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Abstract

Multilingual models have demonstrated im-
pressive cross-lingual transfer performance.
However, test sets like XNLI are monolingual
at the example level. In multilingual commu-
nities, it is common for polyglots to code-mix
when conversing with each other. Inspired by
this phenomenon, we present two strong black-
box adversarial attacks (one word-level, one
phrase-level) for multilingual models that push
their ability to handle code-mixed sentences to
the limit. The former uses bilingual dictionar-
ies to propose perturbations and translations
of the clean example for sense disambiguation.
The latter directly aligns the clean example
with its translations before extracting phrases
as perturbations. Our phrase-level attack has
a success rate of 89.75% against XLM-Ryyge,
bringing its average accuracy of 79.85 down
to 8.18 on XNLI. Finally, we propose an effi-
cient adversarial training scheme that trains in
the same number of steps as the original model
and show that it improves model accuracy. '

1 Introduction

The past year has seen incredible breakthroughs in
cross-lingual generalization with the advent of mas-
sive multilingual models that aim to learn universal
language representations (Pires et al., 2019; Wu
and Dredze, 2019; Conneau et al., 2020b). These
models have demonstrated impressive cross-lingual
transfer abilities: simply fine-tuning them on task
data from a high resource language such as English
after pretraining on monolingual corpora was suffi-
cient to manifest such abilities. This was observed
even for languages with different scripts and no
vocabulary overlap (K et al., 2020).

However, transferring from one language to an-
other is insufficient for NLP systems to understand
multilingual speakers in an increasingly multilin-
gual world (Aronin and Singleton, 2008). In many
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Figure 1: BUMBLEBEE’s three key stages of adver-
sary generation: (a) Align words in the matrix (En-
glish) and embedded sentences (top: Indonesian,
bottom: ); (b) Extract candidate perturba-
tions from embedded sentences; (c¢) Construct final
adversary by maximizing the target model’s loss.

multilingual societies (e.g., Singapore, Papua New
Guinea, etc.), it is common for multilingual inter-
locutors to produce sentences by mixing words,
phrases, and even grammatical structures from the
languages in their repertoires (Matras and Sakel,
2007). This is known as code-mixing (Poplack
et al., 1988), a phenomenon common in casual con-
versational environments such as social media and
text messages.> Hence, it is crucial for NLP sys-
tems serving multilingual communities to be robust
to code-mixing if they are to understand and estab-
lish rapport with their users (Tay, 1989; Bawa et al.,
2020) or defend against adversarial polyglots.
Although gold standard data (Bali et al., 2014;
Patwa et al., 2020) is important for definitively
evaluating code-mixed text processing ability, such
datasets are expensive to collect and annotate. The

2Examples of real code-mixing in Appendix A.
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dizzying range of potential language combinations
further compounds the immensity of such an effort.
We posit that performance on appropriately
crafted adversaries could act as a lower bound of
a model’s ability to generalize to the distribution
simulated by said adversaries, an idea akin to worst-
case analysis (Divekar, 1984). For example, Tan
et al. (2020b) showed that an NLP system that was
robust to morphological adversaries was less per-
plexed by dialectal text exhibiting morphological
variation. Likewise, if a system is robust to code-
mixed adversaries constructed from some set of lan-
guages, it is reasonable to expect it to also perform
better on real code-mixed text in those languages.
While they may not fully model the intricacies of
real code-mixing (Sridhar and Sridhar, 1980), we
believe that they can be useful in the absence of
appropriate evaluation data. Hence, we:

* Propose two strong black-box adversarial attacks
targeting the cross-lingual generalization ability
of massive multilingual representations (Fig. 1),
demonstrating their effectiveness on state-of-the-
art models for natural language inference and
question answering. To our knowledge, these are
the first two multilingual adversarial attacks.

* Propose an efficient adversarial training scheme
that takes the same number of steps as standard
supervised training and show that it creates more
language-invariant representations, improving ac-
curacy in the absence of lexical overlap.

2 Related Work

Multilingual classifiers. Low resource lan-
guages often lack support due to the high cost of an-
notating data for supervised learning. An approach
to tackle this challenge is to build cross-lingual rep-
resentations that only need to be trained on task
data from a high resource language to perform well
on another under-resourced language (Klementiev
et al., 2012). Artetxe and Schwenk (2019) pre-
sented the first general purpose multilingual rep-
resentation using a BiLSTM encoder. Following
the success of Transformer models (Vaswani et al.,
2017), recent multilingual models like mBERT (De-
vlin et al., 2019), Unicoder (Huang et al., 2019),
and XLM-R (Conneau et al., 2020a) take the
pretraining—fine-tuning paradigm into the multi-
lingual realm by pretraining Transformer encoders
on unlabeled monolingual corpora with various lan-
guage modeling objectives before fine-tuning them

on task data from a high-resource language such as
English. This is known as cross-lingual transfer.

Code-mixed text processing. Previous research
on code-mixed text processing focused on con-
structing formal grammars (Joshi, 1982) and token-
level language identification (Bali et al., 2014;
Solorio et al., 2014; Barman et al., 2014), be-
fore progressing to named entity recognition and
part-of-speech tagging (Ball and Garrette, 2018;
AlGhamdi and Diab, 2019; Aguilar and Solorio,
2020). Recent work explores code-mixing in
higher-level tasks such as question answering and
task-oriented dialogue (Chandu et al., 2019; Ahn
et al., 2020). Muller et al. (2020) demonstrate
mBERT’s ability to transfer to an unseen dialect by
exploiting its speakers’ tendency to code-mix.

A key challenge of developing models that are
robust to code-mixing is the availability of code-
mixed datasets. Hence, Winata et al. (2019) use a
pointer-generator network to generate synthetically
code-mixed sentences while Pratapa et al. (2018)
explore the use of parse trees for the same purpose.

Yang et al. (2020) propose to improve machine
translation with “code-switching pretraining”, re-
placing words with their translations in a simi-
lar manner to masked language modeling (Devlin
et al., 2019). These word pairs are constructed
from monolingual corpora using cosine similarity.
Sitaram et al. (2019) provide a comprehensive sur-
vey of code-mixed language processing.

Word-level adversaries. Modified inputs aimed
at disrupting a model’s predictions are known as
adversarial examples (Szegedy et al., 2014). In
NLP, perturbations can be applied at the character,
subword, word, phrase, or sentence levels.

Early word-level adversarial attacks (Ebrahimi
et al., 2018; Blohm et al., 2018) made use of the
target model’s gradients to flip individual words to
trick the model into making the wrong prediction.
However, while the perturbations were adversarial
for the target model, perturbed word’s original se-
mantics was often not preserved. This could result
in the expected prediction changing and making
the model appear more brittle than it actually is.

Later research addressed this by searching for ad-
versarial rules (Ribeiro et al., 2018) or by constrain-
ing the candidate perturbations to the k nearest
neighbors in the embedding space (Alzantot et al.,
2018; Michel et al., 2019; Ren et al., 2019; Zhang
etal., 2019; Li et al., 2019; Jin et al., 2020). Zang



Original

P: The girl that can help me is all the way across town. H: There is no one who can help me.

Adversary  P: olan girl that can help me is all the way across town. H: 4> g2 ¥ one who can help me.
Prediction  Before: Contradiction  After: Entailment
Original  P: We didn’t know where they were going. H: We didn’t know where the people were traveling to.
Adversary  P: We didn’t know where they were going. H: We didn’t know where les gens allaient.
Prediction  Before: Entailment  After: Neutral
Original ~ P: Well it got to where there’s two or three aircraft arrive in a week and I didn’t know where they’re flying to.
H: There are never any aircraft arriving.
Adversary  P: o6mewm, morio o mahali there’s two or three aircraft arrive in a week and I didn’t know where they’re
flying to.
H: M\SRIEA aircraft arriving.
Prediction Before: Contradiction After: Entailment

Table 1: BUMBLEBEE adversaries found for XLM-R on XNLI (P: Premise; H: Hypothesis).

et al. (2020) take another approach by making use
of a annotated sememes to disambiguate polyse-
mous words, while Tan et al. (2020a) perturb only
the words’ morphology and encourage semantic
preservation via a part-of-speech constraint. Other
approaches make use of language models to gener-
ate candidate perturbations (Garg and Ramakrish-
nan, 2020; Han et al., 2020). Wallace et al. (2019)
find phrases that act as universally adversarial per-
turbations when prepended to clean inputs. Zhang
et al. (2020) provide a comprehensive survey.

Summary. Existing work on pretrained multilin-
gual models has highlighted their impressive zero-
shot cross-lingual transfer ability, though some
analyses (K et al., 2020) indicate this could be
a result of exploiting lexical overlaps rather than
an indication of true cross-lingual understand-
ing. Although language-agnosticity is commonly
measured via cross-lingual retrieval tasks such as
LAReQA (Roy et al., 2020) and similarity search
(Artetxe and Schwenk, 2019), we offer a differ-
ent perspective in this paper by operationalizing
it as a model’s ability to handle code-mixing. Ex-
isting evaluations for code-mixed text processing
focus on gold annotated data, but such datasets are
(relatively) expensive to compile and face similar
scarcity challenges as those for low-resource lan-
guages. Existing word-/phrase-level adversarial
attacks probing the limits of model robustness have
largely focused on monolingual (English) inputs.
In contrast, our adversarial attacks are designed to
test the robustness of multilingual models to adver-
sarial code-mixers. Finally, we propose an efficient
adversarial training scheme to improve the robust-
ness of said models to code-mixed adversaries.

3 Generating Multilingual Adversaries

Code-mixing is a phenomenon where a multilin-
gual speaker mixes words, and even grammatical

rules, from different languages in a single sentence.
This is distinguished from code-switching, which
occurs at the inter-sentential level (Kachru, 1978).

