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Abstract

In goal-oriented dialogue systems, users pro-
vide information through slot values to achieve
specific goals. Practically, some combinations
of slot values can be invalid according to exter-
nal knowledge. For example, a combination of
“cheese pizza” (a menu item) and “oreo cook-
ies” (a topping) from an input utterance “Can
I order a cheese pizza with oreo cookies on
top?” exemplifies such invalid combinations
according to the menu of a restaurant busi-
ness. Traditional dialogue systems allow exe-
cution of validation rules as a post-processing
step after slots have been filled which can lead
to error accumulation. In this paper, we for-
malize knowledge-driven slot constraints and
present a new task of constraint violation de-
tection accompanied with benchmarking data.
Then, we propose methods to integrate the ex-
ternal knowledge into the system and model
constraint violation detection as an end-to-end
classification task and compare it to the tra-
ditional rule-based pipeline approach. Exper-
iments on two domains of the MultiDoGO
dataset reveal challenges of constraint viola-
tion detection and sets the stage for future
work and improvements.

1 Introduction

Natural language understanding (NLU) is an impor-
tant component of goal-oriented dialogue systems.
The function of NLU is to construct a semantic
frame for a user utterance by performing two tasks
– intent classification (IC) and slot labelling (SL)
(Chen et al., 2017). The former task aims to iden-
tify the intent of the user (i.e., an activity or a trans-
action that the user wants to accomplish), while
the latter task extracts attributes of the intent. For
example, given an input utterance “Please add one
XL fries to my order” in Figure 1(A), IC classifies
that the user intent is “AddToOrder” (Adding a new
menu item to the order), while SL detects “one”,
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“XL”, and “fries” as Quantity, MenuItemSize, and
MenuItem, respectively. These two tasks, IC & SL,
could be performed either independently (Zhao and
Wu, 2016; Haffner et al., 2003; Kurata et al., 2016)
or jointly (Xu and Sarikaya, 2013; Li et al., 2018;
Gupta et al., 2019) although recent research shows
that training jointly generally leads to better results
(Hakkani-Tür et al., 2016; Goo et al., 2018).

To make the recognition of intents and slots
more reliable, NLU models require the list of all
possible intents and the slots associated to each
intent. For instance, the intent show_flights has
airline, departure_city, arrival_city, departure_date,
and departure_time as its associated slots. Prac-
tically, each slot has its own type. Some types
are domain-agnostic such as DATE for the depar-
ture_date, while other types are domain-specific,
such as AIRLINE for the slot airline. We also re-
fer to the latter category as custom slot types, for
which custom lists of valid entities are provided.
Moreover, slots could be marked as either required
(such as departure_city and arrival_city) or optional
(such as airline and departure_time). All of these
details are usually defined structurally in a single
document called a bot schema which guides the
conversational flow of the dialogue system (Peskov
et al., 2019; Rastogi et al., 2019).

Besides the above details, the dialogue domain
may have conditions permitting or forbidding some
combinations of slot values. For example, for a
book_flight intent which has “Singapore airlines”
as the airline slot, not all cities are valid destina-
tions where the airlines operate. The NLU may
deal with invalid combinations of slot values by
just ignoring them, i.e., not detecting them in the
SL task. This approach will result in a deterio-
rated user experience as the users would not know
why their attempts to provide slot values are not
successful. Therefore, we envision these condi-
tions as constraints between slots, and the system
should be able to detect constraint violations and
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(A) Input utterance: Please add one XL fries to my order.
Basic NLU output (Intent classification & Slot labelling):

- Intent: AddToOrder
- Slot labels: Please add [one:Quantity] [XL:MenuItemSize] [fries:MenuItem] to my order.

Dialogue state: d = (AddToOrder, {Quantity: 1, MenuItem: ‘Fries’, MenuItemSize: ‘extra large’})
(B) Constraint c = (ci, cS , cl) with ci = [AddToOrder], cS = (MenuItem, MenuItemSize), and cl =

((MenuItem, =, ‘Cheese burger’) AND (MenuItemSize, in, [‘small’, ‘medium’, ‘large’]))
OR ((MenuItem, =, ‘Lasagna’) AND (MenuItemSize, in, [‘medium’, ‘large’]))
OR ((MenuItem, =, ‘Fries’) AND (MenuItemSize, in, [‘medium’, ‘large’, ‘extra large’]))
OR ((MenuItem, =, ‘Pulled pork’) AND (MenuItemSize, in, [‘small’, ‘medium’]))

Figure 1: Examples from the food ordering domain: (A) Expected output of NLU tasks and a resulting dialogue
state where the user attempts to add a menu item with a specific size to the order. (B) An example of constraints
between menu items and possible sizes.

request new slot combinations from the users when
the violations happen. However, to the best of our
knowledge, we have not found any existing work
formalizing the constraints between slots nor mod-
eling detection of constraint violations.

In this paper, we formally represent the slot con-
straints which could be integrated into a bot schema
and present a new task of constraint violation de-
tection: given a bot schema with constraints, a cur-
rent utterance, and a conversation history, predict
whether the current state of conversation violates
any constraints or not and which constraints are
violated. After that, we propose three approaches
to solve this problem (based on a pipeline approach
and an end-to-end approach) and conduct experi-
ments with two domains of the MultiDoGO dataset
(Peskov et al., 2019) augmented with constraint vi-
olation labels. By design, the end-to-end approach
does not suffer from error accumulation (whereas
the pipeline approach does); however, it is more
difficult to inject the constraint information into
the end-to-end approach. The experimental results
reveal challenges of the violation detection task
together with room for improvement.

Overall, the main contributions of this paper are
as follows.

• We formally represent slot constraints in goal-
oriented dialog system.

