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Abstract

Deep Learning-based NLP systems can be

sensitive to unseen tokens and hard to learn

with high-dimensional inputs, which critically

hinder learning generalization. We introduce

an approach by grouping input words based

on their semantic diversity to simplify input

language representation with low ambiguity.

Since the semantically diverse words reside

in different contexts, we are able to substi-

tute words with their groups and still distin-

guish word meanings relying on their con-

texts. We design several algorithms that com-

pute diverse groupings based on random sam-

pling, geometric distances, and entropy max-

imization, and we prove formal guarantees

for the entropy-based algorithms. Experimen-

tal results show that our methods generalize

NLP models and demonstrate enhanced accu-

racy on POS tagging and LM tasks and sig-

nificant improvements on medium-scale ma-

chine translation tasks, up to +6.5 BLEU

points. Our source code is available at

https://github.com/abdulrafae/dg.

1 Introduction

Natural Language Understanding has seen remark-

able success with the rise of Deep Learning. How-

ever, human languages’ variety and richness result

in high-dimensional inputs to NLP models, increas-

ing learning complexity and error rates. First, open-

vocabulary inputs inevitably bring rare and out-

of-Vocabulary words (OOVs). Second, network

complexity increases with input dimension, specifi-

cally the “curse of dimensionality” makes learning

difficult on medium and small datasets.

This paper addresses these limitations by intro-

ducing new grouping methods to compute alterna-

tive language representations that simplify textual

inputs. We currently have alternative language rep-

resentations, such as Pinyin, Metaphone, logogram,

∗Author ordered alphabetically. Jia Xu is the correspond-
ing author of this paper.

and Emoji, that exist in natural languages and that

have been shown to improve various NLP applica-

tions (Du and Way, 2017; Liu et al., 2018; Khan

et al., 2020). While these representations can help,

they are not developed for NLP performance. Our

goal is to design algorithms for computing new lan-

guage representations specifically to enhance NLP

performance in this work. We ask:

“Can we compute a generalized language repre-

sentation to improve NLP applications?”

An intuitive approach to answering this ques-

tion is to group similar words in training and test

sets and replace each word with its group. A word

grouping viewed as a many-to-one mapping func-

tion can significantly reduce the vocabulary size

that lowers the input feature dimensions leading to

a generalized NLP model learning.

For example, let us take two sentences: (a) “you

ask me.”; (b) “she tells me.” There are five words

“ask”, “she”, “tells”, “me”, and “you” in the vo-

cabulary. Grouping words into “A” and “B” will

reduce the vocabulary size to two, resulting in a

simplified language representation. We can apply

conventional word clustering to group words after

embedding words into a vector space and measur-

ing their distances with cosine similarity. However,

clustering can map different sentences to the same

sequence of groups, making them indistinguish-

able. In our example, we cluster similar pronouns

“you”, “she” and “me” into one group indicated by

“A”, and verbs “ask”, “tells” by “B”. Then both sen-

tences are rewritten as “A B A.” The distinct mean-

ings of the two original sentences are lost. How-

ever, if we group diverse semantic words, namely,

“you”, “tell” as “A”; “she”, “me”, “ask” as “B”,

then we maintain two samples of (a) “A B B.” and

(b) “B A B.” So, the distinct meanings of the two

sentences are retained. This example illustrates

the need to group words so that each sentence is

uniquely represented. Now, to generalize this idea,

“How can we design an algorithm that simplifies

https://github.com/abdulrafae/dg
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language representation while preserving meaning

expressiveness? ”

Our key observation is that the context of se-

mantically diverse words varies more than that of

semantically close words. In our approach, we

measure semantic similarity using the cosine of

word embeddings, learned based on context, see

(Mikolov et al., 2013; Bojanowski et al., 2017; Pen-

nington et al., 2014). Thus, similar contexts indi-

cate semantic similarity and vice versa. In this way,

our diverse grouping uses context to distinguish

words from the same group, leading to a more ex-

pressive representation.

In this paper, we introduce five novel algorithms

in three types that group semantically diverse words

together. We develop novel theoretical methods for

diverse grouping and port them in our NLP context.

We begin by considering random sampling group-

ing. Next, we develop a grouping algorithm based

on geometric distances by designing an algorithm

that computes a partition of a set of points in some

metric space to maximize the sum of intra-group

distances. This approach is essentially the oppo-

site of the objectives used in clustering problems,

such as k-means (Forgy, 1965) and k-medians (Jain

and Dubes, 1988), where one seeks to minimize

a monotonic function of intra-group distances. Fi-

nally, we present a grouping algorithm to maximize

diversity by maximizing the unigram entropy of the

representation.

We show that the unigram entropy algorithm is
C−1

4C+4εC -approximations of the optimal solutions of

maximizing the entropy of the new representation,

where C is the number of groups, and ε is a small

positive real number. This bound means that in the

worst case, our algorithm is about 1/4 away from

the optimal, while in typical cases, it could be very

close to the optimal. Importantly, our theoretical

results’ outcomes show their usefulness in NLP

tasks after we appropriately adjust them. In our ex-

periments, each of the above methods significantly

enhances the NMT accuracy by up to 6.5 BLEU

points (36.9% relatively).