Extreme code-mixing. Inspired by the prolifer-
ation of real-life code-mixing and polyglots, we
propose POLYGLOSS and BUMBLEBEE, two multi-
lingual adversarial attacks that adopt the persona of
an adversarial code-mixer. We focus on the lexical
component of code-mixing, where some words in a
sentence are substituted with their equivalents from
another language in the interlocutor’s repertoire.
Borrowed words fall into two categories, nonce
borrowing and loanwords, though distinguishing
between them is beyond the scope of this work.

Since most code-mixers are bilinguals, natural
code-mixed sentences tend to be constructed from
two languages, with one language determining the
syntax of the overall sentence (Poplack et al., 1988).
However, in a world with an increasing number of
multilingual societies, it is conceivable for code-
mixing to occur between more than two languages
(Tan, 1988). We take this idea to the extreme to test
multilingual representations for their robustness to
such cross-lingual lexical variation.

Problem formulation. Given a target multilin-
gual model M, a clean example = with the label ,
and a set of embedded languages L. from which to
borrow words, we aim to generate the adversarial
example 2’ that maximizes M’s loss. Formally,

2’ = argmax L(y, M(z.)), (1)
rc€X

where x. € X is a candidate adversary generated
by perturbing xz, M is a task-specific neural model,
and £(-) is the model’s loss function.

3.1 PoLYGLOSS: Word-Level Adversaries

To obtain a code-mixed adversary, we first generate
candidate adversaries by substituting words in the



clean example with their equivalents from another
language. These substitutions/perturbations can be
generated by via machine translation or mined from
bilingual dictionaries. Following Myers-Scotton
(1997), we will refer to the original example’s lan-
guage as the matrix language and the perturbation’s
language as the embedded language.

Next, we perform beam search on the candi-
dates to find the adversary that maximizes the target
model’s loss in a black-box manner (Alg. 2 in Ap-
pendix B.1). In our implementation, we also keep
track of successful adversaries and return the ones
with the highest and lowest losses. The former is a
stronger adversary, while the latter often has fewer
perturbations. More details are in Appendix B.1.

Orthographic preservation. When the embed-
ded language uses a different script from the ma-
trix language, code-mixers tend to transliterate bor-
rowed words into the same script (Abuhakema,
2013; Bali et al., 2014). This still poses a signif-
icant challenge to multilingual models (Khanuja
et al., 2020). We generally preserve the embedded
language’s script where possible to avoid unfairly
penalizing the target model since there is often no
standard way of transliterating words.

Scalable sense disambiguation. Due to the pol-
ysemous nature of many words, translating the right
sense is crucial to preserving the word’s (and sen-
tence’s) semantics. Common word sense disam-
biguation methods (Agirre and Edmonds, 2007)
use a sense tagger trained on an annotated sense
inventory such as WordNet (Miller, 1995). How-
ever, this approach requires individual taggers and
sense inventories for each matrix and embedded
language, making it a serious challenge to extend
POLYGLOSS to low-resource languages.

Instead, we propose to filter candidate perturba-
tions using the embedded language translation of
the clean example. This is easily done by checking
if the candidate perturbation exists in the transla-
tion. Since our examples tend to be single sen-
tences, the probability of different senses of the
same word occurring in a single sentence is gener-
ally low (Conneau et al., 2018; Popel et al., 2020).
This approach only requires a machine translation
(MT) system and no extra linguistic information,
making it highly scalable as long as a supervised
(or unsupervised) machine translation system is
available. By using gold translations instead of
machine translations, it is even possible to mostly

Algorithm 1 BUMBLEBEE

Require: Clean example-label pair (z, y), Target Model M,
Embedded languages L.
Ensure: Adversarial example x’
T < TRANSLATE(z, target-languages = IL.)
Lo < GETLOSS(M, z,y)
B+ {(Ls,z,0)} > Initialize beam
P <~ ALIGNANDEXTRACTPHRASES(z, T)
while NOTEMPTY(B) do
L., Tc,i < POLL(B)
C + GETCANDIDATES(z, P[i])
L + GETLOsS(M, C,y)
1+ 1+1
UPDATEBEAM(B, L, C, 7)
end while
x' < POLL(B)
return z’

> Losses for C'

guarantee semantic preservation at the word-level.

3.2 BUMBLEBEE: Phrase-Level Adversaries

Although using bilingual dictionaries with our fil-
tering method ensures that the semantics of a bor-
rowed word matches the original, the dictionary’s
comprehensiveness determines the presence of suf-
ficient candidate adversaries. In addition, POLY-
GLOSS swaps words at the word level, which may
hurt the naturalness of the resulting sentence since
it is more common for code-mixers to borrow
phrases than individual words (Abuhakema, 2013).

A solution to these issues is to replace phrases in
the matrix sentence with their equivalents from the
reference translations instead of using a dictionary
lookup (Alg. 1). A key advantage of this approach
is its flexibility and scalability to more languages
since it only requires parallel bitexts from the ma-
trix and embedded languages. With the advent of
neural sequence-to-sequence models, such bitexts
can be easily generated using publicly available
MT models. However, a key challenge for this ap-
proach is extracting the matrix-embedded phrase
pairs from the clean example and its translation.
We follow common phrase-based machine transla-
tion methods and accomplish this by aligning the
matrix and embedded sentences (Koehn, 2010). Im-
plementation details can be found in Appendix B.2.

Syntactic preservation. To improve the adver-
saries’ naturalness, we impose an equivalence con-
straint (Poplack, 1980), preventing a perturbation
from being applied if it is from the same language
as the previous word and will disrupt the syntax of
the current phrase if applied (Winata et al., 2019).
Such disruptions usually occur when borrowing
words from languages with a different word order.



Model XNLI-13 XNLI-31
Clean PGy PGy ‘ Clean PGgy
XLM-Riarge 81.10 6.06 28.28 | 80.60 8.76
XLM-Rpase 7542 217 12.27 | 74.75 3.57
MBERT e 67.54 215 9.24 66.56 3.11
Unicoderpase | 74.98 1.99 11.33 | 74.28 3.73

Table 2: PoLYGLOSS (PG) results (accuracy) on XNLI-13
and -31 test sets with beam width = 1. PGy, 4t} indicates
whether the candidate perturbations were filtered using ref-
erence translations. Clean accuracy scores are the averages
across all languages in the test set. Lower is better.

Model XNLI-13 Standard XNLI
Clean BB | Clean Rand. BB
XLM-Riarge 81.10 11.31 | 79.85 75.04 8.18
XLM-Rpase 75.42 5.08 7406 65.19 3.53
MBERTpase 67.54 6.10 65.66 59.17 4.45
Unicoderpase | 74.98 4.81 73.69 65.55 3.61

Table 3: BUMBLEBEE (BB) results on XNLI with beam
width = 1. Clean accuracies are the averages across all lan-
guages in each test set. We include a random (Rand.) baseline
by randomly (rather than adversarially) perturbing sentences
and report the average across 5 seeds. Lower is better.

4 [Experiments

We first evaluate POLYGLOSS and BUMBLEBEE
on XNLI (Conneau et al., 2018), then evaluate the
stronger attack on XQuAD (Artetxe et al., 2020).
XNLI is a multilingual dataset for natural language
inference (NLI) with parallel translations for each
example in fifteen languages. Each example com-
prises a premise, hypothesis, and a label with three
possible classes: {contradiction, neutral, entail-
ment}. We construct two more datasets from XNLI:
XNLI-13 and XNLI-32. XNLI-13 comprises all
XNLI languages except Swahili and Urdu due to
the lack of suitable dictionaries for POLYGLOSS.
We then translate the English test set into eighteen
other languages with MT systems to form XNLI-
31, increasing the number of embedded languages
POLYGLOSS can draw from. XQuAD is a multi-
lingual dataset for extractive question answering
(QA) with parallel translations in eleven languages.
In the cross-lingual transfer setting, the models are
trained on English data, MNLI (Williams et al.,
2018) and SQuAD 1.1 (Rajpurkar et al., 2016), and
tested on mulitlingual data, XNLI and XQuAD,
respectively. We perturb the premise and hypoth-
esis for NLI and only the question for QA. More
experimental details can be found in Appendix D.

Matrix language. Although our attacks work
with any language as the matrix language, we use
English as the matrix language in our experiments

Model | Clean BUMBLEBEE
XLM-Riage | 75.64/61.39  35.32/22.52
XLM-Rpase | 68.90/53.50 17.95/10.33
mBERT,se | 64.66/49.47  20.66 /11.68

Table 4: BUMBLEBEE results on XQuAD (F1/EM).

due to the availability of English—T translation
models and the prevalence of English as the matrix
language in many code-mixing societies.

Models. We conduct our experiments on three
state-of-the-art massive multilingual encoder mod-
els: XLM-RoBERTa, mBERT, and Unicoder, each
pretrained on more than 100 languages.

4.1 Results

From Tables 2 and 3, we observe that all the mod-
els are significantly challenged by adversarial code-
mixing, though XLM-R,e. is the most robust to
both attacks, likely due to having more parame-
ters. However, even after filtering POLYGLOSS’s
candidate perturbations by the gold translations in
XNLI-13, we observe an average drop in accuracy
of 80.01%, relative to the models’ accuracy on the
clean XNLI-13. BUMBLEBEE induces even greater
performance drops (average relative decrease of
90.96% on XNLI-13), likely due to its word aligner
yielding more candidates than POLYGLOSS’s dic-
tionary lookup. Increasing the number of embed-
ded languages POLYGLOSS can draw upon results
in greater drops in model performance (average rel-
ative decrease in accuracy of 93.66% on XNLI-31).

