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Abstract

Multilingual models, such as M-BERT and
XLM-R, have gained increasing popularity,
due to their zero-shot cross-lingual transfer
learning capabilities. However, their gener-
alization ability is still inconsistent for ty-
pologically diverse languages and across dif-
ferent benchmarks. Recently, meta-learning
has garnered attention as a promising tech-
nique for enhancing transfer learning under
low-resource scenarios: particularly for cross-
lingual transfer in Natural Language Under-
standing (NLU).

In this work, we propose X-METRA-
ADA, a cross-lingual MEta-TRAnsfer learn-
ing ADAptation approach for NLU. Our ap-
proach adapts MAML, an optimization-based
meta-learning approach, to learn to adapt to
new languages. We extensively evaluate our
framework on two challenging cross-lingual
NLU tasks: multilingual task-oriented dialog
and typologically diverse question answering.
We show that our approach outperforms naive
fine-tuning, reaching competitive performance
on both tasks for most languages. Our analy-
sis reveals that X-METRA-ADA can leverage
limited data for faster adaptation.

1 Introduction

Cross-lingual transfer learning is a technique used
to adapt a model trained on a downstream task in a
source language to directly generalize to the task in
new languages. It aims to come up with common
cross-lingual representations and leverages them to
bridge the divide between resources to make any
NLP application scale to multiple languages. This
is particularly useful for data-scarce scenarios, as it
reduces the need for API calls implied by machine
translation or costly task-specific annotation for
new languages.

∗Work was started while the first author was a research
intern at Adobe.

Figure 1: An overview of the X-METRA-ADA frame-
work: we use English as the source and Spanish as
the target language. The meta-train stage transfers
from the source to the target languages, while the
meta-adaptation further adapts the model to the target
language. The application is few-shot if the test lan-
guage is seen in any stage of X-METRA-ADA; or zero-
shot if the test language is unseen.

Transformer-based contextualized embeddings
and their multilingual counterparts such as M-
BERT (Devlin et al., 2019) have become popular as
off-the-shelf representations for cross-lingual trans-
fer learning. While these multilingual representa-
tions exhibit some cross-lingual capability even for
languages with low lexical overlap with English,
the transfer quality is reduced for languages that
exhibit different typological characteristics (Pires
et al., 2019).

The generalization of such representations has
been extensively evaluated on traditional tasks such
as Part-of-Speech (POS) tagging, Named Entity
Recognition (NER) and Cross-lingual Document
Classification (CLDC) (Ahmad et al., 2019; Wu
and Dredze, 2019; Bari et al., 2020a; Schwenk
and Li, 2018), with ever-growing open commu-
nity annotation efforts like Universal Dependen-
cies (Nivre et al., 2020) and CoNLL shared tasks
(Tjong Kim Sang, 2002; Tjong Kim Sang and
De Meulder, 2003). On the other hand, cross-
lingual Natural Language Understanding (NLU)
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tasks have gained less attention, with smaller bench-
mark datasets that cover a handful of languages
and don’t truly model linguistic variety (Conneau
et al., 2018; Artetxe et al., 2020). Natural Lan-
guage Understanding tasks are critical for dialog
systems, as they make up an integral part of the
dialog pipeline. Understanding and improving the
mechanism behind cross-lingual transfer for natural
language understanding in dialog systems require
evaluations on more challenging and typologically
diverse benchmarks.

Numerous approaches have attempted to build
stronger cross-lingual representations on top of
those multilingual models; however, most require
parallel corpora (Wang et al., 2019; Lample
and Conneau, 2019) and are biased towards high-
resource and balanced setups. This fuels the need
for a method that doesn’t require explicit cross-
lingual alignment for faster adaptation to low-
resource setups.

Meta-learning, a method for “learning to learn”,
has found favor especially among the computer vi-
sion and speech recognition communities (Nichol
et al., 2018; Triantafillou et al., 2020; Winata
et al., 2020). Meta-learning has been used for
machine translation (Gu et al., 2018), few-shot re-
lation classification (Gao et al., 2019), and on a
variety of GLUE tasks (Dou et al., 2019). Re-
cently, Nooralahzadeh et al. (2020) apply the
MAML (Finn et al., 2017) algorithm to cross-
lingual transfer learning for XNLI (Conneau et al.,
2018) and MLQA (Lewis et al., 2020), NLU
tasks that are naturally biased towards machine
translation-based solutions. Nooralahzadeh et al.
are able to show improvement over strong multi-
lingual models, including M-BERT. However, they
mainly show the effects of meta-learning as a first
step in a framework that relies on supervised fine-
tuning, making it difficult to properly compare and
contrast both approaches.

We study cross-lingual meta-transfer learning
from a different perspective. We distinguish
between meta-learning and fine-tuning and de-
sign systematic experiments to analyze the added
value of meta-learning compared to naive fine-
tuning. We also build our analysis in terms
of more typologically diverse cross-lingual NLU
tasks: Multilingual Task-Oriented Dialogue Sys-
tem (MTOD) (Schuster et al., 2019) and Ty-
pologically Diverse Question Answering (Ty-
DiQA) (Clark et al., 2020). While XNLI is a clas-

sification task, MTOD is a joint classification and
sequence labelling task and is more typologically
diverse. TyDiQA is not a classification task, but
we show how meta-learning can be applied use-
fully to it. We also show greater performance im-
provements from meta-learning than fine-tuning on
transfer between typologically diverse languages.

To the best of our knowledge, we are the first
to conduct an extensive analysis applied to MTOD
and TyDiQA to evaluate the quality of cross-lingual
meta-transfer. Our contributions are three-fold:
• Proposing X-METRA-ADA,1 a language-

agnostic meta-learning framework (Figure 1),
and extensively evaluating it.

• Applying X-METRA-ADA to two challeng-
ing cross-lingual and typologically diverse task-
oriented dialog and QA tasks, which includes
recipes for constructing appropriate meta-tasks
(Section 2.3).

• Analyzing the importance of different compo-
nents in cross-lingual transfer and the scalability
of our approach across different k-shot and down-
sampling configurations (Section 4.2).

2 Methodology

We make use of optimization-based meta-learning
on top of pre-trained models with two levels of
adaptation to reduce the risk of over-fitting to
the target language: (i) meta-training from the
source language to the target language(s) (ii) meta-
adaptation on the same target language(s) for
more language-specific adaptation (Figure 1).