Our contribution can be summarized as follows:

1. Diversity Grouping Algorithms. We introduce

various algorithms that group semantically di-

verse words together based on random sam-

pling, geometric distances, and entropy maxi-

mization (§3).

2. Formal guarantees. We provide provable guar-

antees for our entropy-based algorithm (§4).

3. Applications in NLP. Importantly, we apply

the above algorithms to NLP applications, and

we show that they significantly enhance pre-

diction accuracy. (§5).

2 Related work

While typical word clustering (Baker and McCal-

lum, 1998; Martin et al., 1998; Feng et al., 2020) (or

word class (Halteren et al., 2001)) methods collect

similar words together, while our method groups

semantically diverse words together. However, un-

like the common use of clustering to smooth unseen

words, our goal is to deduce the input sentence’s

dimension by grouping diverse words so that a

word-group sequence uniquely represents a word

sequence.

Our diverse grouping approach is also close to

the sparse representation (Wright et al., 2008),

which makes the network parameter matrices

sparse without changing its dimension. Our meth-

ods reduce the Neural Network (NN) input dimen-

sion.

Such a dimension reduction can be seen as a kind

of regularization on NNs. There have been many

types of NN regularization methods. (Louizos

et al., 2018) adds a parameter norm penalty to the

objective function, (Bertsekas, 2014) adds con-

strained optimization, and many works exploit the

sub-structure of network models, such as drop-

out, early stopping, and weight decay. Those ap-

proaches are very popular but may limit the capac-

ity of models, while our methods benefit from in-

domain linguistic knowledge. Work such as (Wang

et al., 2018) adds augmented data (e.g., noisy data,

pseudo data, etc.) but is a domain-dependent ap-

proach that inventively increases the training time.

Our work is perpendicular to the successful re-

search in word embedding, whereby a word is

mapped one-one onto a real number vector trying to

preserve word pair distances. In contrast, our meth-

ods map many words into one group in a discrete

space. Also, our systems build on BPE, but we do

not decompose and recombine words. Therefore,

our methods are additive to any improved word

embedding (May et al., 2019), or BPE (Provilkov

et al., 2020) versions.

Different from the inspiring work that uses

Soundex, NYSIIS, Metaphone, logogram (Khan

et al., 2020), Pinyin (Du and Way, 2017; Liu et al.,

2018), skip-ngram (Bojanowski et al., 2017), and

Huffman coding (Chitnis and DeNero, 2015; Khan
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Algorithm 1 Random Grouping

Input: Vocabulary of words V, a phonetic encod-

ing

Parameter:

Output: Grouping γ

1: Perform a phonetic encoding (e.g. Metaphone)

as baseline

2: Initialize the current group i← 1
3: for each unique phonetic encoding do

4: k ←“how many words are mapped”

5: Sample {vj}
k
j=1 from V uniformly at ran-

dom

6: Set γ(v1)← γi, . . . , γ(vk)← γi
7: Set V← V \ {v1 . . . , vk}
8: i← i+ 1
9: end for

10: return γ

et al., 2020), our study aims to develop new arti-

ficial algorithms that lower the dimensions of the

textual inputs with smaller vocabularies.

3 Algorithms for Diverse Grouping

We now present our algorithms. We denote the set

of words by V, and the set of groups by V , i.e., V is

a subset of the powerset of V. Each grouping can

be encoded as a function γ that maps each word

w ∈ V to some group γ(w) ∈ V .

3.1 Random Grouping

Our first approach computes a random group-

ing, as shown in Algorithm 1. This algorithm’s

complexity is O(V), where V is vocabulary size.

We map each word to a group chosen uniformly

at random. C is a hyperparameter indicating the

total number of groups. Because it is expensive

to tune C with exhaustive search, we set C as the

total number of Metaphones in English, inspired

by previous work (Du and Way, 2017; Liu et al.,

2018) in which phonetics improves NMT in spe-

cific languages. Furthermore, each group’s size

follows the natural phonetic encoding distribution

(e.g., Metaphone (Philips, 1990)) by considering

each phonetic encoding as a group. For example,

each Metaphone is considered as a group, and the

number of groups in the random grouping is set to

the number of unique Metaphone.

Algorithm 2 extends Algorithm 1 by learning a

Poisson or Gaussian model for the distribution of

group sizes. We fit the distribution of the Meta-

Algorithm 2 Poisson/Gaussian-based Random

Grouping

Input: Vocabulary of words V, a phonetic

encoding

Parameter: Groups [γ1, . . . , γC ], C ∈ N

Output: Grouping γ

1: for 1 ≤ i ≤ C do

2: Randomly sample the group size k from

Poisson/Gaussian distribution (which is

trained on the English Metaphone distribu-

tion)

3: Sample {vj}
k
j=1 from V uniformly at ran-

dom

4: Set γ(v1)← γi, . . . , γ(vk)← γi
5: Set V← V \ {v1 . . . , vk}
6: end for

7: return γ

phone group sizes into a Poisson or Gaussian distri-

bution. Then, we sample the group size according

to this Poisson or Gaussian distribution. Finally, we

sample words for each group uniform randomly.