• We create and release1 two domains of the
augmented MultiDoGO dataset to support the
constraint violation detection task, focusing
on constraints on custom slot types.

• We experiment with three approaches for de-
tecting constraint violations and discuss room
for improvement in this task.

1The data is released under https://github.com/
amazon-research/nlu-slot-constraints.

• We experiment with several unsupervised
methods for open entity linking (based on
string similarity, natural language inference,
and combinations of them) as a part of the
pipeline approach.

The remainder of this paper is organized as fol-
lows. Section 2 explains related work about natural
language understanding in dialogue systems as well
as entity linking. Section 3 presents formal repre-
sentations of the constraints. Section 4 proposes
the three approaches we use to detect constraint
violations. Section 5 explains the created datasets
and the experimental results. Finally, section 6
concludes the paper.

2 Related Work

2.1 Goal-Oriented Dialogue Systems

Goal-oriented dialogue systems allow the usage
of natural language to achieve specific goals such
as food ordering or travel booking. Traditionally,
these systems are built using a pipeline approach
including user intent and slots detection (NLU),
dialog management and knowledge base querying
(Levin et al., 2000; Williams and Young, 2007;
Young et al., 2013). The ability to interface with ex-
ternal knowledge is essential as it constraints possi-
ble entities and their relations per application (e.g.,
different restaurants can have different menus) and
guides the system responses. Constraints detection
is usually handled by a post-processing step, for
example in the DSTC2 dataset (Henderson et al.,
2014), the canthelp act is inferred if the database
returns zero results. In addition, previous work
integrated knowledge base information or lists of
potential slot entities into goal-oriented dialogue
systems but did not model constraint violation de-
tection (Madotto et al., 2018; Liu et al., 2018;
Rastogi et al., 2019; Zhang et al., 2020). In this

https://github.com/amazon-research/nlu-slot-constraints
https://github.com/amazon-research/nlu-slot-constraints
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work, we fill the gap by first formalizing the task of
constraint violation detection for dialogue systems
and modeling it using supervised machine learning.

2.2 Entity Linking

Entity linking aims to link entity mentions (i.e.,
slot values) v in user utterances with their corre-
sponding entities e ∈ E defined in the bot schema
(where E is a list of all possible entities of the asso-
ciated slot type). According to Shen et al. (2015),
an entity linking system generally consists of three
modules. First, candidate generation filters out ir-
relevant entities from E to reduce the search space,
Second, candidate ranking ranks the candidates
to find the entity which the mention most likely
refers to. Third, unlinkable mention prediction pre-
dicts whether the correct entity is really in E or
not. In this paper, we assume that the first module
is not needed because the set E for goal-oriented
dialogue systems is usually in a manageable size.
So, our focus is on the last two tasks.

Candidate ranking could be done in either a su-
pervised way (Chen and Ji, 2011; Gupta et al.,
2017; Kolitsas et al., 2018) or an unsupervised
way (Cucerzan, 2007; Chen et al., 2010; Xu et al.,
2018). Potential features for ranking include sur-
face names, popularity, types of the entities, and the
context surrounding the mention and the entities
(Shen et al., 2015). Usually, it is not easy to find a
large annotated dataset to train a candidate ranking
model for goal-oriented dialogue systems. Hence,
in our approaches, we conduct unsupervised entity
linking based on surface names and types of the
entities. Due to the same limitation, we use unsu-
pervised methods to perform unlinkable mention
prediction which are using a threshold (Ferragina
and Scaiella, 2010; Gottipati and Jiang, 2011), dis-
cussed in section 4.

3 Constraint Representation

As constraint violation check must be applied to
every state in the conversation, we first define dia-
logue states as follows.

Definition 1 A dialogue state d is a tuple (di, ds)
where di is an intent and ds is a list of slot-value
pairs (Rastogi et al., 2019).

Figure 1(A) shows a dialogue state d as an ex-
ample. Next, to represent a constraint, we define
atomic formula – the smallest logical condition in
constraint statements.

Definition 2 An atomic formula f can be writ-
ten as (s, o, v) where s is a slot variable, v
is a list of values, and o ∈ {=, >,<,≥,≤, 6=
, between, regexp, in, not_null} is an operator. A
dialogue state d satisfies f if and only if the corre-
sponding slot value s in ds satisfies f .

For instance, the dialogue state d in Figure 1(A)
satisfies an atomic formula f = (MenuItemSize, in,
[‘medium’, ‘large’, ‘extra large’]).

Definition 3 A constraint c is a triple (ci, cS , cl)
where (1) ci is a list of intents where the con-
straint applies, (2) cS is a list of associated slots
(s1, s2, ..., sn), and (3) cl is a constraint statement
defined on cS – a logical formula in disjunctive
normal form where each conjunction consists of n
atomic formulas that correspond to n slot variables
in cS .

Figure 1(B) shows an example of constraints
between MenuItem and MenuItemSize, applying
to the AddToOrder intent. Basically, it specifies
valid sizes of each menu item.

Definition 4 A constraint c is applicable to a dia-
logue state d if and only if di ∈ ci and cS ⊆ ds.

In other words, a constraint applies to a dialogue
state when the dialogue state has an applicable in-
tent and contains all the relevant slot variables. In
Figure 1, the constraint c is applicable to the dia-
logue state d but not applicable to, for instance, d′ =
(AddToOrder, {Quantity: 1, MenuItem: ‘Fries’}).

Definition 5 A dialogue state d violates a con-
straint c if and only if c is applicable to d but d
does not satisfy cl.

