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Abstract

There are two approaches for pairwise sen-
tence scoring: Cross-encoders, which per-
form full-attention over the input pair, and
Bi-encoders, which map each input indepen-
dently to a dense vector space. While cross-
encoders often achieve higher performance,
they are too slow for many practical use cases.
Bi-encoders, on the other hand, require sub-
stantial training data and fine-tuning over the
target task to achieve competitive performance.
We present a simple yet efficient data aug-
mentation strategy called Augmented SBERT,
where we use the cross-encoder to label a
larger set of input pairs to augment the train-
ing data for the bi-encoder. We show that,
in this process, selecting the sentence pairs is
non-trivial and crucial for the success of the
method. We evaluate our approach on multiple
tasks (in-domain) as well as on a domain adap-
tation task. Augmented SBERT achieves an
improvement of up to 6 points for in-domain
and of up to 37 points for domain adaptation
tasks compared to the original bi-encoder per-
formance.1

1 Introduction

Pairwise sentence scoring tasks have wide appli-
cations in NLP. They can be used in information
retrieval, question answering, duplicate question
detection, or clustering. An approach that sets
new state-of-the-art performance for many tasks
including pairwise sentence scoring is BERT (De-
vlin et al., 2018). Both sentences are passed to the
network and attention is applied across all tokens
of the inputs. This approach, where both sentences
are simultaneously passed to the network, is called
cross-encoder (Humeau et al., 2020).

A downside of cross-encoders is the extreme
computational overhead for many tasks. For exam-
ple, clustering of 10,000 sentences has a quadratic
complexity with a cross-encoder and would require

1Code available: www.sbert.net
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Figure 1: Spearman rank correlation (ρ) test scores for
different STS Benchmark (English) training sizes.

about 65 hours with BERT (Reimers and Gurevych,
2019). End-to-end information retrieval is also
not possible with cross-encoders, as they do not
yield independent representations for the inputs
that could be indexed. In contrast, bi-encoders
such as Sentence BERT (SBERT) (Reimers and
Gurevych, 2019) encode each sentence indepen-
dently and map them to a dense vector space. This
allows efficient indexing and comparison. For ex-
ample, the complexity of clustering 10,000 sen-
tences is reduced from 65 hours to about 5 sec-
onds (Reimers and Gurevych, 2019). Many real-
world applications hence depend on the quality of
bi-encoders.

A drawback of the SBERT bi-encoder is usually
a lower performance in comparison with the BERT
cross-encoder. We depict this in Figure 1, where we
compare a fine-tuned cross-encoder (BERT) and
a fine-tuned bi-encoder (SBERT) over the popular
English STS Benchmark dataset2 (Cer et al., 2017)
for different training sizes and spearman rank cor-
relation (ρ) on the test split.

This performance gap is the largest when little

2http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark

https://www.informatik.tu-darmstadt.de/ukp/ukp_home/index.en.jsp
https://www.sbert.net
http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
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training data is available. The BERT cross-encoder
can compare both inputs simultaneously, while the
SBERT bi-encoder has to solve the much more
challenging task of mapping inputs independently
to a meaningful vector space which requires a suffi-
cient amount of training examples for fine-tuning.

In this work, we present a data augmentation
method, which we call Augmented SBERT (AugS-
BERT), that uses a BERT cross-encoder to improve
the performance for the SBERT bi-encoder. We use
the cross-encoder to label new input pairs, which
are added to the training set for the bi-encoder. The
SBERT bi-encoder is then fine-tuned on this larger
augmented training set, which yields a significant
performance increase. As we show, selecting the in-
put pairs for soft-labeling with the cross-encoder is
non-trivial and crucial for improving performance.
Our method is easy to apply to many pair classifi-
cation and regression problems, as we show in the
exhaustive evaluation of our approach.

First, we evaluate the proposed AugSBERT
method on four diverse tasks: Argument similar-
ity, semantic textual similarity, duplicate question
detection, and news paraphrase identification. We
observe consistent performance increases of 1 to 6
percentage points over the state of the art SBERT
bi-encoder’s performance. Next, we demonstrate
the strength of AugSBERT in a domain adaptation
scenario. Since the bi-encoder is not able to map
the new domain to a sensible vector space, the per-
formance drop on the target domain for SBERT
bi-encoders is much higher than for BERT cross-
encoders. In this scenario, AugSBERT achieves a
performance increase of up to 37 percentage points.

2 Related Work

Sentence embeddings are a well studied area in
recent literature. Earlier techniques included un-
supervised methods such as Skip-thought vectors
(Kiros et al., 2015) and supervised methods such as
InferSent (Conneau et al., 2017) or USE (Cer et al.,
2018). For pairwise scoring tasks, more recent sen-
tence embedding techniques are also able to encode
a pair of sentences jointly. Among these, BERT
(Devlin et al., 2018) can be used as a cross-encoder.
Both inputs are separated by a special SEP token
and multi-head attention is applied over all input
tokens. While the BERT cross-encoder achieves
high performances for many sentence pair-tasks,
a drawback is that no independent sentence repre-
sentations are generated. This drawback was ad-

dressed by SBERT (Reimers and Gurevych, 2019),
which applies BERT independently on the inputs
followed by mean pooling on the output to create
fixed-sized sentence embeddings.

Humeau et al. (2020) showed that cross-encoders
typically outperform bi-encoders on sentence
scoring tasks. They proposed a third strategy
(poly-encoders), that is in-between cross- and bi-
encoders. Poly-encoders utilize two separate trans-
formers, one for the candidate and one for the
context. A given candidate is represented by one
vector, while the context is jointly encoded with
the candidates (similar to cross-encoders). Unlike
cross-encoder’s full self attention technique, poly-
encoders apply attention between two inputs only at
the top layer. Poly-encoders have the drawback that
they are only practical for certain applications: The
score function is not symmetric, i.e., they cannot be
applied for tasks with a symmetric similarity rela-
tion. Further, poly-encoder representations cannot
be efficiently indexed, causing issues for retrieval
tasks with large corpora sizes.