3.2 Distance-Based Diverse Grouping

We now introduce our grouping algorithm,

which uses distances on the vector representations

of words. The complexity of this algorithm is

O(V2).
Our approach is described in Algorithm 3, which

is inspired by the classical 2-approximation al-

gorithm for k-center clustering (Gonzalez, 1985).

Our algorithm works as follows: randomly pick

a word from the vocabulary and add it to the list

L′. Pick the second word that is the furthest from

the first word, pick the third word which is furthest

from the closest of the two selected words, and so

on. Finally, for each group size k that follows a

Metaphone encoding size distribution, group the

top k words into group one and remove those k
words from the list. This process is performed

iteratively until all words are assigned. We use

cosine-similarity to measure the pairwise distance

between words. Figure (1) illustrates the work of

the algorithm.

3.3 Maximum Entropy-Based Unigram

Diverse Grouping

We now present our grouping algorithm, which

maximizes unigram entropy. Our ultimate goal is to

maximize the information kept (or reduce the infor-
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Algorithm 3 Distance-Based Diverse Grouping

Input: Vocabulary of words V

Parameter: Groups [γ1, . . . , γC ] with sizes ki
Output: Grouping γ

1: Embed V in R
N using e.g. word2vec

2: W← resulting embedding

3: Randomly pick w0 ∈ W, append w0 to the

ranked list L′

4: for 1 ≤ j ≤ |V| do

5: maxmin = 0
6: for all wi ∈W \ L′ do

7: Find mindisti ← minv∈L′ ‖wi − v‖2
8: if mindisti > maxmin then

9: Set maxmin← mindisti, W ← wi

10: end if

11: end for

12: Append W in L′

13: end for

14: Perform a phonetic encoding (e.g. Metaphone)

15: i← 0
16: for each encoding & i++ do

17: Assign the encoding size as ki
18: end for

19: for 1 ≤ i ≤ C do

20: Set γ(v)← γi for the top ki points of L′

21: Remove the top ki points from L′

22: end for

23: return γ
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Figure 1: An example of Distance-Based Diverse

Grouping

mation loss) from the original input sentences in the

newly coded sentences with a reduced vocabulary.

Distance-based diverse grouping does not consider

the probability (relative frequency) of each element

(original word), i.e., the input distribution. For ex-

ample, if a word occurs very frequently, e.g., “the”,

which can be followed by many words (different

nouns), then the context of “the” cannot help much

to distinguish its meaning. Therefore, it is less am-

biguous to assign a frequent word (“the”) than an

infrequent word to a unique codeword without shar-

ing the codeword. Shannon entropy provides the

quantitative measure on information considering

such an input distribution.

Importantly, Maximum Entropy-Based Unigram

Diverse Grouping (Entropy) is a more efficient al-

gorithm, with a complexity of NO(1), where N is

the number of running words in training. Further-

more, we provide a provable guarantee of about
1
c
-approximation.

The entropy-based diverse grouping aims to max-

imize the diversity of group assignments in the

given text with respect to its entropy. Because

the entropy is maximal when the underlying dis-

tribution is as close to uniform as possible, this

objective captures the diversity requirement. As an

illustration, consider the following text: (1) “she is

running very fast.”; (2) “he is running very fast.”;

(3) “running is very popular today.” We want to

form three groups. This text has a length fourteen;

thus, a grouping with high entropy aims to keep the

frequency of each group around 5
14 . Therefore, the

frequent words like “running” and “is” are likely to

be grouped apart; infrequent words will be spread

among groups uniformly. For instance, the group-

ing {1: running, fast, late}, {2: is she today}, {3:

he very popular} has a group frequency of 5
14 , 5

14 ,
4
14 hence achieving high entropy. Furthermore, the

grouped words appear to be diverse enough so that

each pair of groups {11, 12, . . . , 33} appears ex-

actly once or twice after we perform the grouping.

We consider the entropy with respect to a distribu-

tion induced by the relative frequencies of group

unigrams.

Formally, for any group γi we can define a rela-

tive frequency of a group as

cγi =
∑

w∈V: γ(w)=γi

Fw

where Fw is a relative frequency of a word w. If the

group is empty, its relative frequency is 0. The uni-

gram entropy of a grouping with V = [γ1, . . . , γC ]
is

H(γ) = −
C
∑

i=1

cγi log cγi (1)

We are interested in a grouping that maximizes (1).

3.3.1 Algorithms for Unigram Entropy

Diverse Grouping

We show how to compute a grouping for (1) by

adapting the approximation algorithm for submod-
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ular maximization under matroid constrains due

to (Lee et al., 2009). In our terminology, their algo-

rithm applies three operations to all possible pairs

(w, γi) where w ∈ V and γi ∈ V . It terminates

when for every (w, γi) each operation is either im-

possible to perform or the resulting entropy gain

is below (1 + ε/(C|V|)4)Hold where Hold denotes

an entropy of the grouping before the operation.

These operations are:

1. Put a word w into a group γi

2. Remove a word w from a group γi

3. Remove a word w from a group γi and then

put another word v into a group γj (we allow

either w = v or γi = γj).