We apply our approach to two cross-lingual
downstream tasks: MTOD (Section 2.1) and Ty-
DiQA (Section 2.2). We start by describing the
base architectures for both tasks, before explaining
how they are incorporated into our meta-learning
pipeline. Applying meta-learning to a task requires
the construction of multiple ‘pseudo-tasks’, which
are instantiated as pairs of datasets. We describe
this construction for our downstream tasks in Sec-
tion 2.3. Finally, we present our X-METRA-ADA
algorithm (Section 2.4).

2.1 Multilingual Task-Oriented Dialog
(MTOD)

Similar to the architecture in Castellucci et al.
(2019), we model MTOD’s intent classification and
slot filling subtasks jointly. For that purpose, we

1We release our code at: github.com/
meryemmhamdi1/meta_cross_nlu_qa.

github.com/meryemmhamdi1/meta_cross_nlu_qa
github.com/meryemmhamdi1/meta_cross_nlu_qa
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Figure 2: Architecture of Base MTOD.

use a joint text classification and sequence labeling
framework with feature representation based on
Transformer (Vaswani et al., 2017). More specif-
ically, given a multilingual pre-trained model, we
use it to initialize the word-piece embeddings layer.
Then, we add on top of it a text classifier to predict
the intent from the [CLS] token representation and
a sequence labeling layer in the form of a linear
layer to predict the slot spans (in BIO annotation),
as shown in Figure 2. We optimize parameters
using the sum of both intent and CRF based slot
losses.

2.2 Typologically Diverse Question
Answering (TyDiQA)

Figure 3: Question Answering Base Model.

Inspired by Hu et al. (2020), we apply to Ty-
DiQA the same architecture as the original BERT
fine-tuning procedure for question answering on
SQuAD (Devlin et al., 2019). Specifically, the
input question (after prepending it with a [CLS]
token) and the context are concatenated as a sin-
gle packed sequence separated by a [SEP ] token.
Then, the embeddings of the context are fed to a
linear layer plus a softmax to compute the proba-
bility that each token is the START or END of the
answer. The whole architecture is fine-tuned by

optimizing for the joint loss over the START and
END predictions. Any START and END positions
that are outside of the scope of the context end up
being truncated because of Transformer-based em-
beddings length limitations and are ignored during
training. Figure 3 illustrates the architecture.

2.3 Psuedo-task Datasets

Meta-learning is distinguished from fine-tuning in
that the former seeks an initialization point that is
maximally useful to multiple downstream learning
tasks, while the latter seeks to directly optimize
a downstream ‘child’ task from the initialization
point of a ‘parent’ task. To apply meta-learning to
data scenarios that more closely fit fine-tuning, we
construct multiple ‘pseudo-tasks’ by subsampling
from parent and child task datasets. A pseudo-task
is defined as a tuple T = (S,Q), where each of S
and Q are labeled samples. In the inner loops of
meta-learning, the loss on Q from a model trained
on S is used to adapt the initialization point (where
Q and S are referred to as the query and support
in meta-learning literature). Pseudo-tasks are con-
structed in such a way as to make them balanced
and non-overlapping. We describe our approach
for each task below.

2.3.1 MTOD Pseudo-task Construction
MTOD labeled data consists of a sentence from
a dialogue along with a sentence-level intent la-
bel and subsequence slot labels. From the avail-
able data, we draw a number of task sets T ; each
T = (S,Q) ∈ T consists of k intent and slot-
labeled items per intent class in S and q items per
class in Q. Although carefully arranged to have the
same number of items per class per task in each
of the support and the query sets, the same task
splits are used for slot prediction as well. During
meta-training and meta-adaptation, task batches are
sampled randomly from T .

2.3.2 QA Pseudo-task Construction
Unlike MTOD, QA is not a standard classifica-
tion task with fixed classes; thus, it is not directly
amenable to class distribution balancing across
pseudo-task query and support sets. To construct
pseudo-tasks for QA from the available (question,
context, answer) span triplet data, we use the fol-
lowing procedure: We draw a task T = (S,Q),
by first randomly drawing q triplets, forming Q.
For each triplet t in Q, we draw the k/q most simi-
lar triplets to t from the remaining available data,
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thus forming S.2 For two triplets t1, t2 we de-
fine similarity as cos(f(t1), f(t2)), where f(.) is a
representation of the concatenation of the triplet el-
ements delimited by a space; we use a cross-lingual
extension to SBERT’s pre-trained model (Reimers
and Gurevych, 2019, 2020).

2.3.3 Cross-lingual extension

In the original MAML (Finn et al., 2017), in ev-
ery iteration we sample a task set T from a single
distribution D, and the support and query sets in
a single task T would be drawn from a common
space. We distinguish between the distributions
Dmeta-train and Dmeta-adapt, which correspond to the two
levels of adaptation introduced in Section 2 and
explained below in Section 2.4.

To enable cross-lingual transfer, we draw data
for the support set of tasks in Dmeta-train from task
data in the high-resource base language (English,
in our experiments). For the query set in Dmeta-train

and for both support and query sets in Dmeta-adapt,
we sample from task data in the language to be
evaluated.

2.4 X-METRA-ADA Algorithm

Following the notation described in the above sec-
tions, we present our algorithm X-METRA-ADA,
our adaptation of MAML to cross-lingual trans-
fer learning in two stages. In each stage we use
the procedure outlined in Algorithm 1. We start
by sampling a batch of tasks from distribution D.
For every task Tj = (Sj , Qj), we update θj over
n steps using batches drawn from Sj . At the end
of this inner loop, we compute the gradients with
respect to the loss of θj on Qj . At the end of all
tasks of each batch, we sum over all pre-computed
gradients and update θ, thus completing one outer
loop. The difference between meta-train and meta-
adapt stages comes down to the parameters and
hyperparameters passed into Algorithm 1.

• Meta-train: This stage is similar to classical
MAML. Task sets are sampled from Dmeta-train,
which uses high-resource (typically English) data
in support sets and low-resource data in the query
sets. The input model θB is typically a pre-
trained multilingual downstream base model, and
we use hyperparameters n = 5, α = 1e−3 and
β = 1e−2 for MTOD and α = β = 3e−5 for
QA.

2Thus k is constrained to be a multiple of q.