For the running example, d does not violate c
because the slot-value pairs {MenuItem: ‘Fries’,
MenuItemSize: ‘extra large’} of d satisfies cl. Note
that, in Figure 1(A), the dialogue state is a result
of a single utterance. However, a dialogue state in
practice contains the information of the current user
turn fused with the dialogue state of the previous
turn. So, the objective of the constraint violation
detection task is checking whether any constraints
defined in the bot schema are violated after the
dialogue state is updated with the information of
the current turn.

4 Constraint Violation Detection

We propose three approaches to tackle this problem.
The overview is shown in Figure 2.
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Deterministic
Pipeline

-- food_item: bbq chicken pizza
= Original BBQ Chicken Pizza 
-- ingredient: cookies
= Butter Cookies

Probabilistic
Pipeline

I need bbq chicken 
pizza topped with 

cookies

intent: order_food_item
slots:
-- food_item: bbq chicken pizza
-- ingredient: cookies

-- food_item: bbq chicken pizza
= Original BBQ Chicken Pizza (0.5)
= BBQ Spicy Chicken (0.3)
= BBQ Pork Belly (0.1)
= ...

violation(s):
food-ingredient constraint

End-to-End

Approach            Input utterance                      IC/SL                                 Entity Linking                 Violation Detection

Figure 2: An example of input, output, and intermediate results of the three approaches used in this paper. The
probabilistic pipeline adds distributions of possible linked entities over the deterministic one. The end-to-end
approach performs violation detection with a supervised model without intent and slot information (IC/SL).

4.1 Deterministic Pipeline Approach

To detect constraint violations, the deterministic
pipeline approach (DP) performs three steps. First,
it runs intent classification and slot labelling on
the input utterance. Since the detected slot values
may have different surface forms from the entities
defined in the bot schema and the constraints, DP
conducts entity linking and updates the dialogue
state using the predicted intent and the linked enti-
ties, as the second step. In the third step, DP runs
a deterministic satisfiability check simply on the
dialogue state to detect violations.

To implement DP, we use JointBERT (Chen
et al., 2019), with default hyper-parameters, to per-
form IC/SL in the first step. JointBERT utilizes
BERT-base (Devlin et al., 2019) as an encoder to
jointly predict the intent and the slot values. Follow-
ing Chen et al. (2019), we add Conditional Random
Fields (CRF) on top of the BERT model to leverage
dependencies between slot labels.

The second step, entity linking, is challenging
because goal-oriented dialogue systems are usually
domain-specific and no training data for entity link-
ing is provided. Furthermore, a detected slot value
may not correspond to any entity defined in the bot
schema. So, this step should predict None as an
answer when the value cannot be linked. These
two conditions make this step become unsuper-
vised open entity linking. In this paper, we use the
following methods to perform this step.

(1) String similarity: We link a slot value to
the most similar defined entity. Three methods to
measure similarity are used – exact match, Jaccard
Index on character bigrams (so called Bijaccard
metric for short) (Jaccard, 1901), and Levenshtein
edit distance (Levenshtein, 1966). For the exact
match method, we link a slot value to an entity

only if their surface forms exactly match (case-
insensitive). Otherwise, we return None. In con-
trast, for Bijaccard and Levenshtein, we always
answer the most similar entity. So, they cannot
detect unlinkable slot values.

(2) Natural language inference (NLI): NLI
aims to predict if a hypothesis is true (entailment),
false (contradiction), or undetermined (neutral)
given a premise. To predict if a slot value v corre-
sponds to an entity e, we apply a pre-trained NLI
model, in particular RoBERTa (Liu et al., 2019)
pre-trained on MNLI (Williams et al., 2018), to
predict if v (premise) entails e (hypothesis) and
return the entity that gets the highest entailment
score. Also, we set a threshold of 0.8 for predicting
unlinkable values. That means we predict None if
the highest entailment probability is less than 0.8.

(3) Average scores of methods: We average the
scores returned from the three methods (Bijaccard,
Levenshtein, and NLI) to be the final entity score.
Bijaccard and NLI scores already stay between 0
and 1 where 1 is the best score. To combine the
Levenshtein edit distance with these two methods,
we transform the edit distance x to be 1− x

a where
a is the length of the slot value v. Then we return
the entity with the highest average score. We also
have an option of returning None when the highest
average score is less than a threshold of 0.5.

4.2 Probabilistic Pipeline Approach

The probabilistic pipeline approach (PP) has the
same three steps as the deterministic one. The dif-
ference is that instead of linking one slot value to
one entity, PP uses the probability distribution (i.e.,
the entity linking scores normalized using softmax)
over the candidate entities (including None) to rep-
resent the slot value. To predict whether the dia-
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logue state violates a constraint c, we calculate the
probability of each valid entity combination α ac-
cording to the constraint statement cl and define the
violation score as 1−

∑
α|=cl P (α). If the violation

score is larger than a threshold of 0.5, PP predicts
that the dialogue state violates the constraint c.

We use four entity linking methods to generate
the raw linking scores (before softmax) including
Bijaccard, Levenshtein edit distance (normalized
by the length of the slot value), NLI, and average
scores of the three methods. The raw score of None
is set at the threshold, i.e., 0.8 and 0.5 for NLI and
the average method, respectively.

4.3 End-to-End Approach

The end-to-end approach (EE) aims to predict vio-
lations without performing intermediate steps like
IC/SL or entity linking. This task can be seen as
multilabel classification – predicting all the viola-
tions that the current dialogue state causes. Hence,
the number of classes equals the number of con-
straints defined in the bot schema. We use BERT
as a text encoder and apply a linear layer (with sig-
moid function) on top of the embedding of the CLS
token to predict violations2. Then binary cross-
entropy loss is used for optimization on the training
data that maps conversations to violations. This is
different from the pipeline approaches which use
the training data at the IC/SL step, not the violation
detection step.