After we find the initial grouping, some of the

words may remain unassigned. We note that in

general, adding new words to a grouping may de-

crease the entropy. As an example, assume that we

have two groups γ1, γ2 with cγ1 = 0.25, cγ2 = 0.5
and an ungrouped word w with Fw = 0.25. The

current entropy of a grouping is −0.25 log 0.25−
0.5 log 0.5. Setting γ(w) = γ2 means that

the contribution of cγ2 is now −0.75 log 0.75 <
−0.5 log 0.5 hence the total entropy decreased. To

minimize the potential entropy loss, we map un-

grouped words to a group γj with the smallest par-

tial entropy G(cγj ) = −cγj log(cγj ).
Algorithm 5 explains the detail of the unigram

entropy diverse grouping algorithm, respectively.

We give proofs to this algorithm with the main

result stated as follows:

Theorem 1. Given any precision parameter ε > 0,

Algorithm 5 runs in polynomial time, and computes

a grouping that is a C−1
4C+4εC -approximation to the

maximum unigram entropy.

Roughly speaking, our algorithms are about 1/4

away from optimal of maximizing the entropy. In

typical cases, our algorithms could be very close to

the optimal. Section 4 describes the details of the

proofs.

4 Entropy Maximization as Submodular

Maximization

In order to apply the optimization techniques

from (Lee et al., 2009), which we briefly describe

in Section 3.3.1, we need to use a different repre-

sentation of grouping. We view a grouping γ as

the set of all pairs (w, γi) where γ(w) = γi. For

Algorithm 4 Initial grouping (Lee et al., 2009)

Input: Vocabulary of words V, relative frequencies

Fw

Parameter: Groups [γ1, . . . , γC ], C ∈ N, preci-

sion parameter ε
Output: Grouping γ′ : V→ V

1: Brute-force search for w0 with the biggest par-

tial entropy

w0 ∈ argmax
w∈V

{−Fw logFw}

2: Assign γ′(w0)← γ1
3: Set threshold t← 1 + ε/(C|V|)4

4: until no update is possible do:

5: Try all possible updates and all pairs (w, γi):
6: Update 1 Add w to γi, compute entropy of the

update H1

7: Update 2 Remove w from γi, compute entropy

of the update H2

8: Update 3 Remove arbitrary v from γ(v), add

w to γi, compute entropy of the update H3

9: if Update j can be used on (w, γi) then

10: if Updated entropy Hj > tH(γ) then

11: Perform update j

12: end if

13: end if

14: return γ

a vocabulary V and groups V we denote a set of

all possible pairs (w, γi) as V × V . For instance,

let V = {“she”, “tells”, “me”} and V = [γ1, γ2].
Then V × V = {(“she”, 1), (“she”, 2), (“tells”,

1), (“tells”, 2), (“me”, 1), (“me”, 2)}. Consider a

grouping γ such that γ(“she”) = γ(“tells”) = 1
and γ(“me”) = 2. Then γ can be described as a set

is {(“she”, 1), (“tells”, 1), (“me”, 2)}. We say that

such set defines a grouping and refer to a family of

all such sets as grouping set family.

Note that an arbitrary set in V × V may not

define a grouping. For instance, the set {(“she”, 1),

(“tells”, 1), (“tells”, 2), (“me”, 2)} does not, as it

maps “tells” to more than one group.

To apply the results of (Lee et al., 2009), we

need to show that the grouping set family forms a

matroid (Lee et al., 2009) on V× V .

Lemma 1. The grouping set family defines a ma-

troid on V× V .

To satisfy the conditions of a matroid, we need
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Algorithm 5 Unigram Entropy Diverse Grouping

Input: Vocabulary of words V, relative frequencies

Fw

Parameter: Groups [γ1, . . . , γC ], C ∈ N, preci-

sion parameter ε
Output: Grouping γ : V→ V

1: Compute initial grouping γ′ using Algo-

rithm (4)

2: if γ′(w) is undefined for some w then

3: Let W← {w ∈ V : γ′(w) is undefined}
4: Create a new grouping γ ← γ′

5: Find a group γi0 with the lowest partial uni-

gram entropy:

γi0 ∈ argmin
γ′

j
∈V

{

G
(

cγ′

j

)}

6: for all w ∈W do

7: Set γ(w)← γi0
8: end for

9: end if

10: return γ

two properties. As an example1, consider V and V
as in Figure (2). Firstly, let Q ⊆ V × V be a set

that defines a grouping of V. For instance, Q =
{(point,1), (graph, 1), (noun, 1), (text, 2), (science,

2)}. Then every R ⊂ Q such as R = {(point,1),

(graph, 1), (text, 2)}must define a grouping as well.

Secondly, take two sets S, T ⊆ V × V that both

define groupings. Then if |T | < |S|, we should

always be able to find a pair (w, γi) ∈ S \ T such

that adding (w, γi) to T results in a grouping. In

Figure (2), this pair is (point, 1) in S; T∪ (point, 1)

does define a new groping.

Moreover, the algorithm from (Lee et al., 2009)

requires an objective function to be submodu-

lar (Lee et al., 2009). Intuitively, submodularity

means that a function value changes less for larger

inputs.