Algorithm 1 X-METRA-ADA
Require: Task set distribution D, pre-trained learner B with

parameters θB , meta-learner M with parameters (θ, α, β,
n)

1: Initialize θ ← θB
2: while not done do
3: Sample batch of tasks T = {T1, T2, . . . Tb} ∼ D
4: for all Tj = (Sj , Qj) in T do
5: Initialize θj ← θ
6: for t = 1 . . . n do
7: Evaluate ∂Bθj/∂θj = ∇θjL

Sj

Tj
(Bθj )

8: Update θj = θj − α∂Bθj/∂θj
9: end for

10: Evaluate query loss LQj

Tj
(Bθj ) and save it for outer

loop
11: end for
12: Update θ ← θ − β∇θ

∑b
j=1 L

Qj

Tj
(Bθj )

13: end while

• Meta-adapt: During this stage, we ensure the
model knows how to learn from examples within
the target language under a low-resource regime.
Task sets are sampled from Dmeta-adapt, which uses
low-resource data in both support and query sets.
The input model is the optimization resulting
from meta-train, and we use hyperparameters
n = 5, α = 1e−3 and β = 1e−2 for MTOD and
α = β = 3e−5 for QA.

3 Experimental Setup

3.1 Datasets

For dialogue intent prediction, we use the Multilin-
gual Task-Oriented Dialogue (MTOD) (Schuster
et al., 2019) dataset. MTOD covers 3 languages
(English, Spanish, and Thai), 3 domains (alarm,
reminder, and weather), 12 intent types, and 11 slot
types.3 We train models with the English training
data (Train) but for the other languages we use
the provided development sets (Dev) to further our
goals to analyze methods of few-shot transfer. We
evaluate on the provided test sets. Moreover, we
evaluate on an in-house dataset of 7 languages.4

For QA, we use the Typologically Diverse QA
(TyDiQA-GoldP) (Clark et al., 2020) dataset. Ty-
DiQA is a typologically diverse question answer-
ing dataset covering 11 languages. Like Hu et al.
(2020), we use a simplified version of the primary
task. Specifically, we discard questions that don’t
have an answer and use only the gold passage as
context, keeping only the short answer and its spans.
This makes the task similar to XQuAD and MLQA,

3We follow the same pre-processing and evaluation as Liu
et al. (2020).

4More details are included in the Appendix C.
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although unlike these tasks, the questions are writ-
ten without looking at the answers and without
machine translation. As with MTOD, we use the
English training data as Train. Since development
sets are not specified for MTOD, we instead reserve
10% of the training data in each of the other lan-
guages as Dev. We report on the provided test sets.
Statistics of datasets for both tasks can be found in
Appendix A.

3.2 Evaluation

In order to fairly and consistently evaluate our
approach to few-shot transfer learning via meta-
learning and to ablate components of the method,
we design a series of experiments based on both in-
ternal and external baselines. Our internal baselines
ablate the effect of the X-METRA-ADA algorithm
vs. conventional fine-tuning from a model trained
on a high-resource language by keeping the data
sets used for training constant. As our specific data
conditions are not reproduced in any externally re-
ported results on these tasks, we instead compare to
other reported results using English-only or entirely
zero-shot training data.

Internal Evaluation We design the following
fine-tuning/few-shot schemes:

• PRE: An initial model is fine-tuned on the Train
split of English only and then evaluated on new
languages with no further tuning or adaptation.
This strawman baseline has exposure to English
task data only.

• MONO: An initial model is fine-tuned on the
Dev split of the target language. This baseline
serves as a comparison for standard fine-tuning
(FT, below), which shows the value of combining
MONO and PRE.

• FT: We fine-tune the PRE model on the Dev
split of the target language. This is a standard
transfer learning approach that combines PRE
and MONO.

• FT w/EN: Like FT, except both the Dev split
of the target language and the Train split of
English are used for fine-tuning. This is used
for dataset equivalence with X-METRA-ADA
(below).

• X-METRA: We use the PRE model as θB for
meta-train, the Train split from English to form
support sets in Dmeta−train, and all of the Dev
split of the target language to form query sets in
Dmeta−train.

• X-METRA-ADA: We use the PRE model as θB
for meta-train, the Train split from English to
form support sets inDmeta-train. For MTOD, we use
75% of the Dev split of the target language to
form query sets inDmeta-train. We use the remaining
25% of the Dev split of the target language for
both the support and query sets of Dmeta-adapt. For
QA, we use ratios of 60% for Dmeta-train and 40%
for Dmeta-adapt.

All models are ultimately fine-tuned versions of
BERT and all have access to the same task training
data relevant for their variant. That is, X-METRA-
ADA and PRE both see the same English Train
data and MONO, FT, and X-METRA-ADA see the
same target language Dev data. However, since
X-METRA-ADA uses both Train and Dev to im-
prove upon PRE, and FT only uses Dev, we make
an apples-to-apples comparison, data-wise, by in-
cluding FT w/EN experiments as well.

External Baselines We focus mainly on transfer
learning baselines from contextualized embeddings
for a coherent external comparison; supervised ex-
periments on target language data such as those
reported in Schuster et al. (2019) are inappropriate
for comparison because they use much more in-
language labeled data to train. The experiments we
compare to are zero-shot in the sense that they are
not trained directly on the language-specific task
data. However, most of these external baselines in-
volve some strong cross-lingual supervision either
through cross-lingual alignment or mixed-language
training. We also include machine translation base-
lines, which are often competitive and hard to beat.
Our work, by contrast, uses no parallel language
data or resources beyond pretrained multilingual
language models, labeled English data, and few-
shot labeled target language data. To the best of our
knowledge, we are the first to explore cross-lingual
meta-transfer learning for those benchmarks, so we
only report on our X-METRA-ADA approach in
addition to those baselines.

For MTOD, then, we focus on the following
external baselines:

• Cross-lingual alignment-based approaches: We
use MCoVe, a multilingual version of contextual-
ized word vectors with an autoencoder objective
as reported by Schuster et al. (2019) in addition
to M-BERT (Liu et al., 2020). We also include
XLM trained on Translation Language Modeling
(TLM) + Masked Language Modeling (MLM)
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(Lample and Conneau, 2019) as enhanced by
Transformer and mixed-training as reported by
Liu et al. (2020).

• Mixed-language training approaches: We use M-
BERT + Transformer + mixed training using data
from the dialogue domain: from (a) human-based
word selection (MLTH ) and (b) attention-based
word selection (MLTA), both are reported by Liu
et al. (2020).

• Translation-based approaches: We use the zero-
shot version of MMTE, the massively multilin-
gual translation encoder by Siddhant et al. (2020)
fine-tuned on intent classification. We also in-
clude Translate Train (TTrain) (Schuster et al.,
2019), which translates English training data into
target languages to train on them in addition to
the target language training data.