Because EE does not construct the dialogue state
along the way, it needs to consider both the current
turn and all the previous turns to predict violations.
Therefore, all the user utterances till the current
turn are concatenated to be an input of the BERT
model. If the input length is longer than the maxi-
mum input length of BERT, we trim off the older
turns to make the input meet the length limit.

5 Experiments

5.1 Datasets

As constraint violation detection is a novel prob-
lem, there had not been an existing dataset for
this task. So, we modified two domains, insur-
ance (sentence-level annotation) and fast food
(turn-level annotation), of the MultiDoGO dataset
(Peskov et al., 2019), which is an English multi-
domain goal-oriented IC/SL dataset, to support vi-
olation detection as follows.

2We use the default hyper-parameters of JointBERT.

• We created a list of possible entities for each
custom slot type by manually investigating
and grouping slot values annotated in the
dataset3.

• We mapped distinct surface forms of slot val-
ues to the corresponding entities we just de-
fined. These mappings would be used as
ground truths for entity linking testing.

• We analyzed the co-occurrences of the entities
and then manually wrote constraints for each
intent.

• We constructed a dialogue state for each turn
in the dataset semi-automatically using the
mapped entities and meaningful rules. For
example, entities found in the ‘ContentOnly’4

turn were associated to the dialogue state of
the most recent domain intent.

• We ran deterministic satisfiability check on
the dialogue states and added the constraint
violation results to the dataset. The check
here is the same as the last step of the DP
approach, so we can expect that the last step of
DP works perfectly if the input, obtained from
the previous step (entity linking), is correct.

Table 1 summarizes the statistics of the aug-
mented MultiDoGO dataset. Both domains share
the same set of general intents including Open-
ingGreeting, ClosingGreeting, Confirmation, Con-
tentOnly, OutOfDomain, ThankYou, and Rejection.
The three domain intents of the insurance domain
are CheckClaimStatus, GetProofOfInsurance, and
ReportBrokenPhone, while the domain intents of
the fast food domain concern different types of food
such as OrderBreakfastIntent, OrderBurgerIntent,
and OrderDessertIntent.

The insurance and the fast food domains have
three out of nine and six out of ten custom slot
types, respectively. For each custom slot type, we
create a closed type constraint indicating that a
linked entity must be in the set of possible enti-
ties recognized by the slot type. In addition, we

3SL annotations in the public MultiDoGO dataset do not in-
clude boundaries of slot values. This is problematic especially
for the fast food domain where utterances usually contain
multiple slot values consecutively. Hence, we requested the
raw fast food data from Peskov et al. and imported the slot
boundaries into our modified version using the BIO schema.

4ContentOnly intent is used when the user is providing
details in response to a question from the agent (Peskov et al.,
2019).
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Metric Insurance Fast food
Bot schema statistics
Number of general intents 7 7
Number of domain intents 3 7
Number of slot types 9 10
Number of custom slot types 3 6
# of closed type constraints 3 6
# of domain-specific constraints 1 12
Conversation statistics
Number of dialogues 2,332 2,076
Number of user turns 19,675 18,673
Avg. turns per dialogue 8.44 8.99
Number of tokens 66,957 71,415
Avg. tokens per turn 3.40 3.82
Total unique tokens 6,945 5,747
Number of slot values 9,504 11,618
Avg. slot values per turn 0.48 0.62
% of unlinkable slot values 7.58 14.21
% of non-violating dialogues 74.79 32.80
% of non-violating turns 85.62 48.66
Avg. violations per turn 0.26 1.38

Table 1: Dataset statistics of the two MultiDoGO do-
mains augmented with constraint violation data.

have domain-specific constraints enforcing the do-
main knowledge. The insurance domain has only
the car_model_brand constraint specifying valid
car models for each car brand. Among the twelve
constraints of the fast food domain, eight of them
specify valid menu items for the each domain in-
tent, two of them specify valid sizes for each menu
item, and the other two specify valid ingredients
for each menu item.

Concerning conversation statistics, on average,
the fast food domain has more slot values per turn
than the insurance domain (because a user can men-
tion several ingredients and menu items in one turn).
Besides, it has more unlinkable slot values (None),
resulting in more closed type constraint violations
than the insurance domain. Since the fast food
domain has so many constraints, only 32.8% of
the conversations and 48.7% of the user turns do
not have any violations. The average violations
per turn of 1.38 results from some turns having
many violations. For instance, when a user orders
an unrecognized pizza menu with some unrecog-
nized ingredients, the detected intent is ‘OrderPiz-
zaIntent’ whereas the slots are mapped to ‘None’
entities causing closed type constraint violations
for the food item (pizza) slot and the ingredient
slot. Moreover, they violate the constraint of valid
food items for the ‘OrderPizzaIntent’ intent and
another constraint of valid combinations between
food items and ingredients.

Domain IC SL
Accuracy F1 Precision Recall

Insurance 93.8 92.4 92.1 92.7
Fast food 88.5 79.4 77.2 81.8

Table 2: Intent classification (IC) and slot labeling (SL)
results (in %) of JointBERT used in the pipeline ap-
proaches.

5.2 Implementation

We used PyTorch as a core framework for the three
approaches. External packages we used include
JointBERT5 for IC/SL, edit-distance6 for string
similarity, and transformers7 for the BERT-base8

(for all the three approaches) and RoBERTa (for
NLI). In addition, we used the softmax tempera-
ture of 0.1 to convert raw entity linking scores to
probability in the probabilistic pipeline approach.

5.3 IC/SL and Entity Linking Results

We first consider the performance of individual
components in the pipeline approaches. Table 2
shows the performance of JointBERT for intent
classification and slot labelling. It can be seen that
JointBERT performed better on the insurance do-
main for both IC and SL and this trend is consistent
with the results of the original MultiDoGO paper.