BERT- vs. XLM-based. We notice that mBERT
is more sensitive to intra-phrasal syntactic disrup-
tion than the XLLM-based models. mBERT is the
most robust to BUMBLEBEE out of all the base
models when the equivalence constraint is in place,
yet is the least robust to POLYGLOSS. However,
the latter trend is replicated for BUMBLEBEE if we
remove this constraint (Table 16 in Appendix G). A
possible explanation is that XLM-R and Unicoder
were trained on monolingual CommonCrawl (CC)
data, while mBERT was trained on multilingual
Wikipedia, which could be considered as aligned
at the article level since there are articles on the
same topic in different languages. Hence, it is pos-
sible that this helped to align the languages more
accurately in the feature space but made it more
sensitive to syntactic disruptions. However, many
other hyperparameters differ between the two that
could have also influenced their robustness. Hence,
we leave a rigorous study of these factors to future



work. The higher performance of the XLM-based
models on clean data can likely be attributed to the
CC corpus being an order of magnitude larger than
multilingual Wikipedia (Lauscher et al., 2020).

Candidate filtering. In the unfiltered setting, it
is impossible for POLYGLOSS to discriminate be-
tween valid and invalid senses for a given context.
Hence, a potential criticism is that the large dif-
ference in POLYGLOSS’s success rate between the
filtered and unfiltered settings could be attributed
to the inappropriate senses of polysemous words
being chosen and disrupting the semantics of the
sentence. On the other hand, filtering perturbations
with reference translations of the sentence shrinks
the space of perturbations to ~1 per language. Due
to the dictionaries’ non-exhaustive nature, not ev-
ery word in the matrix sentence has an entry in the
dictionary to begin with, making this filtering step
a significant reduction of the space of candidates.
To determine the likely cause of the accuracy dif-
ference between the filtered and unfiltered settings
in XNLI-13, we increase the number of languages
available to POLYGLOSS to thirty-one. If the dif-
ference between the filtered and unfiltered settings
were not due to a lack of sufficient candidates, we
should observe only a minor difference between the
filtered settings for both XNLI-13 and -31. How-
ever, we observe a 69% drop for XLM-Ryge, indi-
cating that the former accuracy difference is likely
due to the reduced number of valid candidates.

Phrase-level adversaries. In addition to generat-
ing more fluent sentences (Table 1), extracting the
candidate perturbations directly from the transla-
tions does away with the need for sense disambigua-
tion and increases the number of perturbations per
example since it is not limited to a static dictionary.
The increased effectiveness of BUMBLEBEE com-
pared to POLYGLOSS (1.13x) is further evidence
that a key factor to the success of such adversarial
attacks is the availability of sufficient candidates;
increasing the dimensionality of the search space in-
creases the probability that an adversarial example
for the model exists (Goodfellow et al., 2015). We
also include a non-adversarial baseline (Rand.) by
sampling candidates from a uniform distribution in-
stead of searching for the worst-case perturbations.
Our results in Table 3 indicate that the worst-case
performance of multilingual models on code-mixed
data may be much lower than the scores reported
on human-produced test sets since they were not

Model | Devanagari | Transliterated (Latin)
XLM-Riarge 61.35 41.97
XLM-Rpase 48.62 30.01
mMBERT e 37.70 23.41
Unicoderpse 49.34 30.00

Table 5: BUMBLEBEE results on XNLlI,, ; using
both Devanagari and Latin scripts. Lower is better.

created in a targeted, adversarial fashion. Experi-
ments on beam width and a proof of concept for
fully unsupervised adversaries are in Appendix E.

Transliteration. Since real-life code-mixers of-
ten use a single script for the entire sentence, we
now test the effect of transliteration on BUMBLE-
BEE’s success rate for the English + Hindi language
pair. We accomplish this by transliterating all can-
didates from Devanagari into Latin using the dic-
tionaries released by Roark et al. (2020). From
Table 5, we see that transliteration significantly
affects the robustness of all models, even the XLM-
based ones which were pretrained on similar data.

XQuAD. We observe that both XLM-R and
mBERT are significantly challenged by BUMBLE-
BEE even though only the question was modified
(Table 4). We did not experiment on Unicoder to re-
duce carbon costs since its performance was almost
identical to XLM-Rp,se in our XNLI experiments.

PoOLYGLOSS or BUMBLEBEE? As expected,
inspection of individual adversarial examples re-
vealed that BUMBLEBEE generated more natural
sentences than POLYGLOSS since the languages
used within phrases were more consistent (Table 1).
However, incorrect alignments due to the word
aligner’s probabilistic nature could introduce oc-
casional noise into the adversarial examples. For
example, we found “the” (en) to be often aligned
with “fJ” (zh) even though the former is an arti-
cle and the latter a possessive. We observe that
the aligner performs better when the sentences
have similar word orders (e.g., English-French vs.
English-Chinese) and we can expect the adver-
saries generated in these settings to be more natural.
Hence, we recommend POLYGLOSS when greater
preservation of word-level semantics is desired, and
BUMBLEBEE when phrase-level perturbations are
desired or bilingual dictionaries are unavailable.

Discussion. K et al. (2020) noted significant per-
formance drops in XNLI accuracy for mBERT
when the premise and hypothesis were in differ-



ent languages (Fake English vs. {Hindi, Russian,
Spanish}), theorizing this to be an effect of disrupt-
ing the model’s reliance on lexical overlap. Our
experiments in §4 and §5 lend support to this hy-
pothesis. In Table 1, we see multiple examples
where the prediction was flipped from “contradic-
tion” to “entailment” simply by perturbing a few
words. If the models did not rely on lexical overlap
but performed comparisons at the semantic level,
such perturbations should not have severely im-
pacted their performance. Our results on QA also
corroborate Lee et al. (2019)’s finding that mod-
els trained on SQuAD-style datasets exploit lexical
overlap between the question and context.

5 Code-Mixed Adversarial Training

Finally, we propose code-mixed adversarial train-
ing (CAT), an extension of the standard adversarial
training paradigm (Goodfellow et al., 2015), to
improve the robustness of multilingual models to
adversarial polyglots. In standard adversarial train-
ing, adversarial attacks are run on the training set
to generate adversaries for training. However, this
makes adversarial training computationally expen-
sive. Hence, we take inspiration from Tan et al.
(2020a)’s method of randomly sampling perturba-
tions from an adversarial distribution and generate
code-mixed perturbations using word alignment.
To generate the code-mixed adversarial training
set X', we first compute the adversarial distribution
‘Padv by enumerating the perturbations per embed-
ded language in all successful adversaries (§4). For-

mally, Paay = {fi}iz1..j1/, Where f; = —}
Zj:llj

and L is the set of embedded languages.

Next, for each clean example z, we sample n lan-
guages from P,q, before translating the example
into the n languages and aligning the translations
with z. For sentence-pair classification tasks like
NLI, we use a per-sentence n to further increase
variation. Intuitively, limiting n improves the exam-
ple’s naturalness and the algorithm’s efficiency (the
alignment is the most costly step). We then extract
phrases from the aligned sentences, yielding our
candidate perturbations P. Next, we sample a per-
turbation with probability p from P for each phrase
in z. Reducing p yields more natural sentences
since they will be less perturbed. Finally, we apply
these perturbations to x, obtaining a CAT example
2’. Doing this & times for all  in X and adding
the result to X yields X’ (Alg. 3 in Appendix G).

In contrast to running the adversarial attack on

the training set, sampling perturbations from a dis-
tribution does not guarantee that the resulting ex-
ample will be adversarial to the model. This issue
can be mitigated by increasing the number of CAT
examples observed during training. However, this
would increase the computational cost if we were
to train the model for the same number of epochs.
Hence, we set k£ to one less than the number of
epochs XLM-Rp,s was fine-tuned for in §4 and
train the model for one epoch on the adversarial
training set. This exposes the model to more varia-
tion in the same number of training steps.

Setting. We conduct our experiments on NLI
with XLM-Ry,se With no loss of generality. In §4,
the model was trained for ten epochs. Hence, we
set k = 9,n = 2,p = 0.5 for CAT and train all
models for a similar number of steps (60k) with
the same hyperparameters as §4. We first test the
models on the BUMBLEBEE adversaries generated
in §4 before directly attacking the model. Next, we
construct more realistic settings by running BUM-
BLEBEE with only 1-2 embedded languages from
standard XNLI, Swahili (sw), Hindi (hi), and Urdu
(ur). These languages were the lowest resourced in
the pretraining data (Conneau et al., 2020a).

We also construct another non-adversarial test
set from XNLI by randomly choosing hypotheses
and premises from different languages (K et al.,
2020). Since the original examples are individually
monolingual, this test set will reveal if a model is
simply exploiting lexical overlap rather than com-
paring the underlying concepts.

Finally, we run BUMBLEBEE with embedded
languages not seen during task-specific training
and from a different family (Austronesian) from
the XNLI languages, Filipino (tl) and Indonesian
(id). This zero-shot defense setting will reveal if
CAT encourages the learning of more language-
invariant representations, or is simply allowing the
model to adapt to the adversarial distribution.

Baselines. Since training on languages in the test
set takes us out of the cross-lingual transfer set-
ting, we train a translate-train-n baseline for a fair
comparison. In this setting, we train on every x
and its translations in the n languages sampled in
CAT, regardless of whether they contributed words
to the final CAT examples. We also include Ganin
et al. (2016)’s domain adversarial neural network
(DANN), which has been used for cross-lingual
adaptation (Joty et al., 2017; Chen et al., 2018).



Condition/Method | Clean Cleanpy,

Advy | Advsy  AdVhiser  Advxnu | Adva  AdVigia

Cross-lingual transfer (from §4) 74.06 66.09
Translate-train-n 77.25 72.01
DANN (Ganin et al., 2016) 51.86 35.10
Code-mixed adv. training (CAT) | 77.10 75.46

353 38.54 29.12 353 36.96 24.83
29.44 | 50.53 40.63 7.04 44.37 33.23
3345 | 16.02 17.52 6.54 12.05 7.06

50.21 | 58.58 48.20 12.63 49.14  38.16

Table 6: Results on standard XNLI with XLM-Ry,s.. Clean refers to the combined test set of all languages, Cleanpy. to the
variant where the hypothesis and premise of each example are from different languages, Advgs to the BUMBLEBEE adversaries
from §4, and Adv e to new adversaries from English + the subscripted languages. Higher is better.