For TyDiQA-GoldP, out of the already mentioned
baselines, we use M-BERT, XLM, MMTE, and
TTrain (which unlike (Schuster et al., 2019) only
translates English to the target language to train on
it without data augmentation). In addition to that
we also include XLM-R as reported by Hu et al.
(2020).
3.3 Implementation Details
We use M-BERT (bert-base-multilingual-cased)5

with 12 layers as initial models for MTOD and
TyDiQA-GoldP in our internal evaluation. We use
xlm-r-distilroberta-base-paraphrase-v16 model for
computing similarities when constructing the QA
meta-dataset (Section 2.3.2).

Our implementation of X-METRA-ADA from
scratch uses learn2learn (Arnold et al., 2020) for
differentiation and update rules in the inner loop.7

We use the first-order approximation option in
learn2learn for updating the outer loop, also in-
troduced in Finn et al. (2017). For each model, we
run for 3 to 4 different random initializations (for
some experiments like PRE for TyDiQA-GoldP we
use only 2 seeds respectively) and report the aver-
age and standard deviation of the best model for the
few-shot language for each run. We use training
loss convergence as a criteria for stopping. For the
FT and MONO baselines, we don’t have the luxury
of Dev performance, since those baselines use the

5github.com/huggingface/transformers
version 3.4.0 pre-trained on 104 languages, including all
languages evaluated on in this paper.

6github.com/UKPLab/
sentence-transformers which uses XLM-R as
the base model.

7github.com/learnables/learn2learn.

Dev dataset for training.8 TheDev set is chosen to
simulate a low-resource setup. More details on the
hyperparameters used can be found in Appendix B.

4 Results and Discussion

4.1 Zero-shot and Few-shot Cross-Lingual
NLU and QA

Model Spanish Thai
Intent Acc Slot F1 Intent Acc Slot F1

External Baselines

MCoVe† 53.9 19.3 70.7 35.6
M-BERT‡ 73.7 51.7 28.1 10.6
MLT‡H 82.9 74.9 53.8 26.1
MLT‡A 87.9 73.9 73.5 27.1
XLM‡ 87.5 68.5 72.6 27.9
MMTE+ 93.6 - 89.6 -
TTrain‡ 85.4 72.9 95.9 55.4

Zero-shot Learning

PRE 70.2 38.2 45.4 12.5

Few-shot Learning

MONO 82.4 ±6.0 43.9 ±1.5 79.1 ±4.7 54.1 ±3.9

FT 90.7 ±0.3 67.6 ±1.3 78.9 ±0.2 66.0 ±2.1
FT w/EN 88.7 ±0.4 67.4 ±1.4 73.7 ±0.1 66.0 ±1.6

X-METRA 89.6 ±1.3 63.6 ±0.5 80.2 ±1.2 70.4 ±1.2
X-METRA-ADA 92.9 ±0.6 60.9 ±1.9 86.3 ±1.7 69.6 ±1.9

Table 1: Performance evaluation on MTOD between
meta-learning approaches, fine-tuning internal base-
lines and external baselines. All our internal experi-
ments use k = q = 6. Zero-shot learning experi-
ments that train only on English are distinguished from
few-shot learning, which include a fair internal compar-
ison. Models in bold indicate our own internal models.
MONO, FT, FT w/EN, X-METRA, and X-METRA-
ADA models include results for each test language
when training on that language. FT w/EN trains jointly
on English and only the target language. We highlight
the best scores in bold and underline the second best
for each language and sub-task. The rest are reported
from † (Schuster et al., 2019), ‡ (Liu et al., 2020), and
+ (Siddhant et al., 2020).

Table 1 shows the results for cross-lingual trans-
fer learning on MTOD comparing different base-
lines.9 In general, PRE model performs worse
than other baselines. It performs less than the sim-
plest baseline, MCoVe, when transferring to Thai
with a decrease of 25.3% and 23.1% and an aver-
age cross-lingual relative loss of 4.5% and 2.1%
for intent classification and slot filling respectively.

8All experiments are run using Pytorch version 1.6.0, 1
GeForce RTX P8 GPU of 11MB of memory CUDA version
10.1. The runtime depends on the size of the dev data but
most MTOD models take around 3 hours to converge and Ty-
DiQA models take a maximum of 10 hours training (including
evaluation at checkpoints).

9More results on our in-house NLU dataset can be found
in Appendix C.

github.com/huggingface/transformers
github.com/UKPLab/sentence-transformers
github.com/UKPLab/sentence-transformers
github.com/learnables/learn2learn
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Model Test on
Arabic Bengali Finnish Indonesian Russian Swahili Telugu

External Baselines

M-BERT† 62.2 49.3 59.7 64.8 60.0 57.5 49.6
XLM† 59.4 27.2 58.2 62.5 49.2 39.4 15.5
XLM-R† 67.6 64.0 70.5 77.4 67.0 66.1 70.1
MMTE† 63.1 55.8 53.9 60.9 58.9 63.1 54.2
TTrain† 61.5 31.9 62.6 68.6 53.1 61.9 27.4

Zero-shot Learning

PRE 62.4 ±2.2 32.9 ±1.4 57.7 ±4.4 67.8 ±3.8 58.2 ±3.7 55.5 ±2.9 33.0 ±5.9

Few-shot Learning

MONO 74.0 ±1.1 38.9 ±0.8 63.3 ±1.5 67.1 ±1.9 54.4 ±1.3 60.3 ±1.2 61.4 ±1.0

FT 77.0 ±0.3 51.0 ±2.7 70.9 ±0.4 77.0 ±0.4 64.8 ±0.4 70.2 ±1.7 65.4 ±0.6

X-METRA 78.5 ±0.6 53.2 ±0.5 72.7 ±0.4 77.7 ±0.2 66.1 ±0.1 71.7 ±0.2 66.6 ±0.4
X-METRA-ADA 76.6 ±0.1 57.8 ±0.6 73.0 ±0.3 77.3 ±0.1 66.9 ±0.1 70.3 ±0.2 72.8 ±0.1

Table 2: F1 comparison on TyDiQA-GoldP between different meta-learning approaches, fine tuning and external
baselines. We highlight the best scores in bold and underline the second best for each language. Our own models
are in bold, whereas the rest are reported from † (Hu et al., 2020). This is using k = q = 6.