Lemma 2. The function H : V × V → R is non-

negative and submodular.

To see that H is submodular, consider V and V
as pictured in Figure (2). Consider groupings γ and

γ′ induced by R and Q from Figure (2). Assume

that we add (word, 1) to γ and γ′. Relative fre-

quencies of γ2 remains unchanged for γ, γ′. Then

the entropy gain for γ′ and γ depends only on the

1The full proof is provided in Appendix.
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Figure 2: Properties 2) and 3) of a matroid for a group-

ing with V = {graph, point, noun, word, text, science}
and V = [1, 2]. Blue color denotes group 1, red color

denotes group 2.

partial entropies of a group indexed by 1:

−
(

cγ′

1
+ Fword

)

log
(

cγ′

1
+ Fword

)

+ cγ′

1
log(cγ′

1
)

− (cγ1 + Fword) log (cγ1 + Fword) + cγ1 log(cγ1)

Every pair (w, γi) grouped by γ is also grouped

by γ′ thus cγ1 < cγ′

1
. Because the function

L(x) = −x log (x+ Fwell) + x log x is monotone

decreasing for all real non-negative values x, we

have L(cγ1) > L(cγ′

1
). Hence, the larger grouping

gains less in entropy than the smaller one.

Now we give a sketch of the proof of Theorem 1.

Proof. We claim that H(γ) ≥ C−1
4C+4εCH

∗ where

H∗ is the largest unigram entropy among all group-

ings. We should consider the case H(γ) < H(γ′).
The groupings γ and γ′ differ only in index i0.

Thus the difference H(γ)−H(γ′) is equal to the

difference in the partial entropies

G
(

cγi0

)

−G
(

cγ′

i0

)

.

We note that the group γ′i0 with the smallest partial

entropy contributes at most H(γ′)/C to the total

entropy of γ′. Moreover, partial entropy of γi0 is

always non-negative. We obtain H(γ)−H(γ′) ≥
−H(γ′)/C. Our bound follows by plugging in

the estimation H(γ′) ≥ H∗/(4 + 4ε) which is

the approximation guarantee for the Algorithm 4

from (Lee et al., 2009).

5 Experiments

Combination Methods Below, we will discuss

how to incorporate our new representation using

any of our grouping methods in NLP tasks. Firstly,

we group each word independently. Applying a

grouping function γ(·) in Section 3 on each word

x1, x2, x3, · · · , xi, · · · , xI′ in an input sentence
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x1 x2 x3Input text
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embeddings
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x1 x2 x3Input text

Token
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Token

embeddings

c1 c2 c3

Bi-LSTM POS

y1 y2 y3

Encoder
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+

+

Figure 3: Combination methods for different NN archi-

tectures: (a) concatenation for ConvS2S and XLM; (b)

linear interpolation on encoder outputs for Bi-LSTM

with attention. γ(·) is a word grouping function.

one by one generates a sequence of word groups

γ(x1), γ(x2), γ(x3), · · · , γ(xi), · · · , γ(xI′) in the

same length I ′. Note that we use the term “word”

loosely here; it can mean a word or a subword (of

a BPE token), or even a character.

The first combination method is concatena-

tion, see Figure 3a. We apply this method in

NMT. First, we concatenate two input sources.

Next, we apply the Byte-Pair-Encoding (Sennrich

et al., 2015) (BPE) and word embeddings imple-

mented by Řehůřek and Sojka (2010) on each

word ǫ(x) and its codeword ǫγ(γ(x)). We sep-

arately train word embedding on groups and on

words. Thus, ǫγ(·) and ǫ(·) are different func-

tions. As shown in Figure 3, the input to the

NLP system is the embedded words of a sentence,

ǫ̃(x1), ǫ̃(x2), ǫ̃(x3), · · · , ǫ̃(xi), · · · , ǫ̃(xI), where

ǫ̃(xi) is the concatenation of the embedded words

ǫ(xi) and their groups ǫγ(γ(xi)):

ǫ̃(xi) = [ǫ(xi); ǫγ(γ(xi))] (2)

The second method is linear combination on

encoder outputs, see Figure 3b. We use this

method in part-of-speech (POS) tagging. The

input to the linear combiner is the grouped sen-

tence, represented by a sequence of hidden states

h̃1(ǫ(xI)), · · · , h̃j(ǫ(xI)), · · · , h̃J(ǫ(xI)) of the

last position I in each of the encoder layers j ∈
[1, 2, · · · , J ]. J is the number of nodes at each

decoder layer. Recall that each hidden state is a

real vector Rd, which is why we can use the vector

space operations such as addition on it. For conve-

nience, we denote the last hidden state of the j-th

encoder layer, which we take as the input to the

decoder, h̃j(ǫ(xI)), by h̃jI , the last hidden state of

the j-th encoder layer of the original textual sen-

tence hj(ǫ(xI)) by hjI , and the last hidden state

of the j-th encoder layer of the grouped sentence

hj(ǫγ(γ(xI))) by hγ
j
I . The combined encoder hid-

den state h̃j is a linear interpolation of the hidden

states of the textural input and its group input:

h̃j = (1− α)hjI + αhγ
j
I (3)

As shown in Figure (3b), each layer’s combined

last hidden state is fed into the baseline decoder

with the operator of +. α is the encoder weight of

the grouped sentence, and here, α = 0.5.