5.1 Results

From Table 6, we observe that both training on fully
translated data and on CAT examples improved ac-
curacy on the non-adversarial test sets and robust-
ness to code-mixed adversaries, compared to the
cross-lingual transfer model that was only trained
on English data. Similar to K et al. (2020), we
found that disrupting the models’ reliance on lexi-
cal overlap (Cleanpy,) hurt performance. The drop
was particularly significant for the cross-lingual
transfer (8 points) and translate-train-n models
(5.24 points). On the other hand, our CAT model
only suffered a 1.5-point drop, indicating that the
former two models likely rely heavily on lexical
overlap to make predictions, while our CAT model
may be using “deeper”, more language-agnostic
features. Crucially, our CAT model achieves simi-
lar to better clean accuracy than the baselines, con-
trasting with prior work showing that adversarial
training hurts clean accuracy (Tsipras et al., 2019).
Finally, our CAT model is >1.7x more robust to
adversaries constructed from all fifteen XNLI lan-
guages than the translate-train-n model. Although
DANN-type training improved robustness to the
previous BUMBLEBEE adversaries, clean perfor-
mance was significantly degraded and BUMBLE-
BEE was able to find even more damaging adver-
saries upon attacking the model directly.

When attacked with 1-2 embedded languages
that were seen during training, CAT also yields sig-
nificant improvements in robustness over the base-
lines: a > 7 point increase compared to translate-
train-n and a >19 point gain over the zero-shot
transfer setting. In the zero-shot defense setting,
CAT shows a >12-point gain over the zero-shot
transfer model and a >4.7-point gain over the
translate-train-n model. We believe these results
to be due to CAT encouraging the learning of
language-invariant representations by exposing the
model to cross-lingual lexical variation and pre-
venting the model from exploiting lexical overlaps.

(a) Cross-Lingual Transfer (b) CAT

Figure 2: t-SNE visualizations of XLLM-Rp,sc rep-
resentations fine-tuned using different methods.

6 Seeing is Believing

To further understand the effect of various fine-
tuning methods on XLM-Ry,s, we visualize the
<s> vector from the layer before the classification
head using t-SNE (Linderman et al., 2019). Here,
all sentences from XNLI are passed through the
representations individually. If a representation
were 100% language-invariant, we should expect t-
SNE to be unable to separate individual languages
into their own clusters. Hence, the extent to which
t-SNE is able to do so would indicate the amount
of language-specific information in this last layer.
From Fig. 2a, we observe that for the cross-
lingual transfer model (§4), t-SNE managed to or-
ganize the sentences from several languages (Chi-
nese, Hindi, Thai, Urdu) into distinct clusters. This
indicates that a significant amount of language-
specific information remains in the vector represen-
tations of sentences from these languages. Visualiz-
ing the sequence-averaged embeddings makes this
even clearer (Fig. 5 in Appendix G). Hence, while
XLM-R may be multilingual, it appears to be struc-
tured as a space of individual language subspaces
as opposed to a mixed, or language-invariant space.
On the other hand, t-SNE was much less successful
when given the representation trained with CAT
(Fig. 2b). Mixing multiple languages in the same
sentence and showing the model multiple variants
of the same sentence likely encourages the model
to refine its representation such that all variants
of the same sentence are represented similarly, re-



sulting in a more language-invariant representation.
T-SNE plots of the other models are in Appendix G.

7 Limitations and Future Work

We acknowledge that our methods do not fully
model real code-mixing since we do not learn the
mixing patterns from real data and there are sub-
tleties in real code-mixing we ignore for simplicity,
e.g., accounting for the prestige of participating
languages (Bhatia, 2011). In addition, it is im-
possible to guarantee the semantic preservation
of a sentence generated by BUMBLEBEE due to
the word aligner’s statistical nature, though we can
expect more accurate alignments to improve se-
mantic preservation. Finally, while CAT improves
robustness, there remains a significant gap between
the robust and clean accuracies. In line with re-
cent work challenging the Anglocentricity of cross-
lingual models (Anastasopoulos and Neubig, 2020;
Liang et al., 2020), a promising direction of future
work lies in investigating how the choice of matrix
language affects model robustness.

8 Conclusion

Ensuring that multilingual models are robust to
both natural and adversarial code-mixing is impor-
tant in today’s increasingly multilingual world if
they are to allow their target users to fully express
themselves in human-machine conversations and
to defend against adversarial users attempting to
evade toxicity/misinformation detection systems.

To approximate a lower bound for model per-
formance on lexical code-mixing, we propose two
strong black-box multilingual adversarial attacks
and demonstrate their effectiveness on state-of-the-
art cross-lingual NLI and QA models. The former
generates perturbations from bilingual dictionaries
and disambiguates between senses using sentence
translations, while the latter generates perturbations
by aligning sentences from different languages.

Next, we show that training on code-mixed data
synthesized via word alignment improves clean and
robust accuracy when models are prevented from
exploiting lexical overlap without hurting clean
accuracy. Crucially, we achieve this in the same
number of steps as standard supervised training.

Finally, we use t-SNE visualizations to show that
multilingual models are not necessarily language-
invariant and that our code-mixed adversarial train-
ing scheme encourages language-invariance.

9 Broader Impact / Ethical Considerations

Adversarial attacks and defenses are double-edged
swords. On one hand, adversarial examples expose
the gaps in existing models and help to focus the
research community’s attention on flaws that need
to be addressed before these models can be used
reliably in noisy, real-world environments. On the
other, the same adversarial attacks can be used by
malicious actors to bypass toxicity/misinformation
detection systems. Similarly, methods for improv-
ing adversarial robustness can be used to defend
against malicious actors and improve robustness
to natural noise or linguistic variation, yet they
can also be used to strengthen automated censor-
ship systems and limit freedom of speech. For ex-
ample, our adversarial attacks could be used both
as a lower bound for model performance on nat-
urally occurring code-mixed text and to bypass
misinformation detection systems while preserv-
ing the message’s intelligibility for multilingual
speakers. Our adversarial training method could
be used to both improve machine understanding
of code-mixers by making multilingual represen-
tations more language-invariant and suppress the
freedom of speech of polyglots who could have
been using code-mixing to evade censorship.

At the same time, technology strongly shapes
our behavior (Reeves et al., 2019). Consequently,
given the centrality of code-switching/mixing to
many polyglots’ lived experiences (Duff, 2015)
and the positive correlations between multilingual-
ism, code-switching, and creativity (Leikin, 2013;
Kharkhurin and Wei, 2015; Fiirst and Grin, 2018),
we should ensure that the natural language tech-
nologies we build do not inhibit multilingual speak-
ers from fully expressing themselves, e.g., by dis-
couraging code-mixing due to non-understanding.
In addition, studies have found that aphasic poly-
glots code-mix more frequently than neurotypical
polyglots to cope with word-retrieval difficulties
(Goral et al., 2019), making it important for natural
language technologies to be robust to code-mixing
if they are to be inclusive. Therefore, we include
both adversary generation and defense methods to
avoid tipping the balance too far in either direction.

Acknowledgments

We would like to thank Cynthia Siew (NUS Psy-
chology), Greg Bennett and Kathy Baxter (Sales-
force), Lav Varshney (UIUC Electrical and Com-
puter Engineering), Min-Yen Kan (NUS Com-



puter Science), and our anonymous reviewers for
their invaluable feedback. We are also grateful to
Guangsen Wang, Mathieu Ravaut, Soujanya Lanka,
and Tuyen Hoang for contributing manually code-
mixed sentences and Bari M Saiful for pointers
on replicating the XLM-R results. Samson is sup-
ported by Salesforce and Singapore’s Economic
Development Board under its Industrial Postgradu-
ate Programme.

References

Ghazi M Abuhakema. 2013. Code switching and code
mixing in arabic written advertisements: Patterns,
aspects, and the question of prestige and standardi-
sation. The Internet Journal Language, Culture and
Society.

Eneko Agirre and Philip Edmonds. 2007. Word Sense
Disambiguation: Algorithms and Applications, 1st
edition. Springer Publishing Company, Incorpo-
rated.

Gustavo Aguilar and Thamar Solorio. 2020. From
English to code-switching: Transfer learning with
strong morphological clues. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 8033—8044, Online. As-
sociation for Computational Linguistics.

Emily Ahn, Cecilia Jimenez, Yulia Tsvetkov, and Alan
Black. 2020. What code-switching strategies are ef-
fective in dialogue systems? Proceedings of the So-
ciety for Computation in Linguistics, 3(1):308-318.

Fahad AlGhamdi and Mona Diab. 2019. Leveraging
pretrained word embeddings for part-of-speech tag-
ging of code switching data. In Proceedings of the
Sixth Workshop on NLP for Similar Languages, Va-
rieties and Dialects, pages 99—109.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,
Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2890-2896, Brussels, Belgium. Association
for Computational Linguistics.

Antonios Anastasopoulos and Graham Neubig. 2020.
Should all cross-lingual embeddings speak English?
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8658-8679, Online. Association for Computational
Linguistics.

Larissa Aronin and David Singleton. 2008. Multilin-
gualism as a new linguistic dispensation. [Interna-
tional Journal of Multilingualism, 5(1):1-16.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.
2020. On the cross-lingual transferability of mono-
lingual representations. In Proceedings of the 58th

Annual Meeting of the Association for Computa-
tional Linguistics, pages 4623-4637, Online. Asso-
ciation for Computational Linguistics.

Mikel Artetxe and Holger Schwenk. 2019. Mas-
sively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. Transac-

tions of the Association for Computational Linguis-
tics, 7:597-610.

Kalika Bali, Jatin Sharma, Monojit Choudhury, and Yo-
garshi Vyas. 2014. “i am borrowing ya mixing?” an
analysis of english-hindi code mixing in facebook.
In Proceedings of the First Workshop on Computa-
tional Approaches to Code Switching, pages 116—
126.