(a) Intent Accuracy on Spanish (b) Intent Accuracy on Thai
Figure 4: Ablation of the role of adaptation in X-METRA-ADA compared to X-METRA (X-METRA-ADA with
the meta-training stage only). X-METRA-ADA converges faster than X-METRA which in turn is better than FT
for both languages. More plots can be found in Appendix E.

This suggests that zero-shot fine-tuning M-BERT
on English only is over-fitting on English and its
similar languages. Using MLTA which adds more
dialogue-specific mixed training helps reduce that
gap for Thai on intent accuracy mainly, but not
with the same degree on slot filling.

The results confirm the positive effects of cross-
lingual fine-tuning; although PRE is not a very
effective cross-lingual learner, fine-tuning with in-
language data on top of PRE (i.e. FT) adds value
over the MONO baseline. Adding English data to
fine-tuning (FT w/EN) is slightly harmful. How-
ever, the meta-learning approach appears to make
the most effective use of this data in almost all cases
(Spanish slot filling is an exception). We perform
a pairwise two-sample t-test (assuming unequal
variance) and find the results of X-METRA-ADA
compared to FT on intent classification to be statis-
tically significant with p-values of 1.5% and 2.4%

for Spanish and Thai respectively, rejecting the null
hypothesis with 95% confidence.

X-METRA-ADA outperforms all previous exter-
nal baselines and fine-tuning models for both Span-
ish and Thai (except for slot filling on Spanish).
We achieve the best overall performance with an
average cross-lingual cross-task increase of 3.2%
over the FT baseline, 6.9% over FT w/EN, and
12.6% over MONO. Among all models, MONO
has the least stability as suggested by higher av-
erage standard deviation. There is a tendency for
X-METRA-ADA to work better for languages like
Thai compared to Spanish as Thai is a truly low-
resource language. This suggests that pre-training
on English only learns an unsuitable initialization,
impeding its generalization to other languages. As
expected, fine-tuning on small amounts of the Dev
data does not help the model generalize to new lan-
guages. MONO baselines exhibit less stability than



3624

X-METRA-ADA. On the other hand, X-METRA-
ADA learns a more stable and successful adaptation
to that language even on top of a model pre-trained
on English with less over-fitting.

Table 2 shows a comparison of methods for
TyDiQA-GoldP across seven language, evaluat-
ing using F1.10 The benefits of fine-tuning and
improvements from X-METRA-ADA observed
in Table 1 are confirmed. We also compare X-
METRA-ADA to X-METRA, which is equivalent
to X-METRA-ADA without the meta-adaptation
phase. On average, X-METRA increases by 10.8%
and 1.5% over the best external and fine-tuning
baseline respectively, whereas MONO results lag
behind. X-METRA-ADA outperforms X-METRA
on average and is especially helpful on languages
like Bengali and Telugu. We compare X-METRA
and X-METRA-ADA in more depth in Section 4.2.
Meta-learning significantly and consistently outper-
forms fine-tuning.

In Appendix D, we report zero-shot results for
QA and notice improvements using X-METRA-
ADA over FT for some languages. However,
we cannot claim that there is a direct correla-
tion between the degree to which the language
is low-resource and the gain in performance of
X-METRA-ADA over fine-tuning. Other factors
like similarities of grammatical and morphologi-
cal structure, and shared vocabulary in addition
to consistency of annotation may play a role in
the observed cross-lingual benefits. Studying such
correlations is beyond the scope of this paper.

4.2 More Analysis

Meta-Adaptation Role The learning curves in
Figure 4 compare X-METRA-ADA, X-METRA
(i.e. meta-training but no meta-adaptation), and
fine-tuning, both with English and with target lan-
guage data only, for both Spanish and Thai intent
detection in MTOD. In general, including English
data in with in-language fine-tuning data lags be-
hind language-specific training for all models, lan-
guages, and sub-tasks. With the exception of slot
filling on Spanish, there is a clear gap between
naive fine-tuning and meta-learning, with a gain in
the favor of X-METRA-ADA especially for Thai.
Naive fine-tuning, X-METRA, and X-METRA-
ADA all start from the same checkpoint fine-tuned
on English. All model variants are sampled from

10Full results using Exact Match scores too can be found in
Appendix D.

the same data. For Spanish, continuing to use En-
glish in naive fine-tuning to Spanish reaches better
performance than both variants of meta-learning
for Slot filling on Spanish (see Appendix E). This
could be due to the typological similarity of Span-
ish and English, which makes optimization fairly
easy for naive fine-tuning compared to Thai, which
is both typologically distant and low-resource.

Figure 5: MTOD intent classification and slot filling
on Spanish with different shots. The number of shots is
the same for both support and query sets (i.e. k = q).

Figure 6: TyDiQA-GoldP F1 score analysis of differ-
ent shots for both the support and query.

K-Shot Analysis We perform a k-shot analysis
by treating the number of instances seen per class
(i.e. ‘shots’) as a hyper-parameter to determine at
which level few-shot meta-learning starts to out-
perform the fine-tuning and monolingual baselines.
As shown in Figure 5, it seems that while even
one shot for X-METRA-ADA is better than fine-
tuning on intent classification, k = q = 9 shot
and k = q = 6 shot are at the same level of sta-
bility with very slightly better results for 6 shot
showing that more shots beyond this level will not
improve the performance. While 1 shot perfor-
mance is slightly below our monolingual baseline,
it starts approaching the same level of performance
as 3 shot upon convergence.

Figure 6 shows an analysis over both k and q
shots for TyDiQA-GoldP. In general, increasing q
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helps more than increasing k. The gap is bigger
between k = 6 q = 3 and k = 6 q = 6 especially
for languages like Bengali and Telugu. We can
also see that k = 6 q = 3 is at the same level of
performance to FT for those languages.

Figure 7: Downsampling analysis for Thai MTOD with
different percentages of query data.

Downsampling Analysis We perform a down-
sampling analysis, where we gradually decrease
the proportion of the overall set from which the
target language is sampled used for few-shot learn-
ing in X-METRA-ADA and FT. Figure 7 shows a
comparison between intent accuracies and slot F1
scores between the main models X-METRA-ADA
and FT on Thai. We notice that as the percentage of
query data increases, the gap between X-METRA-
ADA and FT increases slightly, whereas the gain
effect on slots is steadier. This suggests that X-
METRA-ADA is at the same level of effectiveness
even for lower percentages.