For entity linking, we used several evaluation
metrics, all of which were only computed when the
intents were correctly classified. These include (1)
Link accuracy: Given that the SL module detects
the value of the correct slot type, link accuracy
shows how likely the value is linked to the correct
entity (including None). (2) None recall: The re-
call of None being predicted. This metric shows
how often it can detect when entity mentions can-
not be linked. It is also related to the ability of
detecting closed type constraint violations. (3) Pre-
cision, Recall, F1: Considering all the turns in
the test data, compare the predicted entities to the
ground truth entities. (These metrics are affected
by the performance of IC/SL. If the SL module in-
correctly detects the slot type, this could cause low
precision, recall, and F1 at the entity level here. In
contrast, if the SL module does not detect the slot
value, no text will be fed to the entity linker and
the entity will not be predicted. This could cause
low recall but would not affect the precision.)

5https://github.com/monologg/JointBERT
6https://pypi.org/project/

edit-distance/
7https://huggingface.co/transformers/
8BERT-base makes our models have ∼ 110M parameters.

https://github.com/monologg/JointBERT
https://pypi.org/project/edit-distance/
https://pypi.org/project/edit-distance/
https://huggingface.co/transformers/
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Method
(Threshold)

Insurance Fast food
Link

Accuracy
None
Recall F1 Precision Recall Link

Accuracy
None
Recall F1 Precision Recall

Exact match 93.97 85.82 87.47 85.45 89.58 76.10 81.03 70.74 70.37 71.12
Bijaccard 81.30 - 75.39 73.60 77.27 76.69 - 71.35 69.05 73.81
Levenshtein 77.58 - 71.95 70.25 73.75 71.87 - 66.30 64.18 68.56
NLI 76.50 - 70.95 69.27 72.73 71.68 - 66.96 65.15 68.87
NLI (0.8) 92.58 78.01 86.12 84.07 88.26 81.51 56.89 75.35 73.60 77.19
Average 78.05 - 72.39 70.67 74.19 76.79 - 71.81 69.70 74.04
Average (0.5) 94.74 80.85 88.19 86.15 90.32 84.07 62.06 77.77 75.96 79.66

Table 3: Entity linking results (in %). ‘-’ means that the entity linking method does not support ‘open’ entity
linking. In other words, it cannot predict None for unlinkable entity mentions.

Table 3 shows the results of entity linking on
two MultiDoGO domains. The simplest method,
exact match, yielded acceptable results for the fast
food domain and surprisingly good results for the
insurance domain. This is because possible entities
in the insurance domain (with the types car_brand,
car_model, and car_year) usually have only one sur-
face form. For example, we can only say “Honda”
to refer to the “Honda” car brand entity. Mean-
while, the slot types of the fast food domain are
much more flexible such as food_item and ingredi-
ent. A user may say only “meatball” or “meatballs”
to refer to the “italian meatballs” entity in the bot
schema. Besides, the difference between the two
domains is partly because the IC/SL model worked
better on the insurance domain and provided more
accurate slot values to the entity linking step.

Because exact match is a very strict condition, it
predicted None more often than other methods and
got the highest None recall, while some other meth-
ods do not support open entity linking (including
Bijaccard, Levenshtein, NLI, and Average) and got
zero None recall. However, applying reasonable
None thresholds to NLI and Average boosted up
the results for all the metrics. The Average method
with the threshold of 0.5 achieved the best link ac-
curacy and F1 for both the insurance domain and
the fast food domain. Overall, the results high-
light that using a combination of methods results
in better entity linking performance.

5.4 Violation Detection Results

This section discusses the overall constraint vio-
lation detection results with respect to the follow-
ing metrics. (1) Turn correct: The proportion of
the turns where the violation prediction is exactly
correct for all constraints. (2) Turn IoU: The IoU
score showing how much overlapping the predicted
and the ground truth violations of a given turn are,
on average. Let P and G be sets of predicted and

(A) User: “Hi, I need 1 white top pizza”
• Ground truth:

- Intent: order_pizza_intent
- Slots: {quantity: [1], food_item: [white top pizza]}
- Entities: {quantity: [1], food_item: [white top pizza]}
- Violations: None

• Deterministic pipeline approach (DP):
- Intent: order_pizza_intent
- Slots: {quantity: [1], food_item: [white top, pizza]}
- Entities: {quantity: [1], food_item: [None, pizza]}
- Violations: [closed_type_food_item] 7

• Probabilistic pipeline approach (PP):
- Violations: [closed_type_food_item] 7

• End-to-End approach (EE):
- Violations: None 3

(B) User: “Hai, I need bbq chicken pizza with cheese”
• Ground truth:

- Intent: order_pizza_intent
- Slots: {food_item: [bbq chicken pizza],

ingredient: [cheese]}
- Entities: {food_item: [bbq chicken pizza],

ingredient: [cheese]}
- Violations: None

• Deterministic pipeline approach (DP):
- Intent: order_pizza_intent
- Slots: {food_item: [bbq chicken pizza],

ingredient: [cheese]}
- Entities: {food_item: [bbq chicken pizza],

ingredient: [cheese]}
- Violations: None 3

• Probabilistic pipeline approach (PP):
- None 3

• End-to-End approach (EE):
- Violations: [food_item-ingredient-invalid] 7

Figure 3: Examples of violation predictions of the three
approaches. Note that the entity linking of the pipeline
approaches here is Average (0.5).

ground truth violations of a given turn, respectively.
IoU (Intersection over Union) of this turn equals
|P∩G|
|P∪G| . (3) Conversation correct: The proportion
of conversations where the violation predictions
are correct for all the turns. (4) Precision, Recall,
and F1: Consider each violation of a constraint as
a positive instance, calculate precision, recall, and
F1 of the violations being predicted.