Kelsey Ball and Dan Garrette. 2018. Part-of-speech
tagging for code-switched, transliterated texts with-
out explicit language identification. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3084-3089,
Brussels, Belgium. Association for Computational
Linguistics.

M Saiful Bari, Tasnim Mohiuddin, and Shafiq Joty.
2020. Multimix: A robust data augmentation
framework for cross-lingual nlp. arXiv preprint
arXiv:2004.13240.

Utsab Barman, Amitava Das, Joachim Wagner, and Jen-
nifer Foster. 2014. Code mixing: A challenge for
language identification in the language of social me-
dia. In Proceedings of the first workshop on compu-
tational approaches to code switching, pages 13-23.

Anshul Bawa, Pranav Khadpe, Pratik Joshi, Kalika
Bali, and Monojit Choudhury. 2020. Do multilin-
gual users prefer chat-bots that code-mix? let’s
nudge and find out! Proceedings of the ACM on
Human-Computer Interaction, 4(CSCW1):1-23.

Tej K Bhatia. 2011. The multilingual mind, optimiza-
tion theory, and hinglish. Chutneying English: The
Phenomenon of Hinglish, pages 37-52.

Matthias Blohm, Glorianna Jagfeld, Ekta Sood, Xiang
Yu, and Ngoc Thang Vu. 2018. Comparing attention-
based convolutional and recurrent neural networks:
Success and limitations in machine reading compre-
hension. In Proceedings of the 22nd Conference on
Computational Natural Language Learning, pages
108-118.

Khyathi Chandu, Ekaterina Loginova, Vishal Gupta,
Josef van Genabith, Giinter Neumann, Manoj Chin-
nakotla, Eric Nyberg, and Alan W Black. 2019.
Code-mixed question answering challenge: Crowd-
sourcing data and techniques. In Third Workshop
on Computational Approaches to Linguistic Code-
Switching, pages 29-38. Association for Computa-
tional Linguistics (ACL).


https://doi.org/10.18653/v1/2020.acl-main.716
https://doi.org/10.18653/v1/2020.acl-main.716
https://doi.org/10.18653/v1/2020.acl-main.716
https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.18653/v1/2020.acl-main.766
https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/D18-1347
https://doi.org/10.18653/v1/D18-1347
https://doi.org/10.18653/v1/D18-1347

Xilun Chen, Yu Sun, Ben Athiwaratkun, Claire Cardie,
and Kilian Weinberger. 2018. Adversarial deep av-
eraging networks for cross-lingual sentiment classi-
fication. Transactions of the Association for Compu-
tational Linguistics, 6:557-570.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmén, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020a. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440-
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. XNLI: Evaluating
cross-lingual sentence representations. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 2475-2485,
Brussels, Belgium. Association for Computational
Linguistics.

Alexis Conneau, Shijie Wu, Haoran Li, Luke Zettle-
moyer, and Veselin Stoyanov. 2020b. Emerging
cross-lingual structure in pretrained language mod-
els. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 6022-6034, Online. Association for Compu-
tational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Dileep A Divekar. 1984. Dc statistical circuit anal-
ysis for bipolar ic’s using parameter correlations-
an experimental example. [EEE transactions on
computer-aided design of integrated circuits and sys-
tems, 3(1):101-103.

Patricia A Duff. 2015. Transnationalism, multilingual-
ism, and identity. Annual Review of Applied Linguis-
tics, 35:57.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
31-36, Melbourne, Australia. Association for Com-
putational Linguistics.

Guillaume Fiirst and Frangois Grin. 2018. Multi-
lingualism and creativity: a multivariate approach.
Journal of Multilingual and Multicultural Develop-
ment, 39(4):341-355.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, Francois Lavi-
olette, Mario Marchand, and Victor Lempitsky.
2016. Domain-adversarial training of neural net-
works. The Journal of Machine Learning Research,
17(1):2096-2030.

Siddhant Garg and Goutham Ramakrishnan. 2020.
BAE: BERT-based adversarial examples for text
classification. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing, Online. Association for Computational
Linguistics.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples. In 3rd International Conference on
Learning Representations, San Diego, California.

Mira Goral, Monica Norvik, and Bard Uri Jensen.
2019. Variation in language mixing in multilingual
aphasia. Clinical linguistics & phonetics, 33(10-
11):915-929.

Wenjuan Han, Liwen Zhang, Yong Jiang, and Kewei
Tu. 2020. Adversarial attack and defense of struc-
tured prediction models. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing, Online. Association for Compu-
tational Linguistics.

Haoyang Huang, Yaobo Liang, Nan Duan, Ming Gong,
Linjun Shou, Daxin Jiang, and Ming Zhou. 2019.
Unicoder: A universal language encoder by pre-
training with multiple cross-lingual tasks. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-1JCNLP), pages 2485-2494.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is BERT really robust? A strong
baseline for natural language attack on text clas-
sification and entailment. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 8018-8025. AAAI
Press.

Aravind K. Joshi. 1982. Processing of sentences with
intra-sentential code-switching. In Coling 1982:
Proceedings of the Ninth International Conference
on Computational Linguistics.

Shafiq Joty, Preslav Nakov, Lluis Marquez, and Israa
Jaradat. 2017. Cross-language learning with adver-
sarial neural networks. In Proceedings of the 21st
Conference on Computational Natural Language
Learning (CoNLL 2017), pages 226-237, Vancou-
ver, Canada. Association for Computational Linguis-
tics.


https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/P18-2006
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://aaai.org/ojs/index.php/AAAI/article/view/6311
https://aaai.org/ojs/index.php/AAAI/article/view/6311
https://aaai.org/ojs/index.php/AAAI/article/view/6311
https://www.aclweb.org/anthology/C82-1023
https://www.aclweb.org/anthology/C82-1023
https://doi.org/10.18653/v1/K17-1024
https://doi.org/10.18653/v1/K17-1024

Karthikeyan K, Zihan Wang, Stephen Mayhew, and
Dan Roth. 2020. Cross-lingual ability of multilin-
gual bert: An empirical study. In International Con-
ference on Learning Representations.

Braj B Kachru. 1978. Toward structuring code-mixing:
An indian perspective. International Journal of the
Sociology of Language, 1978(16):27-46.

Simran Khanuja, Sandipan Dandapat, Anirudh Srini-
vasan, Sunayana Sitaram, and Monojit Choudhury.
2020. GLUECoS: An evaluation benchmark for
code-switched NLP. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 3575-3585, Online. Association
for Computational Linguistics.

Anatoliy V Kharkhurin and Li Wei. 2015. The role
of code-switching in bilingual creativity. Interna-
tional Journal of Bilingual Education and Bilingual-
ism, 18(2):153-169.

Alexandre Klementiev, Ivan Titov, and Binod Bhat-
tarai. 2012. Inducing crosslingual distributed rep-
resentations of words. In Proceedings of COLING
2012, pages 1459-1474, Mumbai, India. The COL-
ING 2012 Organizing Committee.

Philipp Koehn. 2010. Statistical Machine Translation,
Ist edition. Cambridge University Press, New York,
NY, USA.

Guillaume Lample, Alexis Conneau, Marc’ Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018.
Word translation without parallel data. In Interna-
tional Conference on Learning Representations.

Anne Lauscher, Vinit Ravishankar, Ivan Vulié, and
Goran Glavas. 2020. From zero to hero: On the lim-
itations of zero-shot language transfer with multilin-
gual transformers. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing, Online. Association for Computational
Linguistics.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 6086—6096, Florence,
Italy. Association for Computational Linguistics.

Mark Leikin. 2013. The effect of bilingualism on cre-
ativity: Developmental and educational perspectives.
International Journal of Bilingualism, 17(4):431—
447.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2019. Textbugger: Generating adversarial
text against real-world applications. In 26th An-
nual Network and Distributed System Security Sym-
posium.

Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fen-
fei Guo, Weizhen Qi, Ming Gong, Linjun Shou,
Daxin Jiang, Guihong Cao, Xiaodong Fan, Ruofei

Zhang, Rahul Agrawal, Edward Cui, Sining Wei,
Taroon Bharti, Ying Qiao, Jiun-Hung Chen, Win-
nie Wu, Shuguang Liu, Fan Yang, Daniel Cam-
pos, Rangan Majumder, and Ming Zhou. 2020.
Xglue: A new benchmark dataset for cross-lingual
pre-training, understanding and generation. arXiv
preprint arXiv:2004.01401.

George C Linderman, Manas Rachh, Jeremy G
Hoskins, Stefan Steinerberger, and Yuval Kluger.
2019. Fast interpolation-based t-SNE for improved
visualization of single-cell RNA-seq data. Nature
methods, 16(3):243-245.

Yaron Matras and Jeanette Sakel. 2007. Grammat-
ical borrowing in cross-linguistic perspective, vol-
ume 38. Walter de Gruyter.

Paul Michel, Xian Li, Graham Neubig, and Juan Pino.
2019. On evaluation of adversarial perturbations
for sequence-to-sequence models. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 3103-3114, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

George A. Miller. 1995. Wordnet: A lexical database
for english. Communications of the ACM, 38:39-41.

Benjamin Muller, Benoit Sagot, and Djamé Seddah.
2020. Can multilingual language models transfer to
an unseen dialect? a case study on north african ara-
bizi. arXiv preprint arXiv:2005.00318.

Carol Myers-Scotton. 1997.  Duelling languages:
Grammatical structure in codeswitching. Oxford
University Press.

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj
Pandey, Srinivas PYKL, Bjorn Gambéck, Tanmoy
Chakraborty, Thamar Solorio, and Amitava Das.
2020. Semeval-2020 task 9: Overview of sentiment
analysis of code-mixed tweets. In Proceedings of
the 14th International Workshop on Semantic Eval-
uation (SemEval-2020), Barcelona, Spain. Associa-
tion for Computational Linguistics.