5 Related Work
Cross-lingual transfer learning Recent efforts
apply cross-lingual transfer to downstream applica-
tions such as information retrieval (Jiang et al.,
2020); information extraction (M’hamdi et al.,
2019, Bari et al., 2020b), and chatbot applications
(Lin et al., 2020, Abbet et al., 2018). Upadhyay
et al. (2018) and Schuster et al. (2019) propose the
first real attempts at cross-lingual task-oriented di-
alog using transfer learning. Although they show
that cross-lingual joint training outperforms mono-
lingual training, their zero-shot model lags behind
machine translation for other languages.

To circumvent imperfect alignments in the cross-
lingual representations, Liu et al. (2019) propose a
latent variable model combined with cross-lingual
refinement with a small bilingual dictionary re-
lated to the dialogue domain. Liu et al. (2020) en-
hance Transformer-based embeddings with mixed

language training to learn inter-lingual semantics
across languages. However, although these ap-
proaches show promising zero-shot performance
for Spanish, their learned refined alignments are
not good enough to surpass machine translation
baselines on Thai.

More recently, Hu et al. (2020) and Liang
et al. (2020) introduce XTREME and XGLUE
benchmarks for the large-scale evaluation of cross-
lingual capabilities of pre-trained models across
a diverse set of understanding and generation
tasks. In addition to M-BERT, they analyze models
like XLM (Lample and Conneau, 2019) and Uni-
coder (Huang et al., 2019). Although the latter two
models slightly outperform M-BERT, they need
a large amount of parallel data to be pre-trained.
It is also not clear the extent to which massive
cross-lingual supervision helps to bridge the gap to
linguistically distant languages.
Meta-learning for NLP Previous work in meta-
learning for NLP is focused on the application of
first-order MAML (Finn et al., 2017). Earlier work
by Gu et al. (2018) extends MAML to improve low-
resource languages for neural machine translation.
Dou et al. (2019) apply MAML to NLU tasks in the
GLUE benchmark. They show that meta-learning
is a better alternative to multi-task learning, but
they only validate their approach on English. Wu
et al. (2020) also use MAML for cross-lingual
NER with a slight enhancement to the loss func-
tion. More recently, Nooralahzadeh et al. (2020)
also directly leverage MAML on top of M-BERT
and XLM-R for zero-shot and few-shot XNLI and
MLQA datasets. Although their attempt shows that
cross-lingual transfer using MAML outperforms
other baselines, the degree of typological common-
alities among languages plays a significant role in
that effect. In addition to that, their approach is an
oversimplification of the n-way k-shot setup, with
a one-fit-all sampling of data points for support and
query and additional supervised fine-tuning.

6 Conclusion
In this paper, we adapt a meta-learning approach
for cross-lingual transfer learning in Natural Lan-
guage Understanding tasks. Our experiments cover
two challenging cross-lingual benchmarks: task-
oriented dialog and natural questions including an
extensive set of low-resource and typologically di-
verse languages. X-METRA-ADA reaches better
convergence stability on top of fine-tuning, reach-
ing a new state of the art for most languages.
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A Dataset Statistics

Tables 3 and 4 show the statistics of MTOD and
TyDiQA respectively per language and split.
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Lang ISO Train Dev Test
English EN 30,521 4,181 8,621
Spanish ES 3,617 1,983 3,043
Thai TH 2,156 1,235 1,692

Table 3: Statistics of MTOD dataset (Schuster et al.,
2019) per language and split.

Lang ISO Train Dev Test
English EN 3,326 370 440
Arabic AR 13,324 1,481 921
Bengali BN 2,151 239 113
Finnish FI 6,169 686 782
Indonesian ID 5,131 571 565
Russian RU 5,841 649 812
Swahili SW 2,479 276 499
Telugu TE 5,006 557 669

Table 4: Statistics of TyDiQA-GoldP dataset per lan-
guage and split. Korean is excluded due to some en-
coding issues.

B Hyperparameters

For MTOD, we fine-tune PRE on English training
data. We use a batch size of 32, a dropout rate
of 0.3, AdamW with a learning rate of 4e−5, and
ε of 1e−8. We train for around 2000 steps. Be-
yond that point more training does not reveal nec-
essary, so we perform early stopping at that point.
For MONO, using a smaller learning rate of 4e−5
helped achieve a good convergence for that model.
For all FT experiments, we use the same learning
rate of 1e−3, which gave a better convergence.

For QA, we use a batch size of 4, doc stride of
128, a fixed maximum sequence length of 384, and
a maximum length of questions of 30 words. We
use AdamW optimizer throughout all experiments,
which uses weight decay of 1e−3, learning rate
of 3e−5, and a scheduler of 4 warm-up steps.11

We fine-tune PRE for 2 epochs and observe no
more gains in performance. For all MONO and
FT experiments, we use the same learning rate of
3e−5. This is the same optimizer and learning rate
used for the outer loops in meta-learning as well.

For X-METRA-ADA and X-METRA, we sam-
ple 2500 tasks in total for both MTOD and QA.
For each task, we randomly sample k = q = 6 ex-
amples from each intent class to form the support
and query sets respectively (we consider all classes
not only the intersection across languages). For
QA, we use only one support example per query
class and 6 query examples as classes. For the in-
ner loop, we use learn2learn pre-built optimizer.

11Those hyperparameters are chosen based on Hu et al.
(2020).

For the outer loop, we use a standard Adam opti-
mizer. In splitting the few-shot set, we use 75% for
the meta-training and 25% for the meta-adaptation
for MTOD. For QA, we use 60% of the query for
meta-train and the remaining for meta-adaptation.

C Results on in-House Intent
Classification Dataset

We perform an extensive evaluation including other
languages for intent classification. We use an in-
house dataset covering 6 target languages in addi-
tion to English. Statistics of train/dev/test splits are
shown in Table 5. Table 6 shows a better perfor-
mance in the favor of X-METRA with an average
cross-lingual gain of 13.5% in accuracy over PRE.
We notice that few-shot learning on the language
of interest leads to the best performance, as indi-
cated by higher numbers on the diagonal in the
confusion matrix. Evaluation on more languages
shows some complicity trends between languages
from the same family. In addition to that, we notice
that languages like Japanese and Korean help each
other where few-shot on one helps zero-shot on the
other by a margin of 15.6 and 5.6 on Korean and
Japanese respectively.

Lang Train Dev Test
English 5,438 1,814 1,814
German 1,570 526 526
French 1,082 362 362
Italian 1,082 362 362
Portuguese 1,150 386 386
Japanese 1,070 358 358
Korean 938 314 314

Table 5: Statistics of In-House multilingual intent clas-
sification Dataset.