Chen et al. (2020) propose the DiPair architec-
ture which, similar to our work, also uses a cross-
encoder model to annotate unlabeled pairs for fine-
tuning a bi-encoder model. DiPair focuses on in-
ference speed and provides a detailed ablation for
optimal bi-encoder architectures for performance
versus speed trade-offs. The focus of our work
are sampling techniques, which we find crucial for
performance boosts in the bi-encoder model while
keeping its architecture constant.

Our proposed data augmentation approach is
based on semi-supervision (Blum and Mitchell,
1998) for in-domain tasks, which has been applied
successfully for a wide range of tasks. Uva et al.
(2018) train a SVM model with few gold samples
and apply semi-supervision with pre-training neu-
ral networks. Another common strategy is to gener-
ate paraphrases of existent sentences, for example,
by replacing words with synonyms (Wei and Zou,
2019), by using round-trip translation (Yu et al.,
2018; Xie et al., 2020), or with seq2seq-models
(Kumar et al., 2019). Other approaches generate
synthetic data by using generative adversarial net-
works (Tanaka and Aranha, 2019), by using a lan-
guage model to replace certain words (Wu et al.,
2019) or to generate complete sentences (Anaby-
Tavor et al., 2019). These data augmentation ap-
proaches have in common that they were applied
to single sentence classification tasks. In our work,
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we focus on sentence pair tasks, for which we need
to generate suitable sentence pairs. As we show,
randomly combining sentences is insufficient. Sam-
pling appropriate pairs has a decisive impact on
performance which corresponds to recent findings
on similar datasets (Peinelt et al., 2019).

3 Methods

In this section we present Augmented SBERT for
diverse sentence pair in-domain tasks. We also
evaluate our method for domain adaptation tasks.

3.1 Augmented SBERT

Given a pre-trained, well-performing cross-
encoder, we sample sentence pairs according to
a certain sampling strategy (discussed later) and
label these using the cross-encoder. We call these
weakly labeled examples the silver dataset and they
will be merged with the gold training dataset. We
then train the bi-encoder on this extended train-
ing dataset. We refer to this model as Augmented
SBERT (AugSBERT). The process is illustrated in
Figure 2.

Unlabeled Sentence Pairs

Gold Dataset

Cross-Encoder
(BERT)

Silver Dataset

Bi-Encoder
(SBERT)

Output

Fine Tuning

step 0

Labelingstep 1.1

step 1.2 Sampling

step 2.1 Fine Tuning

step 2.2 Prediction

Figure 2: Augmented SBERT In-domain approach

Pair Sampling Strategies The novel sentence
pairs, that are to be labeled with the cross-encoder,
can either be new data or we can re-use individual
sentences from the gold training set and re-combine
pairs. In our in-domain experiments, we re-use the
sentences from the gold training set. This is of
course only possible if not all combinations have

been annotated. However, this is seldom the case
as there are n× (n− 1)/2 possible combinations
for n sentences. Weakly labeling all possible com-
binations would create an extreme computational
overhead, and, as our experiments show, would
likely not lead to a performance improvement. In-
stead, using the right sampling strategy is crucial
to achieve a performance improvement.

Random Sampling (RS): We randomly sample
a sentence pair and weakly label it with the cross-
encoder. Randomly selecting two sentences usually
leads to a dissimilar (negative) pair; positive pairs
are extremely rare. This skews the label distribution
of the silver dataset heavily towards negative pairs.

Kernel Density Estimation (KDE): We aim to
get a similar label distribution for the silver dataset
as for the gold training set. To do so, we weakly la-
bel a large set of randomly sampled pairs and then
keep only certain pairs. For classification tasks, we
keep all the positive pairs. Subsequently we ran-
domly sample out negative pairs from the remain-
ing dominant negative silver-pairs, in a ratio iden-
tical to the gold dataset training distribution (posi-
tives/negatives). For regression tasks, we use kernel
density estimation (KDE) to estimate the contin-
uous density functions Fgold(s) and Fsilver(s) for
scores s. We try to minimize KL Divergence (Kull-
back and Leibler, 1951) between distributions

using a sampling function which retains a sample
with score s with probability Q(s):

Q(s) =


1 if Fgold(s) ≥ Fsilver(s)

Fgold(s)

Fsilver(s)
if Fgold(s) < Fsilver(s)

Note, that the KDE sampling strategy is compu-
tationally inefficient as it requires labeling many,
randomly drawn samples, which are later dis-
carded.

BM25 Sampling (BM25): In information re-
trieval, the Okapi BM25 (Amati, 2009) algorithm
is based on lexical overlap and is commonly used
as a scoring function by many search engines. We
utilize ElasticSearch3 for the creation of indices
which helps in fast retrieval of search query results.
For our experiments, we index every unique sen-
tence, query for each sentence and retrieve the top
k similar sentences. These pairs are then weakly
labeled using the cross-encoder. Indexing and re-

3https://www.elastic.co/

https://www.elastic.co/
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trieving similar sentences is efficient and all weakly
labeled pairs will be used in the silver dataset.

Semantic Search Sampling (SS): A drawback
of BM25 is that only sentences with lexical over-
lap can be found. Synonymous sentences with no
or little lexical overlap will not be returned, and
hence, not be part of the silver dataset. We train
a bi-encoder (SBERT) on the gold training set as
described in section 5 and use it to sample further,
similar sentence pairs. We use cosine-similarity
and retrieve for every sentence the top k most sim-
ilar sentences in our collection. For large collec-
tions, approximate nearest neighbour search like
Faiss4 could be used to quickly retrieve the k most
similar sentences.

BM25 + Semantic Search Sampling (BM25-
S.S.): We apply both BM25 and Semantic Search
(S.S.) sampling techniques simultaneously. Aggre-
gating the strategies helps capture the lexical and
semantically similar sentences but skews the label
distribution towards negative pairs.

Seed Optimization Dodge et al. (2020) show a
high dependence on the random seed for trans-
former based models like BERT, as it converges
to different minima that generalize differently to
unseen data (LeCun et al., 1998; Erhan et al., 2010;
Reimers and Gurevych, 2017). This is especially
the case for small training datasets. In our experi-
ments, we apply seed optimization: We train with
5 random seeds and select the model that performs
best on the development set. In order to speed this
up, we apply early stopping at 20% of the training
steps and only continue training the best perform-
ing model until the end. We empirically found that
we can predict the final score with high confidence
at 20% of the training steps (Appendix D).