Wannaphong Phatthiyaphaibun, Korakot Chaova-
vanich, Arthit Suriyawongkul Charin Polpanumas,
Lalita Lowphansirikul, and Pattarawat Chormai.
2016. PyThaiNLP: Thai Natural Language Process-
ing in Python.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual bert? In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4996-5001.

Pavlin G. Poli¢ar, Martin Strazar, and Blaz Zupan.
2019. openTSNE: a modular Python library for
t-SNE dimensionality reduction and embedding.
bioRxiv.


https://openreview.net/forum?id=HJeT3yrtDr
https://openreview.net/forum?id=HJeT3yrtDr
https://www.aclweb.org/anthology/2020.acl-main.329
https://www.aclweb.org/anthology/2020.acl-main.329
https://www.aclweb.org/anthology/C12-1089
https://www.aclweb.org/anthology/C12-1089
https://openreview.net/forum?id=H196sainb
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/N19-1314
https://doi.org/10.18653/v1/N19-1314
https://doi.org/10.5281/zenodo.3519354
https://doi.org/10.5281/zenodo.3519354
https://doi.org/10.1101/731877
https://doi.org/10.1101/731877

M. Popel, M. Tomkovd, J. Tomek, Lukasz Kaiser,
Jakob Uszkoreit, Ondrej Bojar, and Z. Zabokrtsky.
2020. Transforming machine translation: a deep
learning system reaches news translation quality
comparable to human professionals. Nature Com-
munications, 11.

Shana Poplack. 1980. Sometimes i’1l start a sentence
in spanish y termino en espafiol: toward a typology
of code-switching. Linguistics, 18(7-8):581-618.

Shana Poplack, David Sankoff, and Christopher Miller.
1988. The social correlates and linguistic processes
of lexical borrowing and assimilation. Linguistics,
26(1):47-104.

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,
Sunayana Sitaram, Sandipan Dandapat, and Kalika
Bali. 2018. Language modeling for code-mixing:
The role of linguistic theory based synthetic data. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1543—-1553.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Byron Reeves, Nilam Ram, Thomas N Robinson,
James J Cummings, C Lee Giles, Jennifer Pan, Ag-
nese Chiatti, MJ Cho, Katie Roehrick, Xiao Yang,
et al. 2019. Screenomics: A framework to capture
and analyze personal life experiences and the ways
that technology shapes them. Human—Computer In-
teraction, pages 1-52.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial ex-
amples through probability weighted word saliency.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
1085-1097.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversar-
ial rules for debugging NLP models. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 856-865, Melbourne, Australia. Association
for Computational Linguistics.

Brian Roark, Lawrence Wolf-Sonkin, Christo Kirov,
Sabrina J. Mielke, Cibu Johny, Isin Demirsahin, and
Keith Hall. 2020. Processing South Asian languages
written in the Latin script: the Dakshina dataset. In
Proceedings of The 12th Language Resources and
Evaluation Conference (LREC), pages 2413-2423.

Uma Roy, Noah Constant, Rami Al-Rfou, Aditya
Barua, Aaron Phillips, and Yinfei Yang. 2020.
LAReQA: Language-agnostic answer retrieval from
a multilingual pool. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language

Processing (EMNLP), pages 5919-5930, Online. As-
sociation for Computational Linguistics.

Masoud Jalili Sabet, Philipp Dufter, and Hinrich
Schiitze. 2020. Simalign: High quality word align-
ments without parallel training data using static

and contextualized embeddings. arXiv preprint
arXiv:2004.08728.

Sunayana Sitaram, Khyathi Raghavi Chandu, Sai Kr-
ishna Rallabandi, and Alan W Black. 2019. A sur-
vey of code-switched speech and language process-
ing. arXiv preprint arXiv:1904.00784.

Thamar Solorio, Elizabeth Blair, Suraj Mabhar-
jan, Steven Bethard, Mona Diab, Mahmoud
Ghoneim, Abdelati Hawwari, Fahad AlGhamdi, Ju-
lia Hirschberg, Alison Chang, and Pascale Fung.
2014. Overview for the first shared task on language
identification in code-switched data. In Proceedings
of the First Workshop on Computational Approaches
to Code Switching, pages 62—72, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. MASS: Masked sequence to se-
quence pre-training for language generation. In In-
ternational Conference on Machine Learning, pages
5926-5936.

Shikaripur N Sridhar and Kamal K Sridhar. 1980. The
syntax and psycholinguistics of bilingual code mix-
ing. Canadian Journal of Psychology/Revue canadi-
enne de psychologie, 34(4):407.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neu-
ral networks. In 2nd International Conference on
Learning Representations, Banff, AB, Canada.

Peck Tung Tan. 1988. A description of patterns of
code-mixing and code-switching in a multilingual
household. In Joseph Foley, editor, New Englishes:
The Case of Singapore. NUS Press.

Samson Tan, Shafiq Joty, Min-Yen Kan, and Richard
Socher. 2020a. It’s morphin’ time! Combating
linguistic discrimination with inflectional perturba-
tions. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2920-2935, Online. Association for Computa-
tional Linguistics.

Samson Tan, Shafiq Joty, Lav Varshney, and Min-Yen
Kan. 2020b. Mind your inflections! Improving NLP
for non-standard Englishes with Base-Inflection En-
coding. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing,
Online. Association for Computational Linguistics.

Mary W. J. Tay. 1989. Code switching and code mix-
ing as a communicative strategy in multilingual dis-
course. World Englishes, 8(3):407-417.


https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/P18-1079
https://doi.org/10.18653/v1/P18-1079
https://www.aclweb.org/anthology/2020.lrec-1.294
https://www.aclweb.org/anthology/2020.lrec-1.294
https://doi.org/10.18653/v1/2020.emnlp-main.477
https://doi.org/10.18653/v1/2020.emnlp-main.477
https://doi.org/10.3115/v1/W14-3907
https://doi.org/10.3115/v1/W14-3907
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://doi.org/10.18653/v1/2020.acl-main.263
https://doi.org/10.18653/v1/2020.acl-main.263
https://doi.org/10.18653/v1/2020.acl-main.263
https://doi.org/https://doi.org/10.1111/j.1467-971X.1989.tb00678.x
https://doi.org/https://doi.org/10.1111/j.1467-971X.1989.tb00678.x
https://doi.org/https://doi.org/10.1111/j.1467-971X.1989.tb00678.x

Jorg Tiedemann and Santhosh Thottingal. 2020.
OPUS-MT — Building open translation services for
the World. In Proceedings of the 22nd Annual Con-
ferenec of the European Association for Machine
Translation (EAMT), Lisbon, Portugal.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom,
Alexander Turner, and Aleksander Madry. 2019. Ro-
bustness may be at odds with accuracy. In Interna-
tional Conference on Learning Representations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998—6008. Curran Asso-
ciates, Inc.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner,
and Sameer Singh. 2019. Universal adversarial trig-
gers for attacking and analyzing NLP. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2153-2162, Hong
Kong, China. Association for Computational Lin-
guistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112—-1122. Association for
Computational Linguistics.

Genta Indra Winata, Andrea Madotto, Chien-Sheng
Wu, and Pascale Fung. 2019. Code-switched lan-
guage models using neural based synthetic data from
parallel sentences. In Proceedings of the 23rd Con-
ference on Computational Natural Language Learn-
ing (CoNLL), pages 271-280, Hong Kong, China.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. arXiv preprint arXiv:1910.03771.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness of
bert. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
833-844.

Kofi Yakpo. 2015. Code-switching and social change:
Convergent language mixing in a multilingual soci-
ety. Code-switching Between Structural and Soci-
olinguistic Perspectives, 43:259.

Zhen Yang, Bojie Hu, Ambyera Han, Shen Huang, and
Qi Ju. 2020. Code-switching pre-training for neu-
ral machine translation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing, Online. Association for Compu-
tational Linguistics.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu,
Meng Zhang, Qun Liu, and Maosong Sun. 2020.
Word-level textual adversarial attacking as combina-
torial optimization. In Proceedings of the 58th An-
nual Meeting of the Association for Computational

Linguistics, pages 6066—6080.

Huangzhao Zhang, Hao Zhou, Ning Miao, and Lei Li.
2019. Generating fluent adversarial examples for
natural languages. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5564-5569, Florence, Italy. Asso-
ciation for Computational Linguistics.

Wei Emma Zhang, Quan Z. Sheng, Ahoud Alhazmi,
and Chenliang Li. 2020. Adversarial attacks on
deep-learning models in natural language process-
ing: A survey. ACM Trans. Intell. Syst. Technol.,
11(3).


https://openreview.net/forum?id=SyxAb30cY7
https://openreview.net/forum?id=SyxAb30cY7
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/D19-1221
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://doi.org/10.18653/v1/K19-1026
https://doi.org/10.18653/v1/K19-1026
https://doi.org/10.18653/v1/K19-1026
https://doi.org/10.18653/v1/P19-1559
https://doi.org/10.18653/v1/P19-1559
https://doi.org/10.1145/3374217
https://doi.org/10.1145/3374217
https://doi.org/10.1145/3374217

A Examples of Real Code-Mixed Text

English + Spanish (Sridhar and Sridhar, 1980)
* The man que vino ayer (who came yesterday)
wants ito buyun carro nuevo (a new car).

* El (The) old man esta enojide (is mad).
* Me lleve chile ya roasted y peeled ... para

hacerlo ells. (I picked up the chile already
roasted and peeled for making it there.)

Hindi + English (Bali et al., 2014)
* Befitting reply to mere papa ne maaraa (My
father gave a befitting reply)
e ... and the party workers [will] come with me
without virodh (protest/objection)

Sarnami + Sranan + Dutch (Yakpo, 2015)

* AUSIZEWOOH calat jaiye, tab ego kerki [ifiKS ki

FEEHIS. (So just keep on walking, then [there’s]
achurch, left or right.)

* kaun wéld damrd, ego haigd jaun men né verfi
bhail, ma ego W@l hai. (Which [kind of] damru
drum, there’s one which is not coloured inside
but one actually is.)