As shown in Table 4, the deterministic pipeline
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Method
(Threshold)

Insurance Fast food
Conver.
correct

Turn
correct

Turn
IoU F1 Preci-

sion Recall Conver.
correct

Turn
correct

Turn
IoU F1 Preci-

sion Recall

Deterministic Pipeline Approach (DP)
Exact match 81.6 89.9 92.4 71.7 62.1 85.0 30.7 45.0 59.6 59.7 49.1 76.1
Bijaccard 74.9 85.6 88.4 39.2 70.6 27.1 39.4 52.2 63.0 51.5 69.8 40.8
Levenshtein 73.4 84.6 87.8 40.9 63.3 30.2 34.5 48.5 60.3 51.7 64.2 43.3
NLI 72.8 84.3 87.8 43.6 63.1 33.4 36.7 49.6 59.4 46.2 64.4 36.0
NLI (0.8) 80.5 89.6 91.9 70.1 62.6 79.6 36.7 48.3 61.9 58.2 54.4 62.4
Average 74.3 85.0 88.2 42.3 67.3 30.8 39.9 52.6 63.3 50.8 68.5 40.3
Average (0.5) 82.2 90.4 92.5 71.6 63.9 81.4 37.4 50.2 63.5 59.5 54.5 65.4

Probabilistic Pipeline Approach (PP)
Bijaccard 74.1 84.8 88.4 44.6 66.9 33.5 37.7 50.8 62.7 52.4 67.3 42.9
Levenshtein 73.7 84.6 88.0 44.3 63.8 33.9 31.9 46.2 58.4 51.2 62.0 43.5
NLI 70.7 83.1 86.8 44.0 58.7 35.2 34.3 47.0 58.3 49.0 62.3 40.3
NLI (0.8) 70.2 83.8 86.4 60.9 52.6 72.3 36.5 47.9 61.6 58.4 54.7 62.8
Average 73.7 84.7 88.2 45.1 64.4 34.6 35.0 48.7 60.8 52.8 64.0 45.0
Average (0.5) 75.4 85.8 89.3 52.5 57.8 48.1 38.2 50.8 63.8 59.0 55.6 63.0

End-to-End Approach (EE)
End-to-End BERT 83.9 92.1 93.4 75.1 76.2 74.1 33.3 52.0 62.4 57.4 60.0 55.1

Table 4: Constraint violation detection results (in %) of the three approaches. For the pipeline approaches, we
compare using different entity linking methods and their impact on the constraint violation detection task.

approach (DP) with exact match as the entity link-
ing method got the highest violation recall. This
is because the exact match is good at detecting un-
linkable slot values (see None recall in Table 3), so
it got high recall concerning violation detection of
closed type constraints. Conversely, entity linking
methods which could not predict None (i.e., Bijac-
card, Levenshtein, NLI, Average) got significantly
lower violation recall and, hence, F1.

Furthermore, the difference between the two do-
mains in Table 4 are more prominent than what we
see for individual steps in Table 2-3. There are sev-
eral reasons for this. First, the fast food domain has
more custom slot types and more constraints. So, it
is more difficult to predict violations of all the con-
straints correctly for each turn – resulting in lower
conversation correct and turn correct. Second, for
the pipeline approaches, the errors of individual
steps of the fast food domain were higher than the
errors of the insurance domain; therefore, the gap
became larger when the errors were accumulated
in the last step. An example in Figure 3(A) illus-
trates this case. The slot labelling part of Joint
BERT identified “white top” and “pizza” as two
separate food items. The entity linker, “Average
(0.5)”, could not map “white top” to any of the
defined entity. The system then understood that the
user ordered an unknown food item and returned
the closed_type_food_item violation which is in-
correct. However, we did not see this particular
error with the end-to-end approach.

Comparing the deterministic pipeline (DP) and

the probabilistic pipeline (PP) approaches, we can
see that DP outperformed PP in most settings, es-
pecially in the insurance domain. We believe that
when the entity linking module works accurately
(as in the insurance domain), switching from DP to
PP probably harms the overall performance since
PP adds unnecessary uncertainty to the correct en-
tity predictions. Conversely, when entity linking is
a challenging step, PP with an appropriate softmax
temperature could yield better results.

According to Table 4, the end-to-end approach
(EE) clearly outperformed DP and PP in the insur-
ance domain while being competitive to DP and
PP in the fast food domain. This might be because
the insurance domain has only one domain-specific
(binary) constraint and three closed type (unary)
constraints that are easier to learn from the training
data. Meanwhile, the fast food domain has twelve
binary and six unary constraints, respectively. With-
out access to the constraint statements, the existing
training examples may not be sufficient to teach
the end-to-end model all possible cases of the con-
straints. An example in Figure 3(B) shows that EE
falsely returned the food_item-ingredient-invalid
violation in response to the input “Hai, I need bbq
chicken pizza with cheese” although this sentence
in fact did not violate the constraint. This error
might be because the model had not seen the com-
bination of bbq chicken pizza and cheese during
training and it did not have access to the constraints
defined in the bot schema.