Target Unlabeled

Source

Cross-Encoder
(BERT)

Target

Bi-Encoder
(SBERT)

Output
Fine

Tuning

Label

Target

Fine

Tuning

Figure 3: Domain adaptation with AugSBERT.

4https://github.com/facebookresearch/faiss

3.2 Domain Adaptation with AugSBERT
Until now we discussed Augmented SBERT for in-
domain setups, i.e., when the training and test data
are from the same domain. However, we expect an
even higher performance gap of SBERT on out-of-
domain data. This is because SBERT fails to map
sentences with unseen terminology to a sensible
vector space. Unfortunately, annotated data for new
domains is rarely available.

Hence, we evaluate the proposed data augmenta-
tion strategy for domain adaptation: We first fine-
tune a cross-encoder (BERT) over the source do-
main containing pairwise annotations. After fine-
tuning, we use this fine-tuned cross-encoder to la-
bel the target domain. Once labeling is complete,
we train the bi-encoder (SBERT) over the labeled
target domain sentence pairs (Figure 3).

4 Datasets

Sentence pair scoring can be differentiated in re-
gression and classification tasks. Regression tasks
assign a score to indicate the similarity between the
inputs. For classification tasks, we have distinct la-
bels, for example, paraphrase vs. non-paraphrase.

4.1 Single-Domain Datasets
In our single-domain (i.e. in-domain) experiments,
we use two sentence pair regression tasks: semantic
textual similarity and argument similarity. Further-
more, we use two binary sentence pair classifica-
tion tasks: Duplicate question detection and news
paraphrase identification. Examples for all datasets
are given in Table 2.

SemEval Spanish STS: Semantic Textual Sim-
ilarity (STS)5 is the task of assessing the degree of
similarity between two sentences over a scale rang-
ing from [0, 5] with 0 indicating no semantic over-
lap and 5 indicating identical content (Agirre et al.,
2016). We choose Spanish STS data to test our
methods for a different language than English. For
our training and development dataset, we use the
datasets provided by SemEval STS 2014 (Agirre
et al., 2014) and SemEval STS 2015 (Agirre et al.,
2015). These consist of annotated sentence pairs
from news articles and from Wikipedia. As test
set, we use SemEval STS 2017 (Cer et al., 2017),
which annotated image caption pairs from SNLI
(Bowman et al., 2015). For all our experiments, we
normalise the original similarity scores to [0, 1] by
dividing the score by 5.

5https://ixa2.si.ehu.es/stswiki

https://github.com/facebookresearch/faiss
https://ixa2.si.ehu.es/stswiki
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Dataset Spanish-STS BWS (cross-topic) BWS (in-topic) Quora-QP MRPC

# training-samples 1,400 2125 2471 10,000 4,340
# development-samples 220 425 478 3,000 731

# testing-samples 250 850 451 3,000 730

# total-samples 1,870 3,400 3,400 16,000 5,801

Table 1: Summary of all datasets being used for diverse in-domain sentence pair tasks in this paper.

Dataset Sentence 1 Sentence 2 Score

BWS Cloning treats children as objects. It encourages parents to regard their children as property. 0.89

Quora-QP How does one cook broccoli? What are the best ways to cook broccoli? 1

Spanish-STS Dos hombres en trajes rojos practicando
artes marciales.

Dos hombre en uniformes de artes marciales entrenando. 0.80

MRPC The DVD-CCA then appealed to the
state Supreme Court.

DVD CCA appealed that decision to the U.S. Supreme
Court.

1

Table 2: Dataset examples for our in-domain tasks. We report the normalized similarity score [0, 1] for regression
tasks and the binary label {0, 1} for classification tasks.

BWS Argument Similarity Dataset (BWS):
Existing similarity datasets have the disadvantage
that the sentence pair selection/sampling process
is not always comprehensible. To overcome this
limitation, we create and publicly release a novel
dataset6 for argument similarity.

We annotate sentential arguments on controver-
sial topics on a continuous scale. We use the
dataset by Stab et al. (2018), which contains pro
and con stance arguments for eight controversial
topics (T1 - T8) (“cloning”, “abortion”, “minimum
wage”, “marijuana legalization”, “nuclear energy”,
“death penalty”, “gun control”, “school uniforms”)
retrieved from heterogeneous web sources.

Previous work addressing argument similarity
(Misra et al., 2016; Reimers et al., 2019) used dis-
crete scales. However, expressing an inherently
continuous property in this way is counter-intuitive
and potentially unreliable due to different assump-
tions made when binning a range of values into a
discrete class (Kingsley and Brown, 2010).

Collecting continuous annotations is complex
due to selection bias and due to a lack of consis-
tency for a single annotator (Kendall, 1948). To
solve the consistency problem, we apply a com-
parative approach, which converts the annotation
into a preference problem: the annotators stated
their preference on pairs of sentential arguments.
We utilized the Best-Worst Scaling (BWS) method
(Kiritchenko and Mohammad, 2016) to reduce the
number of required annotations. For each topic

6Public Data Release (BWS Argument Similarity Corpus):
https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2496

regardless of stance, all arguments were randomly
paired and for ensuring a certain proportion of simi-
lar arguments within the pairings, a distant supervi-
sion filtering strategy was implemented by labeling
pairs with scores between 0 and 1 using the system
proposed by Misra et al. (2016). Next, all argument
pairs were sampled with a desired similarity distri-
bution, by creating argument pair bins across three
categories: top 1%, top 2-50% and remaining pairs.
As the final step, we randomly drew pairs from the
top 1% with 50% probability, and with each 25%
from the two other bins.

The resulting argument pairs were annotated us-
ing crowdsourcing via the Amazon Mechanical
Turk Platform. For each annotation task, work-
ers were shown four argument pairs and had to
select the most and least similar pair amongst them.
Each of these tasks was assigned to four differ-
ent workers. To assess the quality of the resulting
annotations, we used split-half reliability measure
(Callender and Osburn, 1979). Workers’ votes were
split by half and used to independently rank all ar-
gument pairs with the BWS method for each half
on each task. Finally, the Spearman’s rank correla-
tion between the resulting rankings is calculated as
a proxy for consistency. The resulting average cor-
relation across all topics in our dataset is 0.66 (ran-
dom splits are repeated 25 times and final scores
averaged), which, given the small number of votes
per half (two), is in an acceptable range and re-
flects the difficulty of this task (Kiritchenko and
Mohammad, 2016). Table 3 lists the mean split-
half reliability estimates for all topics (averaged

https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2496.2
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over 25 random splits) in the dataset.