D Full results for QA

Tables 7 and 8 show the full results for F1 and
Exact Match (EM) metrics for QA respectively.

Type Model Test on
DE FR IT PT JA KR

PRE EN 19.1 30.0 30.1 26.1 14.6 5.1

X-METRA

DE 34.3 33.3 30.0 30.2 13.5 8.9
FR 19.2 34.1 29.9 29.1 5.8 9.0
IT 18.3 32.2 44.4 30.2 6.7 10.2
PT 19.1 27.7 30.1 31.4 5.8 9.0
JA 24.1 25.7 33.2 26.1 30.9 20.7
KR 24.4 25.6 34.4 25.0 20.2 30.7

Table 6: X-METRA results on an In-House multilin-
gual intent data. Bold results highlight best results for
each test language.
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Model Test on
AR BN FI ID RU SW TE

MONO

AR 74.0 ±1.1 30.1 ±2.4 50.0 ±0.8 59.5 ±1.3 48.4 ±0.8 50.8 ±1.7 24.1 ±2.7
BN 32.2 ±2.6 38.9 ±0.8 33.9 ±1.4 36.3 ±1.5 31.8 ±1.4 37.2 ±1.8 34.7 ±4.2
FI 54.2 ±2.5 30.7 ±1.3 63.3 ±1.5 52.5 ±1.7 43.0 ±2.1 48.6 ±1.7 28.7 ±2.8
ID 58.0 ±1.8 31.8 ±0.5 48.2 ±2.0 67.1 ±1.9 45.1 ±1.8 50.3 ±1.8 29.4 ±2.7
RU 50.9 ±2.3 34.5 ±2.1 45.2 ±4.2 52.0 ±4.0 54.4 ±1.3 47.1 ±2.1 30.7 ±2.5
SW 35.8 ±1.5 27.6 ±1.5 33.6 ±2.1 37.4 ±1.9 25.7 ±1.7 60.3 ±1.2 13.2 ±2.3
TE 34.0 ±0.9 38.0 ±2.2 39.5 ±0.6 35.3 ±1.1 35.9 ±1.1 43.5 ±1.0 61.4 ±1.0

FT

AR 77.0 ±0.3 36.8 ±2.9 58.8 ±0.6 67.0 ±2.7 60.9 ±0.8 52.4 ±3.6 32.0 ±1.0
BN 60.7 ±0.4 51.0 ±2.7 59.2 ±0.6 67.1 ±1.6 59.2 ±0.3 56.2 ±0.8 43.7 ±0.9
FI 60.3 ±1.9 36.7 ±1.3 70.9 ±0.4 65.7 ±1.4 62.1 ±0.5 50.9 ±1.3 36.4 ±3.6
ID 65.7 ±1.4 37.0 ±1.1 60.8 ±0.2 77.0 ±0.4 61.1 ±0.5 56.8 ±1.0 36.7 ±0.4
RU 60.9 ±2.5 37.2 ±2.0 59.0 ±2.1 66.8 ±1.3 64.8 ±0.4 55.2 ±1.8 36.8 ±1.3
SW 57.4 ±0.5 35.2 ±1.5 56.2 ±1.0 65.4 ±1.8 58.8 ±0.8 70.2 ±1.7 33.1 ±2.8
TE 54.0 ±3.2 39.1 ±2.1 54.8 ±2.3 63.5 ±2.6 58.1 ±0.9 56.9 ±1.8 65.4 ±0.6

X-METRA

AR 78.4 ±0.6 33.0 ±0.8 58.2 ±0.2 66.4 ±1.4 59.9 ±0.1 53.2 ±3.8 31.4 ±3.0
BN 56.9 ±3.2 53.2 ±0.5 56.7 ±1.4 67.4 ±1.2 56.7 ±1.3 56.0 ±0.9 41.7 ±0.6
FI 58.9 ±0.6 33.6 ±1.1 72.8 ±0.3 61.9 ±2.0 60.7 ±0.9 46.5 ±1.2 36.6 ±1.7
ID 65.8 ±0.3 35.0 ±2.2 60.5 ±0.9 77.7 ±0.2 60.4 ±1.3 57.4 ±1.1 35.3 ±0.3
RU 60.3 ±1.6 37.2 ±0.7 59.1 ±0.3 66.8 ±0.8 66.2 ±0.1 53.7 ±0.8 33.2 ±3.1
SW 58.5 ±0.0 36.9 ±1.2 56.0 ±0.2 64.8 ±0.7 58.4 ±0.4 71.9 ±0.2 33.7 ±1.5
TE 56.0 ±3.0 38.8 ±0.1 53.6 ±1.7 61.1 ±1.9 58.6 ±0.6 55.8 ±0.2 66.4 ±0.5

X-METRA-ADA

AR 76.6 ±0.1 49.6 ±1.3 63.4 ±0.4 70.9 ±0.1 60.1 ±1.0 56.8 ±0.4 42.4 ±2.5
BN 59.4 ±0.3 57.8 ±0.6 59.2 ±0.2 63.1 ±0.2 56.5 ±0.2 56.1 ±0.3 44.1 ±0.4
FI 62.8 ±1.3 50.8 ±1.3 73.0 ±0.3 65.5 ±1.2 60.1 ±0.4 54.9 ±0.3 42.5 ±0.5
ID 66.7 ±0.3 49.9 ±0.5 62.6 ±0.7 77.3 ±0.1 58.3 ±0.9 58.1 ±0.6 42.6 ±0.4
RU 62.2 ±0.7 47.6 ±1.6 63.1 ±0.2 63.4 ±0.9 66.9 ±0.1 56.0 ±1.1 43.3 ±1.2
SW 59.1 ±0.7 49.1 ±1.1 58.1 ±0.2 62.1 ±1.0 54.6 ±0.6 70.3 ±0.2 43.2 ±0.7
TE 58.2 ±2.8 52.1 ±1.7 61.5 ±1.0 62.0 ±0.5 58.2 ±0.5 59.7 ±1.4 72.8 ±0.1

Table 7: Full F1 Results on TyDiQA-GoldP between external, pre-training, monolingual and fine-tuning baselines
on one hand and X-METRA and X-METRA-ADA on the other hand.

E More Ablation

Figure 8 compares between the learning curves for
language-specific and joint training with respect to
slot filling for both Spanish and Thai.

F More Analysis

More Downsampling Analysis Figure 9 shows
a downsampling analysis on Spanish. Due to the ty-
pological similarity between Spanish and English,
even lower percentages starting from 50% of the
query reach a maximal performance for both intent
classification and slot filling.