3415

6 Conclusions and Future Work

Focusing on goal-oriented dialogue systems, we
proposed a novel task – slot constraint violation de-
tection – in NLU, together with constraint represen-
tation and three approaches to tackle this problem.
While the pipeline approaches apply constraints
as a post-processing step after IC/SL, the end-to-
end approach attempts to model constraints inside
the NLU. This sets the stage for future research
and modeling of slot constraints and knowledge
within NLU. In particular, there are several ways
to enhance the end-to-end approach. For exam-
ple, we could perform joint learning of IC, SL, and
constraint violation detection to share the learned
knowledge among tasks. Also, injecting logical
constraints into BERT is an interesting direction.
One way to do so is to translate constraints into vi-
olating and non-violating examples (by generating
conversations with templates derived from existing
training examples) and use them to train BERT to-
gether with other training examples. In addition,
using constraints information, one can control the
training data generation and the percentage of data
with constraint violations depending on expected
user behavior.
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A Additional Dataset Statistics

Metric Insurance Fast food
Train

Number of dialogues 1,632 1,448
Number of user turns 13,821 13,038
Avg. turns per dialogue 8.47 9.00
# of non-violating dialogues 1,214 457
# of non-violating turns 11,800 6,303
% of non-violating dialogues 74.39 31.56
% of non-violating turns 85.38 48.34

Dev
Number of dialogues 233 214
Number of user turns 1,958 1,868
Avg. turns per dialogue 8.40 8.73
# of non-violating dialogues 172 79
# of non-violating turns 1,679 961
% of non-violating dialogues 73.82 36.92
% of non-violating turns 85.75 51.45

Test
Number of dialogues 467 414
Number of user turns 3,896 3,767
Avg. turns per dialogue 8.34 9.10
# of non-violating dialogues 358 145
# of non-violating turns 3,366 1,822
% of non-violating dialogues 76.66 35.02
% of non-violating turns 86.40 48.37

Table 5: Additional dataset statistics by data splits
(training, development, and test).

B Computing Infrastructure

All experiments was performed on one NVidia
V100 GPU having 16 GB of VRAM.

C A Full Conversation Example

Table 6-7 show the violation detection results of
a full conversation predicted by the three baseline
approaches, together with the intermediate results
from the deterministic pipeline approach (including
intents, slots, entities, and dialogue states).

https://doi.org/10.21437/Interspeech.2016-354
https://doi.org/10.21437/Interspeech.2016-354
https://doi.org/10.21437/Interspeech.2016-354
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Turn Input Ground truth IC/SL/Entity linking Pipeline IC/SL/Entity linking Violations

0 hello

Intent: OpeningGreeting
Slots: {}
Entities: {}
DS: {}

Intent: OpeningGreeting 3
Slots: {} 3
Entities: {} 3
DS: {} 3

GT: []
DP: [] 3
PP: [] 3
EE: [] 3

2

i would like to
order 2 veg out
pizza can you
help me with that

Intent: OrderPizzaIntent
Slots: {quantity: [2],
food_item: [veg out pizza]}
Entities: {quantity: [2],
food_item: [pizza]}
DS: {orderpizzaintent: {quantity:
[2], food_item: [pizza]}}

Intent: OrderPizzaIntent 3
Slots: {quantity: [2],
food_item: [veg out pizza]} 3
Entities: {quantity: [2],
food_item: [pizza]} 3
DS: {orderpizzaintent: {quantity:
[2], food_item: [pizza]}} 3

GT: []
DP: [] 3
PP: [] 3
EE: [] 3

4

my address is
1834 eden drive
richmond va
23228 and my
contact number is
804 913 4348

Intent: ContentOnly
Slots: {}
Entities: {}
DS: {orderpizzaintent: {quantity:
[2], food_item: [pizza]}}

Intent: OutOfDomain 7
Slots: {} 3
Entities: {} 3
DS: {orderpizzaintent: {quantity:
[2], food_item: [pizza]}} 3

GT: []
DP: [] 3
PP: [] 3
EE: [] 3

6 i would like high
rise

Intent: OrderPizzaIntent
Slots: {food_item: [high rise]}
Entities: {food_item: [None]}
DS: {orderpizzaintent: {quantity:
[2], food_item: [None]}}

Intent: OrderPizzaIntent 3
Slots: {food_item: [high rise]} 3
Entities: {food_item: [None]} 3
DS: {orderpizzaintent: {quantity:
[2], food_item: [None]}} 3

GT: [closed_food_item,
food_item-orderpizza]
DP: [closed_food_item,
food_item-orderpizza] 3
PP: [closed_food_item,
food_item-orderpizza] 3
EE: [closed_food_item,
food_item-orderpizza] 3

8 yes i want 2 wine

Intent: [Confirmation,
OrderDrinkIntent]
Slots: {quantity: [2],
drink_item: [wine]}
Entities: {quantity: [2],
drink_item: [None]}
DS: {orderpizzaintent: {quantity:
[2], food_item: [None]},
orderdrinkintent: {quantity: [2],
drink_item: [None]}}

Intent: [Confirmation,
OrderDrinkIntent] 3
Slots: {quantity: [2],
drink_item: [wine]} 3
Entities: {quantity: [2],
drink_item: [None]} 3
DS: {orderpizzaintent: {quantity:
[2], food_item: [None]},
orderdrinkintent: {quantity: [2],
drink_item: [None]}} 3

GT: [closed_food_item,
food_item-orderpizza,
closed_drink_item]
DP: [closed_food_item,
food_item-orderpizza,
closed_drink_item] 3
PP: [closed_food_item,
food_item-orderpizza,
closed_drink_item] 3
EE: [closed_food_item,
food_item-orderpizza,
food_item-orderdrink,
closed_drink_item] 7

10 i would prefer red
wine

Intent: OrderDrinkIntent
Slots: {drink_item: [red wine]}
Entities: {drink_item: [red wine]}
DS: {orderpizzaintent: {quantity:
[2], food_item: [None]},
orderdrinkintent: {quantity: [2],
drink_item: [red wine]}}