Topic T Score Topic T Score

Cloning 0.84 Nuclear energy 0.64
Abortion 0.79 Death penalty 0.58
Minimum wage 0.50 Gun control 0.59
Marijuana legal. 0.57 School uniforms 0.64

Whole dataset = 0.66

Table 3: Mean split-half reliability estimate is calcu-
lated using Spearman’s rank correlation ρ per topic T
and over the whole BWS Argument Similarity dataset.

We use the resulting BWS Argument Similarity
Dataset with different splitting strategies in our
paper. In cross-topic tasks, we fix topics (T1 - T5)
for training, T6 for development and (T7 and T8)
for test sets. This is a difficult task, as models are
evaluated on completely unseen topics.

Note that the cross-topic experiments on this
dataset are quite different from cross-domain tasks
(subsection 3.2): the model fine-tunes in-domain
on fixed topics (T1 - T5 in our case) and is evaluated
on unseen topics, whereas in the domain adapta-
tion experiments we fine-tune on target domain
data. For in-topic, we randomly sample fixed and
disjoint pairs from each and every topic (T1 - T8)
and create our train, development and test splits
with approximately equal number of pairs from
each topic.

Quora Question Pairs (Quora-QP): Duplicate
question classification identifies whether two ques-
tions are duplicates. Quora released a dataset7 con-
taining 404,290 question pairs. We start with the
same dataset partitions from Wang et al. (2017)8.
We remove all overlaps and ensure that a question
in one split of the dataset does not appear in any
other split to mitigate the transductive classification
problem (Ji et al., 2010). As we observe perfor-
mance differences between cross- and bi-encoders
mainly for small datasets, we randomly downsam-
ple the training set to 10,000 pairs while preserving
the original balance of non-duplicate to duplicate
question pairs.

Microsoft Research Paraphrase Corpus
(MRPC): Dolan et al. (2004) presented a para-
phrase identification dataset consisting of sentence
pairs automatically extracted from online news
sources. Each pair was manually annotated by

7https://www.quora.com/q/quoradata/First-Quora-
Dataset-Release-Question-Pairs

8https://drive.google.com/file/d/0B0PlTAo–
BnaQWlsZl9FZ3l1c28

Dataset k Train / Dev / Test Train Dev / Test
(Total Pairs) (Ratio) (Ratio)

AskUbuntu 919706 / 101k / 101k 1 : 100 1 : 100
Quora 254142 / 10k / 10k 3.71 : 100 1 : 1
Sprint 919100 / 101k / 101k 1 : 100 1 : 100
SuperUser 919706 / 101k / 101k 1 : 100 1 : 100

Table 4: Summary of multi-domain datasets originally
proposed by Shah et al. (2018) and used for our do-
main adaptation experiments. Ratio denotes the dupli-
cate pairs (positives) vs. not duplicate pairs (negatives).

two human judges whether they describe the
same news event. We use the originally provided
train-test splits9. We ensured that all splits have
disjoint sentences.

4.2 Multi-Domain Datasets

One of the most prominent sentence pair classifi-
cation tasks with datasets from multiple domains
is duplicate question detection. Since our focus is
on pairwise sentence scoring, we model this task
as a question vs. question (title/headline) binary
classification task.

AskUbuntu, Quora, Sprint, and SuperUser:
We replicate the setup of Shah et al. (2018) for
domain adaptation experiments. The AskUbuntu
and SuperUser data comes from Stack Exchange,
which is a family of technical community support
forums. Sprint FAQ is a crawled dataset from the
Sprint technical forum website. We exclude Ap-
ple and Android datasets due to unavailability of
labeled question pairs. The Quora dataset (origi-
nally derived from the Quora website) is artificially
balanced by removing negative question pairs. The
statistics for the datasets can be found in Table 4.
Since negative question pairs are not explicitly la-
beled, Shah et al. (2018) add 100 randomly sam-
pled (presumably) negative question pairs per dupli-
cate question for all datasets except Quora, which
has explicit negatives.

5 Experimental Setup

We conduct our experiments using PyTorch Hug-
gingface’s transformers (Wolf et al., 2019) and the
sentence-transformers framework10 (Reimers and
Gurevych, 2019). The latter showed that BERT
outperforms other transformer-like networks when
used as bi-encoder. For English datasets, we use
bert-base-uncased and for the Spanish dataset we

9https://github.com/wasiahmad/paraphrase_identification
10https://github.com/UKPLab/sentence-transformers

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://drive.google.com/file/d/0B0PlTAo--BnaQWlsZl9FZ3l1c28
https://drive.google.com/file/d/0B0PlTAo--BnaQWlsZl9FZ3l1c28
https://github.com/wasiahmad/paraphrase_identification
https://github.com/UKPLab/sentence-transformers
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Task Regression (ρ× 100) Classification (F1)

Model / Dataset (Seed Opt.) Spanish-STS BWS (cross-topic) BWS (in-topic) Quora-QP MRPC

Baseline - 30.27 5.53 6.98 66.67 80.80
USE (Yang et al., 2019) - 86.86 53.43 57.23 74.16 81.51

BERT 7 77.50 ± 1.49 65.06 ± 1.06 65.91 ± 1.20 80.40 ± 1.05 88.95 ± 0.67
SBERT 7 68.36 ± 5.28 58.04 ± 1.46 61.20 ± 1.66 73.44 ± 0.65 84.44 ± 0.68

BERT (Upper-bound) 3 77.74 ± 1.24 65.78 ± 0.78 66.54 ± 0.94 81.23 ± 0.93 89.00 ± 0.56
SBERT (Lower-bound) 3 72.07 ± 2.05 60.54 ± 0.99 63.77 ± 2.29 74.66 ± 0.31 84.39 ± 0.51
SBERT-NLPAug 3 74.11 ± 2.58 58.15 ± 1.66 61.15 ± 0.86 73.08 ± 0.42 84.47 ± 0.79