B Attack Implementation Details

B.1 PoOLYGLOSS

Algorithm 2 POLYGLOSS

Require: Clean example-label pair (z, y), Target Model M,
Embedded languages I
Ensure: Adversarial example x’
T <+ TRANSLATE(z, target-languages = L)
Ly < GETLOSS(M, z,y)
B {(Ls,,0)}
while NOTEMPTY(B) do
Lz, %ec,i < POLL(B)
C < GETCANDIDATES(z., token-id = ¢)
C' <+ FILTERCANDIDATES(C, T)
L + GETLOSS(M, C,y)
1 1+1
UPDATEBEAM(B, L, C, 1)
end while
x’ < PoLL(B)
return z’

> Initialize beam

> Losses for C'

To reduce the practical running time of our at-
tack, we make use of cross-lingual dictionaries
released by Lample et al. (2018) for generating
candidate perturbations instead of translating the
words in an online fashion. We also use the gold
translations of the clean examples when they are
available (such as in XNLI), and use the models
released by Tiedemann and Thottingal (2020) in
the transformers library (Wolf et al., 2019) to
translate the examples to other languages. We also
cache them in hashtables for fast retrieval.

B.2 BUMBLEBEE

We use the gold translations where available and
Tiedemann and Thottingal (2020)’s translation
models for the other languages, and align sentences
with a neural word aligner (Sabet et al., 2020)
backed by XLLM-Ry,s in our implementation of
BUMBLEBEE. Although Sabet et al. (2020) found
the “Itermax” algorithm to yield the best perfor-
mance for their experimental settings, we suggest
using the high recall (“Match”) algorithm for can-
didate generation. We inspected the output of both
algorithms and found that while Itermax generates
more candidates, it also tends to generate noisier
alignments compared to Match, which we found to
be more conservative.

C PoLYGLOSS and CAT Samples

Almost random samples for POLYGLOSS and CAT
(we tried to include the sentences with Thai and
Hindi characters but did not manage to get them to
render with pdflatex).

Rockefeller édwoe to Gl ywatt forschung.

The % &%13% camo included the most basic things.

He vard1 yedi hermanas and no brothers in his family.

But méme xots as a boy I lived on a ¢iftlik right on the Mexi-
can 3 9o, I ;505 being mystified by ranching términos that
crept into Western songs du north of us, cayuse, for example.

We should nie think of human equality when we consider
social and political justice.

Table 7: POLYGLOSS adversaries for XLM-Rp,se
on XNLI-13.

Not much has sich innerhalb des Jahrzehnts veridndert.

Ese (1< el most historic weather a g+ in la historia registrada
para el el clima severo en el country

Como ustedes yvwpilete, last enero hemos issued un véo
6yxo de reports, la Performance xou Aoyodooioc serie
de, en los que se esbozan los de gestion desafios mou
avtipetwmilouv ol nuestras mayores federal agencies and
the substantial opportunities para mejorar su rendimiento.

because a lot trong s ho are are similar

um-hum bueno that’s increible como i used to cuando i was
B college solia la have el stereo en all mpe3 time or i tenfa en
MTYV or something but ever que i’ve been out de college

Table 8: Code-mixed adversarial training exam-
ples.



D Experiment Details

D.1 Datasets

Standard XNLI® comprises 7,500 parallel exam-
ples (2,490 dev., 5,010 test) in fifteen languages:
English (en), Spanish (es), German (de), Greek (el),
Russian (ru), Turkish (tr), Arabic (ar), Vietnamese
(vi), Thai (th), Chinese (zh), Hindi (hi), French (fr),
Bulgarian (bg), Swahili (sw), and Urdu (ur). The
labels are uniformly distributed between the three
classes (contradiction, neutral, entailment).

The machine-translated training set* of standard
XNLI comprises the MNLI training examples in
addition to their translations in the same fourteen
non-English languages as the dev. and test sets.

XNLI-13 comprises all standard XNLI lan-
guages except Swahili and Urdu due to the lack
of suitable dictionaries for POLYGLOSS. XNLI-
31 comprises all languages in XNLI-13, in addi-
tion to another eighteen: Afrikaans (af), Albanian
(sq), Catalan (ca), Czech (cs), Danish (da), Dutch
(nl), Estonian (et), Filipino (tl), Finnish (fi), He-
brew (he), Hungarian (hu), Indonesian (id), Italian
(it), Macedonian (mk), Romanian (ro), Slovak (sk),
Swedish (sv), and Ukrainian (uk).

MNLI comprises 392,702 examples in English
with the following label distribution: 130,899 en-
tailment, 130,900 neutral, 130,903 contradiction.

XQuAD® comprises 1,190 question-answer pairs
with guaranteed answers in eleven languages: En-
glish (en), Spanish (es), German (de), Greek
(el), Russian (ru), Turkish (tr), Arabic (ar), Viet-
namese (vi), Thai (th), Chinese (zh), and Hindi (hi).
XQuAD examples are drawn from the SQuAD 1.1
development set.

SQuAD 1.17 comprises 87,599 question-answer
pairs with guaranteed answers in English.

D.2 Metrics

The metric used for XNLI is simple accuracy:

# true positive

Accuracy =
# total

2

The metrics used for SQuAD are Fy:

2 - precision - recall
Fp = =0 3)
precision + recall

3cims.nyu.edu/~sbowman/xnli
4Same link as XNLI dev/test set.
Scims.nyu.edu/ sbowman/multinli/

8 github.com/deepmind/xquad
"rajpurkar.github.io/.../train-v1.1 json

and exact match:

#y=y

Exact Match =
X # total

“

D.3 XQuAD Preprocessing

We use Phatthiyaphaibun et al. (2016) to tokenize
Thai text, jieba® for Chinese text, and split all
other languages on whitespace.

D.4 Training Details

Model Params. Lr Bsz Epochs
XLM-Riarge 550M le-06 64 10
XLM-Rpase 270M 5e-06 64 10
MBERThase 172M 5e-05 64 2
Unicoderpase 270M 5e-06 64 10

Table 9: Hyperparameters for model fine-tuning on
XNLI (MNLI). Number of parameters reproduced
from Conneau et al. (2020a).

Model Learning rate  Batch Size  Epochs
XLM-Riarge le-05 32 3
XLM-Ryase 3e-05 64 2

Table 10: Hyperparameters for model fine-tuning
on XQuaD (SQuAD 1.1).

Hyperparameters. Table 9 contains the hyper-
parameters we used to fine-tune our models on
MNLI. We used the hyperparameters suggested by
Devlin et al. (2019)° for mBERT, the hyperparame-
ters suggested by Bari et al. (2020) for the XLM-R
models, and the hyperparameters from Liang et al.
(2020) for Unicoder.

Table 10 contains the hyperparameters we used
to fine-tune our models on SQuAD 1.1. We
used the default SQuUAD hyperparameters from the
transformers liblrary10 for XLM-Ry,se and ad-
justed the hyperparameters for XLM-R ;g to fit it
onto the GPU. The mBERT model from the Hug-
gingFace model repository!' was used instead of
fine-tuning our own. The clean scores reported in
Table 4 are similar to those reported in the XQuAD
GitHub repository.

8 github.com/fxsjy/jieba

*https://github.com/google-research/.../multilingual.md

github.com/huggingface/.../question-answering

"huggingface.co/salti/bert-base-multilingual-cased-
finetuned-squad
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D.5 Validation Performance for CAT Exps.

Model Clean Advgy.gey
Cross-lingual transfer (from §4) 73.90 4.17
Translate-train-n 76.99 29.27
DANN (Ganin et al., 2016) 51.81 34.89
Code-mixed adv. training (CAT) 77.13 52.32

Table 11: Accuracy on the XNLI dev. set and BUM-
BLEBEE adversaries generated from the dev. set.

D.6 Infrastructure Details

Models were trained on single V100 GPUs. At-
tacks were run on 8 V100 GPUs, parallelized with
ray'? to make full use of GPU memory. On the
standard XNLI test set (15 languages, 5,010 exam-
ples), BUMBLEBEE takes 60-90 minutes in total.
With 1 embedded language, BUMBLEBEE runs on
the test set in under 10 minutes. POLYGLOSS is
generally much faster (under 30 minutes on XNLI-
31) due to not needing a neural aligner.

E Extra BUMBLEBEE Experiments

Variable (v) v=1 v =2 v=23
Beam width 48.52% 48.95% 49.67%
Embedded 1gs. 48.52% 69.09%  75.73%

Table 12: Effect of increasing the beam width vs.
the number of embedded languages on the attack
success rate (%) while holding the other variable
constant at 1. We use Swahili, Swahili and French,
and Swahili, French, and Spanish as the embedded
languages when v = 1, 2, 3, respectively. Rates are
computed relative to the average clean XNLI score
on the languages involved.

Beam search. In our experiments, we found that
increasing the beam width yielded a higher attack
success rate. However, this increases running time
with only minor improvements (Table 12). We
found increasing the number of embedded lan-
guages (and hence candidates) to be a more ef-
ficient method of increasing the success rate with
a minor increase in running time. Although the
time complexity (in number of model queries) is
O(|B||C||L||S|) where | S| is the sentence length,
increasing |L| had a greater impact on the success
rate than increasing | B| by the same number.

2github.com/ray-project/ray

Model
XLM‘Rbase

Clean

81.32

Supervised Unsupervised

49.00 46.78

Table 13: Accuracy after running BUMBLEBEE
on XNLI in supervised and unsupervised settings
(matrix: English, embedded: French).

Fully unsupervised adversaries. A potential
drawback of BUMBLEBEE is that it requires transla-
tions of the clean example, which may be challeng-
ing to obtain for low-resource languages. However,
it is possible to use unsupervised MT models for
this purpose. We use Song et al. (2019)’s unsu-
pervised English-French model to generate trans-
lations as a proof of concept and find that they
achieve similar results (Table 13).

