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Abstract
Automatic image captioning has improved sig-
nificantly over the last few years, but the prob-
lem is far from being solved, with state of
the art models still often producing low qual-
ity captions when used in the wild. In this
paper, we focus on the task of Quality Es-
timation (QE) for image captions, which at-
tempts to model the caption quality from a hu-
man perspective and without access to ground-
truth references, so that it can be applied at
prediction time to detect low-quality captions
produced on previously unseen images. For
this task, we develop a human evaluation pro-
cess that collects coarse-grained caption anno-
tations from crowdsourced users, which is then
used to collect a large scale dataset spanning
more than 600k caption quality ratings. We
then carefully validate the quality of the col-
lected ratings and establish baseline models
for this new QE task. Finally, we further col-
lect fine-grained caption quality annotations
from trained raters, and use them to demon-
strate that QE models trained over the coarse
ratings can effectively detect and filter out low-
quality image captions, thereby improving the
user experience from captioning systems.

1 Introduction

Image captioning technology produces automatic
image descriptions using natural language with the
goal of being consumed by end-users that may not
be able to directly access the images. This need
arises either because the user has a permanent con-
dition (accessibility for visually impaired people),
or due to a temporary situation where the user can-
not use the visual modality (such as limited band-
width, or smart voice-assistant). In any of these
situations, exposing the end-users to a generated
caption that is incorrect negatively impacts user-
trust, as it can have undesirable consequences for
how they act next (for example, how they comment
on a social-media site based on their misguided
understanding).

In this paper, we propose to mitigate such risks
through Quality Estimation (QE) of image captions.
That is, we propose to automatically compute a
quality estimation score QE(image, caption) for
a generated caption, and use it to control the quality
of the captions presented to the user. For example,
by filtering out captions with a low QE score (below
a carefully chosen threshold), only high scoring
captions would be served thereby minimizing the
risks associated with low-quality captions.

We emphasize two aspects of QE that have
guided us in our design choices: First, the QE task
is distinct from the model selection task: model
selection measures output similarity to a fixed,
ground-truth annotated dataset during training time
(with traditional offline solutions such as CIDEr
and SPICE). In contrast, a QE model estimates
the caption quality with respect to the input image
only and does so on previously unseen samples at
prediction time where ground-truth captions are un-
available. Second, a QE model’s goal is to assess
the caption as a whole and relate it to the image
content in a way that QE(image, caption) aligns
with human understanding of language and their
perception of visual information.

To address these aspects we develop an image-
caption evaluation process for collecting vast
amounts of human judgements. Specifically, we
design the process to elicit only the type of human
signal that is required for quality estimation – hu-
man annotators are shown the image and asked
to evaluate the caption as a whole by simply an-
swering whether it is good or not. This type of
high level feedback trades away the ability to un-
derstand in what way the caption is wrong, but its
simplicity enables scaling up human evaluations
to cover many more images, which promotes the
generalization of the QE model to unseen images.

The dataset resulting from the evaluation pro-
cess includes captions generated by various image-
captioning model over 16,000 unique images from
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the Open Image Dataset (Kuznetsova et al., 2018)
for a total of 55,000 unique 〈image, caption〉
pairs, over which we collected approximately
600,000 binary human ratings. We denote this
dataset as Caption-Quality, provide extensive de-
tails on its generation process as well as make it
publicly available1, available.

The following summarizes our contributions:
1. We release the Caption-Quality dataset of

roughly 65k human rated image-caption pairs,
obtained by collecting approximately 600k bi-
nary human ratings in total. By analyzing the
collected ratings, we show that they encode a
stable and consistent signal about the caption.

2. We establish baseline results on the QE task
and demonstrate that the signal encoded in
the collected ratings is learnable, yet, cannot
be trivially captured by an image-text simi-
lairty model trained over a large scale image-
captioning dataset.

3. We further test our QE models, trained over
the Caption-Quality dataset, and show that
they can successfully rank correct-and-helpful
captions higher than incorrect or unhelpful
ones, even though they were never exposed to
such a fine-grained signal. This is done by col-
lecting additional fine-grained caption annota-
tions from trained human raters, over images
that are out-of-domain for the QE model.

2 Related Work

Our paper is most similar to work done on evalu-
ation metrics of image captions, where the main
difference is that QE does not have access to the
ground truth captions.

Quality estimation has more than a decade long
history in the Machine Translation (MT) field, from
the early work based on feature engineering (Specia
et al., 2009; Soricut and Echihabi, 2010), to more
recent neural-network–based approaches (Kreutzer
et al., 2015; Kim and Lee, 2016; Kim et al., 2017).
The QE track at the WMT conference (Specia et al.,
2019) has been running for several years, with
multiple participants and notable improvements
in model performance over the years. However,
there are significant differences in the formulation
of the QE task between MT and image captioning,
most notably the fact that the MT formulation is

1https://github.com/
google-research-datasets/
image-caption-quality-dataset

uni-modal (text-only alignment). As a result, so-
lutions for QE in the MT context tend to focus on
feature-engineering that exploits this aspect (Spe-
cia et al., 2013; Kreutzer et al., 2015; Martins et al.,
2017; Wang et al., 2018). In contrast, QE for Im-
age Captioning is a bi-modal problem (image-and-
text alignment), and therefore better suited to ap-
proaches based primarily on deep feature represen-
tations and multi-modal feature integration, as we
present in this paper.