AugSBERT-R.S. 3 62.05 ± 2.53 59.95 ± 0.70 64.54 ± 1.90 73.42 ± 0.74 82.28 ± 0.38
AugSBERT-KDE 3 74.67 ± 1.01 61.49 ± 0.71 69.76 ± 0.50 79.31 ± 0.46 84.33 ± 0.27
AugSBERT-BM25 3 75.08 ± 1.94 61.48 ± 0.73 68.63 ± 0.79 79.01 ± 0.45 85.46 ± 0.52
AugSBERT-S.S. 3 74.99 ± 2.30 61.05 ± 1.02 68.06 ± 0.93 77.20 ± 0.41 82.42 ± 0.32
AugSBERT-BM25+S.S. 3 76.24 ± 1.42 59.41 ± 0.98 63.30 ± 1.34 72.45 ± 0.77 82.68 ± 0.33

Table 5: Summary of all the datasets being used for the in-domain tasks in this paper. STS and BWS are regression
tasks, where we report Spearman’s rank correlation ρ× 100. Quora-QP and MRPC are classification tasks, where
we report F1 score of the positive class. Scores with the best AugSBERT strategy are highlighted. Corresponding
development set performances can be found in Appendix G, Table 12.

use bert-base-multilingual-cased. Every AugS-
BERT model exhibits computational speeds identi-
cal to the SBERT model (Reimers and Gurevych,
2019).

Cross-encoders We fine-tune the BERT-
uncased model by optimizing a variety of hyper-
parameters: hidden-layer sizes, learning-rates and
batch-sizes. We add a linear layer with sigmoid ac-
tivation on top of the [CLS] token to output scores
0 to 1. We achieve optimal results with the com-
bination: learning rate of 1 × 10−5, hidden-layer
sizes in {200, 400} and a batch-size of 16. Refer
to Table 7 in Appendix C.

Bi-encoders We fine-tune SBERT with a
batch-size of 16, a fixed learning rate of 2× 10−5,
and AdamW optimizer. Table 8 in Appendix C lists
hyper-parameters we initially evaluated.

BM25 and Semantic Search We evaluate for
various top k in {3, ..., 18}. We conclude the im-
pact of k is not big and overall accomplish best
results with k = 3 or k = 5 for our experiments.
More details in Appendix E.

Evaluation If not otherwise stated, we repeat
our in-domain experiments with 10 different ran-
dom seeds and report mean scores along with stan-
dard deviation. For in-domain regression tasks
(STS and BWS), we report the Spearman’s rank
correlation (ρ× 100) between predicted and gold
similarity scores and for in-domain classification
tasks (Quora-QP, MRPC), we determine the opti-
mal threshold from the development set and use
it for the test set. We report the F1 score of the
positive label. For all domain adaptation tasks, we
weakly-label the target domain training dataset and

measure AUC(0.05) as the metric since it is more
robust against false negatives (Shah et al., 2018).
AUC(0.05) is the area under the curve of the true
positive rate as function of the false positive rate
(fpr), from fpr = 0 to fpr = 0.05.

Baselines For the in-domain regression tasks,
we use Jaccard similarity to measure the word over-
lap of the two input sentences. For the in-domain
classification tasks, we use a majority label base-
line. Further, we compare our results against Uni-
versal Sentence Encoder (USE) (Yang et al., 2019),
which is a popular state-of-the-art sentence embed-
ding model trained on a wide rang of training data.
We utilise the multilingual model11. Fine-tuning
code for USE is not available, hence, we utilise
USE as a comparison to a large scale, pre-trained
sentence embedding method. Further, we compare
our data augmentation strategy AugSBERT against
a straightforward data augmentation strategy pro-
vided by NLPAug, which implements 15 methods
for text data augmentation.12 We include synonym
replacement replacing words in sentences with syn-
onyms utilizing a BERT language model. We em-
pirically found synonym-replacement to work best
from the rest of the methods provided in NLPAug.

6 Results and Discussion

6.1 In-Domain Experiments for AugSBERT

Table 5 summarizes all results for all in-domain
datasets. The plain bi-encoder (SBERT w/o Seed

11https://tfhub.dev/google/universal-sentence-encoder-
multilingual-large/3

12https://github.com/makcedward/nlpaug

https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3
https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3
https://github.com/makcedward/nlpaug
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In-Domain Cross-Domain

Source Target SBERT AugSBERT SBERT Bi-LSTM Bi-LSTM
(Train) (Evaluate) (Upper-bound) (Lower-bound) (Direct) (Adversarial)

Quora 0.504 0.496 0.496 0.059 0.066
AskUbuntu Sprint 0.869 0.852 0.747 0.93 0.923

SuperUser 0.802 0.779 0.738 0.806 0.798

AskUbuntu 0.715 0.602 0.501 0.351 0.328
Quora Sprint 0.869 0.875 0.505 0.875 0.867

SuperUser 0.802 0.645 0.504 0.523 0.485

AskUbuntu 0.715 0.709 0.637 0.629 0.627
SuperUser Quora 0.504 0.495 0.495 0.058 0.067

Sprint 0.869 0.876 0.785 0.936 0.937

AskUbuntu 0.715 0.663 0.613 0.519 0.543
Sprint Quora 0.504 0.495 0.496 0.048 0.063

SuperUser 0.802 0.769 0.660 0.658 0.636

Table 6: AUC(0.05) scores for domain adaptation experiments. All except SBERT (in-domain) are evaluated in
cross-domain setup with the best transfer strategy highlighted. We adapt (Shah et al., 2018) Bi-LSTM models.
Corresponding development set performances can be found in Appendix G, Table 13.

Opt.) consistently underperforms (4.5 - 9.1 points)
the cross-encoder across all in-domain tasks. Op-
timizing the seed helps SBERT more than BERT,
however, the performance gap remains open (2.8 -
8.2 points). Training with multiple random seeds
and selecting the best performing model on the
development set can significantly improve the per-
formance. For the smallest dataset (STS), we ob-
serve large performance differences between dif-
ferent random seeds. The best and worst seed for
SBERT have a performance difference of more than
21 points. For larger datasets, the dependence on
the random seed decreases. We observe bad train-
ing runs can often be identified and stopped early
using the early stopping algorithm (Dodge et al.,
2020). Detailed results with seed optimization can
be found in Appendix D.