F Plausible Language Combinations

To explore the effect of different combinations of
languages on a multilingual model’s performance,
we run BUMBLEBEE with different sets of embed-
ded languages that could be plausibly spoken by
(adversarial) polyglots around the world. English
is used as the matrix language for all experiments.
We observe a general trend of decreasing model
accuracy as we increase the number of mixed lan-
guages (Table 14), and XLM-Rp,s’s robustness
to an embedded language appears to be gener-
ally more dependent on the size of its pretrain-
ing dataset than language typology. For exam-
ple, Russian (en+ru) and Indonesian (en+id), lan-
guages with notably high accuracies, were the two
most resourced languages after English in the cor-
pus used for pretraining (Conneau et al., 2020a),
while Swahili and Filipino were among the lower-
resourced languages. A notable outlier is Afrikaans
(en+af), which was the lowest resourced language
in our experiments yet XLM-Rp,se Was quite robust
to adversaries constructed from it and English. A
possible explanation is that Afrikaans’ language
family, Indo-European, is highly represented in
the pretraining corpus. Another notable outlier is
Vietnamese, which was the fourth most resourced
language in the pretraining corpus, yet the model
was more vulnerable to adversaries constructed
from English and Vietnamese than adversaries con-
structed from English and Filipino, one of the low-
est resourced languages. A possible explanation
for this is the use of Latin characters combined
with little vocabulary overlap between English and
Vietnamese, and differing adjective positions.
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Lgs. (en+) Exemplar Region Acc. Size (GB)

tr Turkey 55.76 20.9

de Germany 55.42 66.6

bg Bulgaria 54.87 57.5
ru Russia 54.33 278.0

th Thailand 52.43 71.7

el Greece 52.41 46.9

zh China 52.17 46.9

ar Middle East 51.53 28.0

es Spain 50.07 533

fr France 49.00 56.8

hi India 48.62 20.2

ur Pakistan 42.09 5.7

SW Kenya 38.54 1.6
vi Vietnam 36.32 137.3

ro Romania 56.26 614
id Indonesia 50.91 148.3

af Namibia 49.30 1.3

sq Albania 40.13 54

tl Philippines 36.96 3.1
ru+uk Ukraine 44.37 362.6
ar+he Israel 37.24 59.6
af+de Namibia 36.46 67.9
de+fr Switzerland 35.84 123.4
id+zh Indonesia 35.30 195.2
hu+ro Transylvania 34.11 119.8
ar+{r Morocco 32.15 84.8
hi+ur Kashmir 29.12 259
ar+sw Tanzania 24.37 29.6
fi+sv+ru Finland 30.27 344.4
cs+hu+sk Slovak 30.21 97.2
es+r+it S. Europe 26.58 140.3
mk+sq+tr Albania 23.53 31.1
da+de+nl+sv Denmark 27.74 153.6
id+th+tl+vi S.E. Asia 12.53 360.4

Table 14: How XLM-Ry,se might fare against real-
life adversarial polyglots and where they might be
found. Scores are accuracy on the XNLI test set
with English as the matrix language. Corpora sizes
reproduced from Conneau et al. (2020a).

We also find XLM-Ry, to be twice as ro-
bust in the en+da+de+nl+sv condition as the
en+id+th+tl+vi condition. It is likely that the struc-
tural similarity of the mixed languages also plays
an important role in determining the model robust-
ness, reinforcing K et al. (2020)’s similar findings
on cross-lingual transfer. Investigating the effects
of typology, vocabulary and orthographic overlap,
pretraining corpus size, and interaction effects be-
tween different sets of languages on a model’s ro-
bustness to code-mixed adversaries could lead to
new insights into how different languages interact
in the multilingual embedding space and we leave
this to future work.

G More Tables, Figures, and Algorithms

Algorithm 3 CAT Example Generation

Require: Original examples X, Embedded languages L,
Num. perturbed examples k, Adversarial distribution Pgqy,
Max. langs. per example n, Phrase perturbation prob. p

Ensure: Adversarial training set X’

X'+ {o}
for x in X do
S < SAMPLELANGUAGES(L, n, Padv)
T < TRANSLATE(z, target-languages = S)
P <~ ALIGNANDEXTRACTPHRASES(z,T)
for i =1to k do
x' < PERTURB(z, P, p)
X'+ X'u{z"}
end for
end for
return X U X’

{0, ., v} { clean, codemixed }

‘ Discriminator ’

LClaSSiﬁer ’ [ Gradient Reversal ]
3 )

I
‘ Multilingual Representation ’

x = ( clean, codemixed )

Figure 3: Domain Adversarial Neural Network

Section continues on next page.



English

French (R)

French (BB)

Hindi (R)

Hindi (BB)

Chinese (R)

Vietnamese (R)

P: Americans should also consider how to do it-organizing their government in a different way.
H: The American government might be organized in a different way.

P: Les Américains devraient aussi réfléchir to de le faire, en organisant in la different way.
H: The gouvernement américain might be organized in a different way.

P: Americans should also penser a comment organiser leur gouvernement differemment.
H: Le gouvernement americain est maybe organized differently.

P: Americans ko yeh bhi sochna hai ki kaise karna hai-organizing their government in a different way.
H: America ki sarkar might be organized in a different way.

P: amerikiyon chahiye ki also vichar kese to karna it-organizing their government in a different way.
H: The American government might be organized in a different way.

P: Americans/¥Zconsider | /&2 B 40 fth I TH ) government
H: £ E government 7] LIH HE forganization 77

P: Ngudi My ciing nén consider how to do it-organizing their government theo mét cach khac.
H: Chinh pht My c6 thé dugc organized theo mdt cich khéc.

English

French (R)

French (BB)

Hindi (R)

Chinese (R)

Chinese (BB)

Vietnamese (R)

Vietnamese (BB)

P: When that occurs, the lending fund sacrifices interest from Treasury securities on its invested
balances and instead receives interest from the borrowing fund on the amount of the loan.
H: The lending fund doesn’t get all the interest in some cases.

P: Lorsque cela se produit, le lending fonds de sacrifie interest des Trésor securities sur ses investis
balances et plutdt receives intéréts du borrowing fund sur le montant du les loan.
H: The lending fund ne recoit pas all the interest in some cases.

P: Quand ca arrive, le lending fund sacrifie I’intéret des Treasury securities sur ses investissements et
recoit des interest from the borrowing fund on the amount du prét.
H: Le fending fund ne regoit pas tous les interest in some cases.

P: Jab aisa hota hai, the lending fund sacrifices interest from Treasury securities on its invested balances
and instead receives interest from the borrowing fund on the amount of the loan.
H: Aise mamlo mein, the lending fund doesn’t get all the interest.

P: X FIE BT, lending fundZs $7 2% Mtreasury securitiesHinvestment interests, {H /& A DL
Mborrowing fundf . Z Fllinterest
H: lending fund7E - %case N N E|FTH Minterest

P: 4 that occurs, the lending fund sacrifices B M Treasury securities 7EHAZ BT RE, T receives
F| & from the borrowing 342 on the £ &iHY the loan.
H: The lending 2427 doesn’t get all the interest in some cases.

P: Khi diéu 4y xay ra, the lending fund sacrifices interest from Treasury securities on its invested
balances va thay vao do receives interest from the borrowing fund on the amount of the loan.
H: The lending fund doesn’t get all the interest trong mdt so trudng hgp.

P: Khi d6 occurs, diéu quy cho vay hy suit tir ching khodn minh invested s6 du va thay d6 nhan dugc
1ai borrowing tién trén the so of tién loan.
H: The lending fund doesn’t get all ca su quan tim some cases.

English

French (R)
French (BB)
Hindi (R)
Hindi (BB)
Chinese (R)
Chinese (BB)
Vietnamese (R)

Vietnamese (BB)

P: It’s the truth, you fool.  H: Everything I say is true.

: It’s the truth, you fool. ~ H: Tout ce que je true.

: C’est la truth, abruti.  H: Tout ce que je dis is true.

: Yaha sach hai, you fool.  H: Everything I say, sach hai.

: It’s the truth, you fool.  H: jo I say is true.

SARIN, Xt Rtruth  H: FULAIE Z truth

H: FHAT—1] true.

: X7 the truth, you fool.

: D6 1a su that, you fool.  H: Everything I say la ding.

: It’s the truth, you fool.  H: Tét I say is true.

Table 15: A comparison of code-mixed examples produced by bilinguals (R) and BUMBLEBEE (BB).
Since the humans were only provided with the English examples, some differences in phrasing is to be
expected.



Model Clean PGuufit. PGgr. BUMBLEBEE BUMBLEBEEynconstr

XLM-Rpe | 81.10  6.06  28.28 11.31 5.22
XLM-Rpue | 7542 2.17  12.27 5.08 1.47
mBERT:... | 67.54 2.15 924 6.10 1.19
Unicoderys. | 7498 199  11.33 4.81 1.29

Table 16: POLYGLOSS (PG) and BUMBLEBEE results on the XNLI-13 test set with a beam width of
1. PGyf, unfirr.y indicates whether the candidate substitutions were filtered using reference translations.
BUMBLEBEEyconstr refers to the setting without the equivalence constraint (§3.2).

EEEIOOODODEeEE

(c) Domain Adversarial Neural Network (d) Code-Mixed Adversarial Training

Figure 4: t-SNE visualizations of XLM-Ry,s. representations fine-tuned using different methods. We use
Linderman et al. (2019)’s t-SNE algorithm implemented in openTSNE (Policar et al., 2019) and tried
to arrange related languages close to each other on the color spectrum (to the extent possible on one
dimension) so it would be obvious if similar languages were getting clustered together, as in (c).
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(c) Domain Adversarial Neural Network (d) Code-Mixed Adversarial Training

Figure 5: t-SNE visualizations of XLLM-Ry,s representations fine-tuned using different methods. Here,
we average all the token embeddings in the sentence instead of just using the <s> embedding.