Intent: OrderDrinkIntent 3
Slots: {food_item: [red wine]} 7
Entities: {food_item: [None]} 7
DS: {orderpizzaintent: {quantity:
[2], food_item: [None]},
orderdrinkintent: {quantity: [2],
drink_item: [None], food_item:
[None]}} 7

GT: [closed_food_item,
food_item-orderpizza]
DP: [closed_food_item,
food_item-orderpizza,
food_item-orderdrink,
closed_drink_item] 7
PP: [closed_food_item,
food_item-orderpizza,
food_item-orderdrink,
closed_drink_item] 7
EE: [closed_food_item,
food_item-orderpizza] 3

Table 6: A full conversation example for constraint violation detection (1/2). The results in the pipeline
IC/SL/Entity linking column are obtained from JointBERT and Average (0.8) entity linking method. DS stands for
dialogue states. GT, DP, PP, and EE are violation results of ground truth, the deterministic pipeline approach, the
probabilistic pipeline approach, and the end-to-end approach, respectively.
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Turn Input Ground truth IC/SL/Entity linking Pipeline IC/SL/Entity linking Violations

12 i want 2 s more
pie

Intent: OrderDessertIntent
Slots: {quantity: [2], food_item:
[s more pie]}
Entities: {quantity: [2],
food_item: [smore pie]}
DS: {orderpizzaintent: {quantity:
[2], food_item: [None]},
orderdrinkintent: {quantity: [2],
drink_item: [red wine]},
orderdessertintent: {quantity: [2],
food_item: [smore pie]} }

Intent: OrderDessertIntent 3
Slots: {quantity: [2], food_item:
[s more pie]} 3
Entities: {quantity: [2],
food_item: [smore pie]} 3
DS: {orderpizzaintent: {quantity:
[2], food_item: [None]},
orderdrinkintent: {quantity: [2],
drink_item: [None], food_item:
[None]},
orderdessertintent: {quantity: [2],
food_item: [smore pie]}} 7

GT: [closed_food_item,
food_item-orderpizza]
DP: [closed_food_item,
food_item-orderpizza,
food_item-orderdrink,
closed_drink_item] 7
PP: [closed_food_item,
food_item-orderpizza,
food_item-orderdrink,
closed_drink_item] 7
EE: [closed_food_item,
food_item-orderpizza,
food_item-orderdrink] 7

14 nothing else

Intent: Rejection
Slots: {}
Entities: {}
DS: {orderpizzaintent: {quantity:
[2], food_item: [None]},
orderdrinkintent: {quantity: [2],
drink_item: [red wine]},
orderdessertintent: {quantity: [2],
food_item: [smore pie]} }

Intent: Rejection 3
Slots: {} 3
Entities: {} 3
DS: {orderpizzaintent: {quantity:
[2], food_item: [None]},
orderdrinkintent: {quantity: [2],
drink_item: [None], food_item:
[None]},
orderdessertintent: {quantity: [2],
food_item: [smore pie]}} 7

GT: [closed_food_item,
food_item-orderpizza]
DP: [closed_food_item,
food_item-orderpizza,
food_item-orderdrink,
closed_drink_item] 7
PP: [closed_food_item,
food_item-orderpizza,
food_item-orderdrink,
closed_drink_item] 7
EE: [closed_food_item,
food_item-orderpizza,
food_item-orderdrink] 7

16 yes please con-
firm the order

Intent: Confirmation
Slots: {}
Entities: {}
DS: {orderpizzaintent: {quantity:
[2], food_item: [None]},
orderdrinkintent: {quantity: [2],
drink_item: [red wine]},
orderdessertintent: {quantity: [2],
food_item: [smore pie]} }

Intent: Confirmation 3
Slots: {} 3
Entities: {} 3
DS: {orderpizzaintent: {quantity:
[2], food_item: [None]},
orderdrinkintent: {quantity: [2],
drink_item: [None], food_item:
[None]},
orderdessertintent: {quantity: [2],
food_item: [smore pie]}} 7

GT: [closed_food_item,
food_item-orderpizza]
DP: [closed_food_item,
food_item-orderpizza,
food_item-orderdrink,
closed_drink_item] 7
PP: [closed_food_item,
food_item-orderpizza,
food_item-orderdrink,
closed_drink_item] 7
EE: [closed_food_item,
food_item-orderpizza,
food_item-orderdrink] 7

18 thank you for
your help

Intent: ThankYou
Slots: {}
Entities: {}
DS: {orderpizzaintent: {quantity:
[2], food_item: [None]},
orderdrinkintent: {quantity: [2],
drink_item: [red wine]},
orderdessertintent: {quantity: [2],
food_item: [smore pie]} }

Intent: ThankYou 3
Slots: {} 3
Entities: {} 3
DS: {orderpizzaintent: {quantity:
[2], food_item: [None]},
orderdrinkintent: {quantity: [2],
drink_item: [None], food_item:
[None]},
orderdessertintent: {quantity: [2],
food_item: [smore pie]}} 7

GT: [closed_food_item,
food_item-orderpizza]
DP: [closed_food_item,
food_item-orderpizza,
food_item-orderdrink,
closed_drink_item] 7
PP: [closed_food_item,
food_item-orderpizza,
food_item-orderdrink,
closed_drink_item] 7
EE: [closed_food_item,
food_item-orderpizza,
food_item-orderdrink] 7

Table 7: A full conversation example for constraint violation detection (2/2). The results in the pipeline
IC/SL/Entity linking column are obtained from JointBERT and Average (0.8) entity linking method. DS stands for
dialogue states. GT, DP, PP, and EE are violation results of ground truth, the deterministic pipeline approach, the
probabilistic pipeline approach, and the end-to-end approach, respectively.