Our proposed AugSBERT approach improves
the performance for all tasks by 1 up to 6 points,
significantly outperforming the existing bi-encoder
SBERT and reducing the performance difference
to the cross-encoder BERT. It outperforms the syn-
onym replacement data augmentation technique
(NLPAug) for all tasks. Simple word replacement
strategies as shown are not helpful for data aug-
mentation in sentence-pair tasks, even leading to
worse performances compared to models without
augmentation for BWS and Quora-QP. Compared
to the off the shelf USE model, we see a significant
improvement with AugSBERT for all tasks except
Spanish-STS. This is presumably due to the fact
that USE was trained on the SNLI corpus (Bow-
man et al., 2015), which was used as basis for the

Spanish STS test set, i.e., USE has seen the test
sentence pairs during training.

For the novel BWS argument similarity dataset,
we observe AugSBERT only gives a minor im-
provement for cross-topic split. We assume this
is due to cross-topic setting being a challenging
task, mapping sentences of an unseen topic to a
vector space such that similar arguments are close.
However, on known topics (in-topic), AugSBERT
shows its full capabilities and even outperforms
the cross-encoder. We think this is due a better
generalization of SBERT bi-enconder compared to
the BERT cross-encoder. Sentences from known
topics (in-topic) are mapped well within a vector
space by a bi-encoder.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4
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6 Gold Standard
Random Sampling
Kernel Density Estimation
BM25
Semantic Search

Figure 4: Comparison of the density distributions of
gold standard with silver standard for various sampling
techniques on Spanish-STS (in-domain) dataset.

Pairwise Sampling We observe that the sam-
pling strategy is critical to achieve an improvement
using AugSBERT. Random sampling (R.S.) de-
creases performance compared to training SBERT
without any additional silver data in most cases.
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BM25 sampling and KDE produces the best AugS-
BERT results, followed by Semantic Search (S.S.).
Figure 4, which shows the score distribution for
the gold and silver dataset for Spanish-STS, visual-
izes the reason for this. With random sampling, we
observe an extremely high number of low similar-
ity pairs. This is expected, as randomly sampling
two sentences yields in nearly all cases a dissimilar
pair. In contrast, BM25 generates a silver dataset
with similar score distribution to the gold training
set. It is still skewed towards low similarity pairs,
but has the highest percentage of high similarity
pairs. BM25+S.S., apart on Spanish-STS, overall
performs worse in this combination than the in-
dividual methods. It even underperforms random
sampling on the BWS and Quora-QP datasets. We
believe this is due to the aggregation of a high num-
ber of dissimilar pairs from the sampling strategies
combined. KDE shows the highest performance in
three tasks, but only marginally outperforms BM25
in two of these. Given that BM25 is the most com-
putationally efficient sampling strategy and also
creates smaller silver datasets (numbers are given
in Appendix F, Table 11), it is likely the best choice
for practical applications.

6.2 Domain Adaptation with AugSBERT

We evaluate the suitability of AugSBERT for the
task of domain adaptation. We use duplicate ques-
tion detection data from different (specialized)
online communities. Results are shown in Ta-
ble 6. We can see in almost all combinations that
AugSBERT outperforms SBERT trained on out-of-
domain data (cross-domain). On the Sprint dataset
(target), the improvement can be as large as 37
points. In few cases, AugSBERT even outperforms
SBERT trained on gold in-domain target data.

We observe that AugSBERT benefits a lot when
the source domain is rather generic (e.g. Quora)
and the target domain is rather specific (e.g. Sprint).
We assume this is due to Quora forum covering
many different topics including both technical and
non-technical questions, transferred well by a cross-
encoder to label the specific target domain (thus
benefiting AugSBERT). Vice-versa, when we go
from a specific domain (Sprint) to a generic target
domain (Quora), only a slight performance increase
is noted.

For comparison, Table 6 also shows the state-of-
the-art results from Shah et al. (2018), who applied
direct and adversarial domain adaptation with a Bi-

LSTM bi-encoder. With the exception of the Sprint
dataset (target), we outperform that system with
substantial improvement for many combinations.

7 Conclusion

We presented a simple, yet effective data augmen-
tation approach called AugSBERT to improve bi-
encoders for pairwise sentence scoring tasks. The
idea is based on using a more powerful cross-
encoder to soft-label new sentence pairs and to
include these into the training set.

We saw a performance improvement of up to 6
points for in-domain experiments. However, se-
lecting the right sentence pairs for soft-labeling is
crucial and the naive approach of randomly select-
ing pairs fails to achieve a performance gain. We
compared several sampling strategies and found
that BM25 sampling provides the best trade-off
between performance gain and computational com-
plexity.

The presented AugSBERT approach can also be
used for domain adaptation, by soft-labeling data
on the target domain. In that case, we observe
an improvement of up to 37 points compared to an
SBERT model purely trained on the source domain.
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A Appendices

In this appendix, we mention the following sec-
tions in detail: MTurk guidelines and density dis-
tribution analysis for the BWS argument similarity
dataset (B), hyperparameter-tuning (C) and seed-
optimization (D); provide analysis of the top-k pa-
rameter (E) and computational efficiency (F) for
our in-domain sampling strategies; report develop-
ment set performances for all our tasks (G).

B BWS Argument Similarity Dataset

B.1 Amazon Mechanical Turk Guidelines
The annotations required for the BWS Argument
Similarity Corpus were acquired via crowdsourcing
on the Amazon Mechanical Turk platform. Work-
ers participating in the study had to be located in
the US, with more than 100 HITs approved and
an overall acceptance rate of 90% or higher. We
paid them at the US federal minimum wage of
$7.25/hour. Workers also had to qualify for the
study by passing a qualification test consisting of
four test questions with argument pairs. Figure 7
exemplifies the instructions given to workers.

B.2 Density Distribution Analysis
Figure 5 compares the density distributions of BWS
with Spanish-STS. For the Spanish-STS dataset,
the pre-sampling process results in a high amount
of pairs towards either ends of the similarity scale—
leading to selection bias. The pre-sampling of the
creation process of the BWS dataset, in turn, is
less biased. There is a much lower number of pairs
towards either end of the scale, which is in accor-
dance with data from the wild, i.e. randomly paired
arguments.