In the following context, we will show the our

methods’ evaluation results on three representative

NLP tasks: (1) Machine translation as a recognition

and generation problem; (2) Language modeling

as a regression problem; and (3) POS tagging as a

typical sequence labeling problem. We will show

that our methods have the potential to improve any

NLP application with textual inputs.

5.1 Neural Machine Translation

Dataset We empirically verify our method on

the IWSLT’17 dataset containing 226 thousand

sentences. Table 1 shows the vocabulary statistics

before and after the pre-processing on the original

and the concatenated data. We carry out experi-

ments on the English-to-French (EN-FR) language

direction.

We also carry out experiments on additional

medium and small NMT tasks. For medium-sized

tasks, we use the IWSLT’17 dataset with language

directions including English to German (EN-DE),

German to English (DE-EN), and English to Chi-

nese (EN-ZH). We use the MTNT’18 dataset with

language directions English to French (MTNT EN-

FR) and French to English (MTNT FR-EN) for the

small-sized task.

Baseline and Setup As a filter in pre-processing,

every sentence is restricted to 250 characters and

1.5 length ratio between source and target sen-

tences using Moses tokenizer (Koehn et al., 2007).
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Running Words Method EN FR

Before BPE
Baseline 4.8 5.1

+Entropy 9.5 5.1

After BPE
Baseline 5.2 5.6

+Entropy 10.2 5.8

Vocabulary Method EN FR

Before BPE
Baseline 63 81

+Entropy 67 81

After BPE
Baseline 11 13

+Entropy 12 11

Table 1: IWSLT’17 English-French statistics of run-

ning words in millions (M ) and vocabulary words in

thousands (K).

The Byte-pair encoding model (with 16K BPE

operations) is jointly trained on the source tex-

tual word inputs, cluster ID inputs, and target out-

puts. The baseline NMT model is the Convolu-

tional Sequence to Sequence (Gehring et al., 2017)

(ConvS2S), with the following parameter setting:

the embedding dimension as 512, the learning rate

as 0.25, the gradient clipping as 0.1, the dropout

ratio as 0.2, and the optimizer as NAG. The train-

ing is terminated when the validation loss does not

decrease for five consecutive epochs. For Chinese

translations, we use the IWSLT post-processing

script (IWSLT, 2021). Finally, the translation ac-

curacy is measured with the BLEU score using

SacreBLEU (Post, 2018).

Distance Measure To empirically compare

across random and distance-based grouping algo-

rithms, we measure the intra-group average dis-

tance of group pairs as follows: For each group

in the source side vocabulary of the training and

test set, compute the sum of the cosine distance

1− A·B
||A||·||B|| of the embedding of each word pair,

then divide it by the total number of word pairs

in this group to get the group diversity. Then,

average the distance of all groups in the vocab-

ulary. Each algorithm generates the same num-

ber (63992) of word groups. The average distance

of Poisson/Gaussian-based Random Grouping is

0.1286, and that of Rank-based Diverse Group-

ing is 0.1291. This finding is consistent with the

translation BLEU score in Table 2. The greater

the intra-group distance, the higher the accuracy.

Maximum entropy approaches cannot be compared

with this measure because it takes the entropy as an

objective function. We have provided its provable

guarantee in Section 4.

Method Test

Baseline 17.6

Word Grouping

Poisson R.G. (Alg.2) 22.4

Gaussian R.G. (Alg.2) 23.4

R.G. (Alg.1) 23.3

Distance D.G. (Alg.3) 23.6

Entropy (Alg.4) 24.1 (+36.9%)

Table 2: Translation results in BLEU[%] on IWSLT’17.

EN-FR. Baseline is (Gehring et al., 2017) on words.

Dev: IWSLT test 2013, test 2014, test 2015; Test:

IWSLT test 2017. Our methods include Random

Grouping (R.G.), Poisson/Gaussian-based Random

Grouping (Poisson/Gaussian R.G.), Distance-based Di-

verse Grouping (Distance D.G.), and Entropy-based Di-

verse Grouping (Entropy), respectively. BPE: 16k.

Dataset IWSLT MTNT

Method EN-DE DE-EN EN-ZH EN-FR

Baseline 19.4 22.6 18.6 19.4

Entropy 21.0 24.0 19.2
23.9

(+18.8%)

Table 3: Left: Translation results in BLEU[%] on

IWSLT’17 (EN-DE, DE-EN, EN-ZH; Dev: test 2013,

test 2014, test 2015; Test: test 2017). Right: Transla-

tion results in BLEU[%] on MTNT’18 (EN-FR; Dev:

MTNT dev; Test: MTNT test 2018) datasets. Baseline:

(Gehring et al., 2017) on words. BPE operations: 16k.

Figure 4: Histogram of Sentence-level BLEU Scores

for baseline, Distance-based D.G. & Entropy.

Results For IWSLT’17 task, Table 2 shows the

improvement when applying each of our methods

on the ConvS2S baseline. All of our methods signif-

icantly enhance the accuracy of the NMT systems.