BERTology Analysis We analyze the degree of
contribution of M-BERT layers by freezing each
pair of layers separately. Our analysis is not con-
clusive as the performance doesn’t change signifi-
cantly between layers. We then proceed to freeze
all layers of M-BERT to discover that linear layers
are more important in refining the cross-lingual

alignment to the target language as shown by
the narrow gap between freezing vs non-freezing
BERT layers in Figure 10. This can be explained
by the challenge of fine-tuning M-BERT alone with
many layers and higher dimensionality for such a
low-resource setting.
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Model Test on
AR BN FI ID RU SW TE

MONO

AR 57.5 ±1.5 19.7 ±2.9 35.1 ±1.0 44.2 ±1.3 25.2 ±0.9 33.8 ±1.4 14.9 ±1.7
BN 17.1 ±1.4 24.5 ±2.9 17.5 ±0.4 20.8 ±2.0 14.4 ±0.5 20.5 ±1.4 19.9 ±5.0
FI 33.7 ±4.0 15.6 ±1.6 49.8 ±1.3 35.3 ±2.3 21.4 ±1.4 26.1 ±9.9 16.5 ±3.9
ID 39.7 ±1.4 18.6 ±1.3 32.7 ±1.9 54.9 ±0.1 23.8 ±0.6 34.4 ±1.2 16.9 ±4.9
RU 30.8 ±1.9 26.3 ±4.9 29.7 ±2.4 34.9 ±4.0 37.9 ±1.6 30.7 ±3.1 19.9 ±1.9
SW 16.0 ±1.3 16.5 ±1.5 15.6 ±1.0 21.1 ±1.3 10.5 ±1.3 48.6 ±1.2 5.3 ±1.7
TE 18.8 ±2.0 26.3 ±1.5 23.8 ±2.6 21.6 ±2.5 20.4 ±1.2 26.7 ±1.7 46.3 ±1.1

FT

AR 61.3 ±1.0 26.5 ±4.4 43.1 ±1.0 52.2 ±2.0 37.9 ±2.5 35.6 ±3.3 21.0 ±3.0
BN 42.2 ±0.9 38.0 ±4.4 44.8 ±1.2 51.5 ±2.2 36.8 ±1.6 37.2 ±1.7 27.3 ±0.2
FI 43.2 ±1.8 23.6 ±1.1 56.5 ±0.6 50.8 ±2.1 40.5 ±0.8 33.5 ±1.2 20.7 ±3.3
ID 49.4 ±1.6 23.3 ±2.4 46.4 ±0.4 63.8 ±0.5 40.5 ±0.1 38.1 ±2.1 24.1 ±0.5
RU 42.6 ±2.6 24.8 ±3.3 43.5 ±2.0 52.4 ±2.3 46.5 ±0.4 37.6 ±1.5 24.5 ±1.3
SW 38.9 ±0.6 23.0 ±1.4 40.1 ±1.4 50.0 ±1.7 38.0 ±0.8 59.0 ±3.1 23.5 ±1.4
TE 36.1 ±2.2 30.0 ±2.3 40.0 ±2.5 49.4 ±2.1 38.6 ±0.9 39.0 ±1.7 49.2 ±0.5

X-METRA

AR 63.3 ±0.8 21.2 ±1.9 42.6 ±1.0 51.8 ±1.2 34.9 ±1.1 36.0 ±3.5 20.9 ±1.7
BN 29.2 ±16.5 39.0 ±1.9 41.9 ±1.6 51.1 ±1.7 34.1 ±0.4 37.1 ±1.4 25.6 ±0.2
FI 42.0 ±1.0 20.4 ±0.7 59.1 ±1.1 46.0 ±2.7 36.8 ±1.3 30.9 ±0.6 22.5 ±0.9
ID 54.8 ±7.9 20.1 ±1.5 46.1 ±1.2 65.2 ±0.5 38.5 ±1.9 39.6 ±0.8 23.1 ±1.4
RU 42.9 ±1.3 26.5 ±1.2 43.0 ±0.6 53.0 ±0.1 48.9 ±0.4 35.3 ±1.0 21.6 ±2.4
SW 39.9 ±0.4 26.0 ±1.1 40.0 ±0.7 50.3 ±0.4 38.0 ±0.9 61.4 ±0.4 23.9 ±0.7
TE 38.0 ±3.9 28.3 ±0.0 37.0 ±2.3 47.6 ±3.4 36.3 ±0.5 36.9 ±1.2 49.7 ±0.5

X-METRA-ADA

AR 55.0 ±0.3 36.0 ±3.0 43.8 ±0.5 55.2 ±0.5 35.4 ±2.6 40.0 ±0.2 31.9 ±2.2
BN 38.4 ±0.3 41.0 ±0.8 43.5 ±0.4 46.7 ±0.1 32.4 ±0.4 37.9 ±0.4 33.8 ±0.7
FI 40.9 ±1.1 34.2 ±1.1 57.9 ±1.0 49.0 ±1.4 35.3 ±0.3 38.0 ±0.7 30.0 ±1.0
ID 45.4 ±0.4 33.9 ±1.1 47.6 ±0.4 63.4 ±0.4 36.3 ±0.9 43.4 ±0.8 31.9 ±0.2
RU 39.4 ±0.1 34.8 ±1.5 45.1 ±0.5 48.6 ±0.9 47.5 ±0.3 39.3 ±1.3 33.8 ±1.3
SW 36.7 ±0.6 36.3 ±1.4 42.5 ±0.5 45.8 ±1.4 32.4 ±0.7 59.6 ±0.5 33.8 ±1.0
TE 37.9 ±1.9 38.1 ±2.6 44.9 ±1.4 48.0 ±0.3 38.8 ±0.4 43.5 ±1.6 56.4 ±0.4

Table 8: Full EM Results on TyDiQA-GoldP between external, pre-training, monolingual and fine-tuning baselines
on one hand, X-METRA and X-METRA-ADA on the other hand.

(a) Slot F1 on Spanish (b) Slot F1 on Thai
Figure 8: Ablation Study on the role of the adaptation in X-METRA-ADA compared to X-METRA (MAML with
only the meta-training stage) for different languages, language-specific vs joint training. All models are compared
to their fine-tuning counterparts.
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Figure 9: Downsampling Analysis for Few-shot on
Spanish with Different Percentages of Query data.

Figure 10: The effect of freezing BERT layers of X-
METRA-ADA during few-shot on intent classification.