C Hyperparameter Tuning

We implement coarse to fine random search to
find the optimal combination of hyperparameters
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Figure 5: Comparison of density distribution of BWS
Argument Similarity dataset with Spanish-STS dataset.

for both cross-encoders (BERT) and bi-encoders
(SBERT). We choose the optimal combination
based on the development dataset performance
keeping random seed value fixed.13

Cross-Encoder (BERT): For all fine-tuning ex-
periments, we optimize a variety of hyperparame-
ters: hidden-layer sizes, learning-rates and batch-
sizes. We first evaluate over a wide range of pa-
rameters and later conduct a deeper fine search of
these optimal parameters. Experimental setup can
be found in Table 7.

BERT model bert-base (uncased/multi.-cased)

hidden layer sizes {100, 200, 400, 800, 1600, 3200}

Learning rates {1e-4, 1e-5, 1e-6}

Batch sizes {8, 16}

Table 7: Experimental setup for hyperparameter tuning
of cross-encoder (BERT).

Bi-Encoder (SBERT): For all fine-tuning exper-
iments, we utilize bert-base models, and imple-
ment coarse to fine random search with various
learning-rates and batch-sizes. Since changing the
learning rate scheduler did not contribute to signifi-
cant improvement, we kept it constant for all our
experiments. Experimental setup can be found in
Table 8.

D Seed Optimization

For our in-domain tasks, we apply seed optimiza-
tion i.e. we train our models with 5 random seeds

13Random seed value = 42 during hyperparameter tuning
experiments.

https://www.aclweb.org/anthology/2020.acl-demos.12.pdf
https://www.aclweb.org/anthology/2020.acl-demos.12.pdf
http://arxiv.org/abs/1804.09541
http://arxiv.org/abs/1804.09541
http://arxiv.org/abs/1804.09541
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BERT model bert-base (uncased/ multi.-cased)

Learning rates {2e-5, 1e-6, 1e-7}

Learning rate scheduler constant

Batch sizes {8, 16}

Table 8: Experimental setup for hyperparameter tuning
of bi-encoder (SBERT).

and select the model that performs best on the de-
velopment set, and repeat this complete setup 10
times. Testing various seeds can be computation-
ally expensive. In order to reduce the computa-
tional overhead, we evaluate whether bad runs can
be identified and stopped early. At x% of the over-
all training steps we evaluate the model on the
development set and compare the rank with the fi-
nal ranking of the models on the development set.
The results are depicted in Figure 6. We observe
a Spearman’s rank correlation of over 0.8 at about
20% of the training steps. We conclude, that bad
training runs can often be identified and stopped
early.
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Figure 6: Spearman’s rank correlation for SBERT bi-
encoder between development scores at x% of the train-
ing steps with final development score for in-domain
datasets.

E Impact of Top K in Sampling Strategy

In sampling strategies, such as BM25 and seman-
tic search, we are required to pick the top k val-
ues returned by the retrieval engine. Typically for
small k values, positive-pairs are dominant and
with increase in k, negative-pairs start becoming
dominant.

We chose a top k value within {3,5,7,9,12,18}
and evaluated the final scores retrieved from our
experiments, to measure an impact of k. Overall,
we find the impact of k to be rather small and k =
3 or k = 5 producing optimal scores for most
of the experiments. Top-k mean test scores for
our in-domain datasets are reported in Table 9 for

BM25 and Table 10 for semantic search sampling
strategies respectively.

F Computational Efficiency vs. Size of
Silver Datasets

The augmented SBERT strategy requires to weakly
label a large set of sentence pairs with the cross-
encoder. The larger the set of silver pairs, the bigger
is the overhead for labeling with the cross-encoder
and subsequent training the bi-encoder. Hence, for
reasons of efficiency, smaller silver dataset sizes
are preferable. Table 11 summarizes the perfor-
mance of each sampling technique versus the size
of sampled silver pairs.

Different sampling strategies create vastly dif-
ferent amounts of sentence pairs. Randomly sam-
pling (R.S.) a large number of sentence pairs is
not efficient and often leads to worse performances.
KDE with large silver datasets produce optimal
scores, but is less computationally efficient. Se-
mantic Search (S.S.) requires the bi-encoder to be
additionally trained, which causes computational
overhead. Finally, BM25 overall on an average
performs best for all tasks given computational effi-
ciency, by sampling out the smallest silver dataset
sizes for all tasks in Table 11.

G Development Set Performances

The development set performances for all sentence
pair in-domain and domain adaptation tasks can be
referred in Table 12 and Table 13 respectively.
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Dataset/Top k Measure Top 3 Top 5 Top 7 Top 9 Top 12 Top 18

Spanish-STS ρ× 100 73.67 75.08 74.83 74.71 73.89 72.82
BWS (cross) ρ× 100 60.02 60.23 61.48 60.65 60.89 61.47
BWS (in) ρ× 100 66.26 68.63 67.49 67.38 67.74 68.08
Quora-QP F1 79.01 78.68 78.49 78.40 78.46 77.75
MRPC F1 85.46 85.17 85.03 84.15 84.24 84.27

Table 9: Summary of In-domain BM25 Sampling Strategy: Top k mean test scores. We report Spearman’s rank
correlation ρ× 100 for regression tasks and F1 score for classification tasks.

Dataset/Top k Measure Top 3 Top 5 Top 7 Top 9 Top 12 Top 18

Spanish-STS ρ× 100 73.84 74.22 74.99 74.31 74.22 73.61
BWS (cross) ρ× 100 60.57 60.51 60.76 61.04 60.74 60.87
BWS (in) ρ× 100 65.39 68.06 67.01 66.78 66.95 65.93
Quora-QP F1 77.20 76.65 76.41 76.68 76.33 76.32
MRPC F1 82.42 82.18 82.20 81.86 81.81 81.91

Table 10: Summary of In-domain Semantic Search Sampling Strategy: Top k mean test scores. We report Spear-
man’s rank correlation ρ× 100 for regression tasks and F1 score for classification tasks.

Sampling Tech. None BM25 Sem. Search BM25 + S.S. KDE Random Samp.