Among them, the entropy-based diverse grouping

achieves the greatest improvement, i.e., +6.5 BLEU

points, which is +36.9% relative improvement.

Analysis Figure 4 compares entropy, distance-

based D.G. and the baseline method with respect to

the sentence-level BLEU score in a histogram (Neu-

big et al., 2019). The baseline method generates
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Source
Qu’est-ce que cela signifie pour

le procrastinateur ?

Reference
Now, what does this mean for the

procrastinator?

Baseline
Well, there’s an issue of what it

means for procrastinator?

Entropy
Now, what does this mean for

procrastinator?

Source
Pendant que ça pousse,

ils font des changements.

Reference While it’s growing, they make changes.

Baseline It’s going to push it, they make change.

Entropy
So, i think it’s growing,

they make change.

Source Mes parents ne se sont jamais plaints.

Reference
And you know, my parents never

complained.

Baseline It’s never complained.

Entropy So, my parents never complained.

Table 4: Comparison of translation outputs for baseline,

Distance D.G. & Entropy.

almost double low-quality translations (347) com-

pared to the distance D.G. and entropy methods

(178 and 179), while the latter two methods gen-

erate many more high-quality translations with

BLEU above 20%.

Table 4 shows the FR-EN baseline and entropy

translation outputs, respectively. We observe that

our entropy method is particularly better than the

baseline when the baseline fails in: (1) performing

a reasonable translation; (2) missing phrases; (3)

mis-translating phrases.

5.2 POS Tagging

We evaluate our approach in POS Tagging on

Brown Corpus (Francis and Kucera, 1979). Brown

corpus is a well-known English dataset for POS and

contains 57 341 samples. We uniform randomly

sample 64% data as the training set, 16% as the

validation set, and 20% as the test set. Our baseline

is a Keras (Chollet, 2015) implementation (Joshi,

2018) of Bi-LSTM POS Tagger (Wang et al., 2015).

We train word embedding (Mikolov et al., 2013) im-

plemented by Řehůřek and Sojka (2010) with 100

dimensions. Each of the forward and the backward

LSTM has 64 dimensions. We use a categorical

cross-entropy loss and RMSProp optimizer. We

also use early stopping based on validation loss.

Dev Test

Loss Accuracy Error Rate

Baseline 5.16 5.39 98.61 1.39

R.G. 5.32 5.07 98.69 1.31

Poisson R.G. 5.56 5.27 98.62 1.38

Entropy 5.48 5.22 98.66
1.34

(-3.60%)

Table 5: POS accuracy and error rate in [%] on Brown

corpus. Baseline is Bi-LSTM POS Tagger (Joshi, 2018)

on words.

Test PPL

Baseline 22.85

Entropy 21.99 (-3.76%)

Table 6: LM PPL on the English part of IWSLT’17 EN-

FR. Baseline: XLM (Lample and Conneau, 2019).

5.3 Language Modeling (LM)

We train and evaluate the English part of EN-FR

IWSLT’17 dataset. We use 256 embedding dimen-

sions, six layers, and eight heads for efficiency. We

set dropouts to 0.1, the learning rate to 0.0001, and

BPE operations to 32k. We used Adam optimizer

with betas of 0.9. As shown in Table 6, Entropy-

based diverse grouping reduces PPL of the baseline

system, i.e., 3.76% relatively.

6 Conclusion

We introduce a novel approach that generalizes

Deep Learning models by grouping input words

to maximize their semantic diversity. To this end,

we design a family of algorithms based on random

sampling, geometric distance, and entropy, and pro-

vide provable guarantees to the entropy-based di-

verse grouping. Our methods reduce the number of

low-quality translation outputs (< 10% in BLEU)

to half and greatly increase the high-quality trans-

lation (> 20% in BLEU) ratio. Experiments show

that our approach significant improves over state-

of-the-art baselines in Neural Machine Translation

(i.e., up to +6.5 BLEU points) and achieves higher

accuracy in POS Tagging and Language Modeling.
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Appendix A Used notation

We list the notation used throughout the paper

V: vocabulary of words

V: vocabulary of groups

w, v: a word

Fw: relative frequency of a word w

γi, γj : a group

V× Γ: set of all possible pairs (w, γi)

cγi : relative frequency of a group γi
γ: an assignment (grouping)

H(γ): unigram entropy of a grouping γ

G
(

cγ′

j

)

: partial enropy of a group γi

C: number of groups

[1, . . . , C] - natural numbers from 1 to C

N - natural numbers

Appendix B Omitted proofs

Definition 1 (Matroid). Let Ω be a finite set (uni-

verse) and I ⊆ 2Ω be a set family (independent

sets). A pairM = (Ω, I) is called a matroid if

1. ∅ ∈ I

2. If Q ∈ I and R ⊆ Q then R ∈ I

3. For any Q,R ∈ I with |R| < |Q| there exists

{x} ∈ Q \R such that R ∪ {x} ∈ I.

Let us denote a family of all grouping sets of

V× V as G.

Proof of Lemma 1. We have to show that (V ×
V,G) satisfies three condition from the Defini-

tion 1.

