protected
attributes. The main goal of debiasing is to pre-
vent downstream models from utilizing these so-
cial biases in the representations, that is, dynamic
disentanglement instead of complete removal.

6 Conclusion

In this paper, we focus on removing social bias in
representation learning. We argue that the main
goal of debiasing is to prevent downstream models
from utilizing these social biases in the represen-
tation, that is, dynamic disentanglement instead
of complete removal. Therefore, we propose an
adversarial disentangled debiasing model to dy-
namically decouple social bias attributes from the

intermediate representation trained on the main
task. We perform extensive experiments and analy-
sis to demonstrate the effectiveness of our method.
We hope to provide new insights and directions
towards solving social bias.

7 Broader Impact

In recent years, neural network based models have
demonstrated remarkable performance in many nat-
ural language processing tasks and thus have been
applied to a wide range of real-world applications.
However, a lot of works reveal that such models
are easily affected by social bias and thus makes
incorrect and biased decisions. In domains with the
greatest potential for societal impacts, using such
biased models for real-world applications is dan-
gerous and faces many problems such as human
morality. The social bias implicit in the natural
language processing model may be exposed and
become a social hot spot, thus becoming an unsta-
ble factor that causes social unrest. Meanwhile,
some existing debiasing methods, although able
to slightly reduce bias in such model, often cause
great damage to model performance in the main
task, thus difficult to be applied in practice. This
work proposes a new adversarial training method
for end-to-end debiasing. Due to the robustness
of the adversarial attack, the model can eliminates
bias without losing much performance.
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