Dataset Score (#Silver) Score (#Silver) (Score) #Silver (Score) (#Silver) (Score) (#Silver) (Score)

Spanish-STS 72.07 3,964 75.08 12,715 74.99 16,678 76.24 230,364 74.67 911,072 62.05

BWS (cross-topic) 60.54 11,694 61.48 18,824 61.05 28,771 59.41 559,630 61.49 72,3540 59.95

BWS (in-topic) 63.77 9,236 68.63 11,816 68.06 19,830 63.30 394,252 69.76 565,820 64.54

Quora-QP 74.66 28,014 79.01 47,055 77.20 75,067 72.45 50,147 79.31 1,000,000 73.42

MRPC 84.39 10,637 85.46 18,292 82.39 25,867 82.68 32,353 84.33 1,000,000 82.28

Table 11: Summary of (#silver dataset samples, mean score) for each sampling technique across all in-domain
datasets. For STS and BWS datasets, we report the Spearman’s rank correlation ρ × 100 and the F1 score for
Quora-QP and MRPC datasets. None represents plain bi-encoder i.e. SBERT. Scores with best sampling strategy
and smallest silver dataset size across each dataset are highlighted.

Task Regression (ρ× 100) Classification (F1)

Model / Dataset (Seed-Opt.) Spanish-STS BWS (cross-topic) BWS (in-topic) Quora-QP MRPC

Baseline - 16.98 6.31 5.06 66.67 80.75

BERT 7 89.10 ± 0.69 60.97 ± 1.35 64.89 ± 1.41 81.87 ± 1.07 89.71 ± 0.54
SBERT 7 82.15 ± 0.95 54.77 ± 0.68 62.66 ± 1.06 76.69 ± 0.34 87.30 ± 0.45

BERT (Upper-bound) 3 88.86 ± 0.74 62.17 ± 0.83 66.23 ± 0.96 81.64 ± 0.99 89.75 ± 0.46
SBERT (Lower-bound) 3 82.30 ± 1.11 54.90 ± 0.88 62.75 ± 1.16 76.73 ± 0.39 87.37 ± 0.52
SBERT-NLPAug 3 84.63 ± 0.77 58.66 ± 0.49 66.16 ± 0.41 79.72 ± 0.41 87.24 ± 0.52

AugSBERT-R.S. 3 75.90 ± 1.89 57.36 ± 0.80 67.83 ± 0.43 73.42 ± 0.74 84.12 ± 0.64
AugSBERT-KDE 3 85.69 ± 0.54 57.71 ± 0.85 66.14 ± 0.72 80.00 ± 0.31 87.04 ± 0.29
AugSBERT-BM25 3 85.10 ± 1.11 57.95 ± 0.98 65.37 ± 1.18 77.73 ± 0.47 88.04 ± 0.51
AugSBERT-S.S. 3 85.28 ± 0.85 56.84 ± 1.22 66.21 ± 0.92 79.29 ± 0.31 83.52 ± 0.27
AugSBERT-BM25+S.S. 3 85.98 ± 0.75 57.83 ± 0.69 68.45 ± 0.57 79.75 ± 0.24 85.26 ± 0.56

Table 12: Summary of development set scores for the in-domain tasks in this paper. STS and BWS are regression
tasks, where we report Spearman’s rank correlation ρ× 100. Quora-QP and MRPC are classification tasks, where
we report F1 score of the positive class. For Baselines, we use a simple Jaccard similarity for regression tasks and
a majority label baseline for classification tasks. Scores with the best augmented SBERT strategy are highlighted.
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In-Domain Cross-Domain

Source Target SBERT AugSBERT SBERT Bi-LSTM Bi-LSTM
(Train) (Evaluate) (Upper-bound) (Lower-bound) (Direct) (Adversarial)

Quora 0.675 0.638 0.496 0.062 0.071
AskUbuntu Sprint 0.989 0.773 0.670 0.921 0.917

SuperUser 0.908 0.801 0.586 0.797 0.782

AskUbuntu 0.844 0.512 0.511 0.328 0.309
Quora Sprint 0.989 0.675 0.524 0.639 0.848

SuperUser 0.908 0.509 0.512 0.529 0.473

AskUbuntu 0.844 0.612 0.564 0.607 0.620
SuperUser Quora 0.675 0.672 0.496 0.066 0.077

Sprint 0.989 0.848 0.650 0.936 0.933

AskUbuntu 0.844 0.724 0.601 0.521 0.532
Sprint Quora 0.511 0.668 0.497 0.049 0.063

SuperUser 0.908 0.748 0.620 0.652 0.631

Table 13: AUC(0.05) development scores for domain adaptation experiments. All except SBERT (in-domain) are
evaluated in cross-domain setup with the best transfer strategy highlighted. We adapt (Shah et al., 2018) Bi-LSTM
models.

Arguments are similar if -

• They say exactly the same thing in different words. Example for topic “Fracking”,

Argument A: “And the toxic chemicals associated with fracking operations can contaminate the soil, air and water, and
leach into crops”.

Argument B: “The chemicals used in fracking are toxic and threaten to poison and pollute our air, ground, water and food
supplies - basic necessities for life”.

• They cover the same aspect and only differ in minor details. Example for topic “Electric Cars”,

Argument A: “With literally hundreds of moving parts, a petro-fired automobile requires considerably more maintenance
than an electric car”.

Argument B: “Electric cars are much more reliable and require less maintenance than gas-powered cars”.

• They talk about the same general aspect but differ in important details. Example for topic “Electric Cars”,

Argument A: “Electric cars are environmentally friendly as it reduces air pollution”.

Argument B: “Many people think that electric cars are better than gasoline models, not only because of lower operating
costs, but because of quicker acceleration and cleaner air”.

Arguments are not similar if

• They have the same topic but do not cover the same aspect. Example for topic “Electric cars”,

Argument A: “Electric cars are environmentally friendly as it reduces air pollution”.

Argument B: “Generally electric motors for automobiles are much easier to maintain”.

• They have different topics. Example for topic “Robotic Surgery”,

Argument A: “Opponents argue that more drilling offshore could damage sensitive ecosystems”.

Argument B: “Robotic surgery offers patients less pain, fewer complications, and a faster return to normal daily activities”.

Figure 7: Amazon Mechanical Turk HIT Guidelines used in the annotation study for the BWS Argument Similarity
Corpus.