1. An empty grouping is a grouping.

2. Consider an arbitrary Q ∈ G and R ⊂ Q.

Since Q defines a grouping, for any (w, γi) ∈
Q we have (wγj) /∈ Q for all γj 6= γi. There-

fore, for all (w, γi) ∈ R we have (wγj) /∈ R
given γj 6= γi and thus R defines a grouping

as well.

3. Consider two arbitrary R,Q ∈ G with |R| <
|Q|. Let us denote {w ∈ V : (w, γi) ∈
Q for some γi} as π(Q). We claim that |Q| =
|π(Q)|. Otherwise, there must exist w such

that (w, γi), (w, γj) ∈ Q and γi 6= γj . How-

ever, this is forbidden for a set which defines a

grouping. Analogously, |R| = |π(R)|. Since

both R,Q are finite, we have 0 < |Q \R| =
|π(Q)| − |π(R)| = |π(Q) \ π(R)|. Consider
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an arbitrary w′ ∈ π(Q) \ π(R) and its group

γi′ in Q; we have (w′, γi′) ∈ Q\R. Moreover,

since w′ is ungrouped by R, we conclude that

R ∪ {(w′, γi′)} ∈ G and finish the proof.

Definition 2 (Submodular function). A function

f : 2Ω → R, where Ω is finite, is submodular if for

any X ⊆ Y ⊆ Ω and any x ∈ Ω \ Y we have

f (X ∪ {x})− f(X) ≥ f (Y ∪ {x})− f(Y ).

For any non-negative real x and fixed a > 0, we

denote −(x+ a) log2(x+ a) + x log x as La(x).

Proof of Lemma 2. First, we show that H(Q) ≥ 0
for all Q ⊆ V×V . By definition, we have H(∅) =
0. Consider an arbitrary non-empty Q ⊆ V × V .

For any γi ∈ V we have

0 ≤ cγi =
∑

w∈V:
(w,γi)∈Q

Fw ≤
∑

w∈V

Fw = 1.

Therefore, −cγi log cγi ≥ 0 and

C
∑

i=1

L (cγi) ≥ 0.

Now we establish submodularity. Consider an

arbitrary Q ⊆ V×V , R ⊂ Q and any (w′, γi′) /∈ Q.

Let Q′ := Q ∪ {(w′, γi′)}, R
′ := R ∪ {(w′, γi′)}.

We need to show that

H(R′)−H(R) ≥ H(Q′)−H(Q). (4)

Let us denote the frequency of the unigram γj in

Q, Q′ as cγj (Q), cγj (Q
′). Since Q and Q′ differ

only in the group γi′ we have

H(Q′)−H(Q) =

− cγi′ (Q
′) log cγi′ (Q) + cγi′ (Q) log cγi′ (Q)

(5)

Similarly, (5) holds for H(R′) −H(R). Thus, to

proof (4) it is enough to show

−cγi′ (R
′) log cγi′ (R

′) + cγi′ (R) log cγi′ (R) ≥

−cγi′ (Q
′) log cγi′ (Q

′) + cγi′ (Q) log cγi′ (Q)

We have cγ′

i
(Q′) = cγ′

i
(Q) + Fw′ ; therefore, (5)

can be rewritten as LFw′
(cγi′ (Q)). Similarly,

cγ′

i
(R′) = cγ′

i
(R)+Fw′ hence we need to establish

LFw′
(cγi′ (R)) ≥ LFw′

(cγi′Q). (6)

For any (w, i′) ∈ R we have (w, i′) ∈ Q; thus

cγi′ (R) < cγi′ (Q), and (6) follows from the fact

that LFw′
(x) is monotone decreasing for all non-

negative real x.

Proof of Theorem 1. By the result (Lee et al.,

2009), the Algorithm 5 outputs the map γ′ such

that

1

4 + 4ε
H(γ∗) ≤ H(γ′). (7)

where γ∗ is the grouping which achieves largest

value of H . We need to show that the approxima-

tion guarantee still holds if γ′(w) is undefined for

some w.

After Step 8, the groupings γ′ and γ differ only

for the group i0; thus,

H(γ)−H
(

γ′
)

= L
(

cγi0

)

− L
(

cγ′

i0

)

.

Assume that H(γ)−H(γ′) < 0. First, there must

exist j ∈ V such that

L
(

cγ′

j0

)

≤
1

C
H

(

γ′
)

and thus for the group i0 we have

L
(

cγ′

i0

)

≤
1

C
H

(

γ′
)

(8)

From (8) and L(x) ≥ 0 we obtain

L
(

cγi0

)

− L
(

cγ′

i0

)

≥ −L
(

cγ′

i0

)

≥ −
1

C
H

(

γ′
)

hence

H(γ) ≥
C − 1

C
H

(

γ′
)

≥
C − 1

4C + 4εC
H(γ∗).

For a single matroid constrain, the algorithm

from (Lee et al., 2009) runs in time (|Ω|)O(1) where

Ω is the universe. In our case, Ω = V×V hence the

running time is O(C|V|)O(1). The rest of the Al-

gorithm 5 takes O(C|V|)O(1) steps, thus we obtain

the stated running time and finish the proof.