Beyond quality estimation modeling, the issue
of effectively using quality estimators to improve
the accessibility use-case for Blind or Visually
Impaired (BVI) people has been previously stud-
ied (MacLeod et al., 2017). The main question
of their study is how to best inform the BVI user
about the uncertainty around the generated cap-
tions, experimenting with framing the captions us-
ing phrases like “I’m not really sure but I think it’s
$CAPTION” or “I’m 98% sure that’s $CAPTION”.
The findings are relevant in that BVI users of this
technology have difficulties calibrating themselves
into trusting or distrusting $CAPTION, mostly be-
cause there is no alternative form of reference for
the image content. Therefore, if the caption pro-
vided to them (even accompanied by “I’m not really
sure but ...”) is in dissonance with the rest of the
context (as it may be available in text form, e.g., as
part of a tweet thread as in the study cited above),
they tend to resolve this dissonance not by believ-
ing that the caption is wrong, but by constructing
scenarios or explanations that would somehow con-
nect the two sources of information. To mitigate
this problem, we propose a thresholding-based ap-
proach that simply decides whether to show a cap-
tion or not based on a QE model’s prediction (See
section 6.2).

3 Building the Caption-Quality Dataset

The key contribution of this paper is the Caption-
Quality dataset, a large collection of binary human
judgments on the quality of machine-generated im-
age captions (in English). Below, we describe the
dataset generation process, as well as the rating
collection process with which we collect approxi-
mately 600,000 binary ratings via crowdsourcing.
We then provide an analysis of the ratings which
shows that they contain a consistent signal about
the captions. Note that in the experiments (sec-
tion 6.2), we further verify that indeed this signal
captures the quality of the caption as perceived by

https://github.com/google-research-datasets/image-caption-quality-dataset
https://github.com/google-research-datasets/image-caption-quality-dataset
https://github.com/google-research-datasets/image-caption-quality-dataset
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trained humans annotators.

3.1 Image-Caption Generation
The starting point for our dataset is the Open Im-
ages Dataset (OID) (Kuznetsova et al., 2018) from
which we randomly sample 16,000 images and
then, for legal and privacy concerns, filter out those
which contain faces2. The choice for OID images
is driven by their image copyright status (CC BY)
and the fact that they are out-of-domain for popu-
lar image captioning datasets such as COCO and
Conceptual Captions.

To generate a diverse set of captions for anno-
tation, we used several variants of Transformer-
based (Vaswani et al., 2017) image-captioning
models, trained on the Conceptual Captions
dataset (Sharma et al., 2018), which consists of
3.3M training and ∼15,000 validation images-
caption pairs. As previous work indicates (Sharma
et al., 2018), for out-of-domain images (OID), cap-
tions produced by Conceptual Captions trained
models tend to have higher quality compared to
captions produced by COCO-trained models.

All of the models are trained to minimize the
ground-truth caption perplexity; however, they dif-
fer on several important aspects (which contributes
to caption diversity): the image feature representa-
tions, the number of object detection results they
use, and the caption decoding procedure. We
briefly discuss these differences below; for further
details, see (Sharma et al., 2018; Changpinyo et al.,
2019).

Global Image Representation Our captioning
models use one of the following pretrained im-
age encoders: (1) The Inception-ResNet-v2 model
(Szegedy et al., 2016), (2) The Picturebook image
encoder (Kiros et al., 2018), or, (3) The Graph-
RISE model (Juan et al., 2019), a ResNet-101
model (He et al., 2016) trained for an image classi-
fication task at ultra-fine granularity levels.

Object Representations The identification of
objects in an image is done using a Faster R-CNN
model, training it to predict both 1,600 object and
400 attribute labels in Visual Genome (Krishna
et al., 2017), following the Bottom-Up Top-Down
setting (Anderson et al., 2018). In terms of fea-
turization for the identified bounding boxes, we
use variants that include a ResNet-101 model pre-
trained on ImageNet (Russakovsky et al., 2015)

2Detected using the Google Cloud Vision API, https:
//cloud.google.com/vision/

Figure 1: Our caption evaluation interface. Raters indi-
cate whether the caption is good/bad, or, they can skip.

and one pre-trained using the Graph-RISE model
(Juan et al., 2019).

Object Labels In addition to object-level repre-
sentations, we detect object labels over the entire
image, using a ResNet object-detection classifier
trained on the JFT dataset (Hinton et al., 2015). The
classifier produces a list of detected object-label
identifiers, sorted in decreasing order by the classi-
fier’s confidence score. These identifiers are then
mapped to embeddings oj using an object-label
embedding layer which is pre-trained to predict
label co-occurrences in web documents using a
word2vec approach (Mikolov et al., 2013).

Decoding To further increase caption variance,
we use either greedy decoding or beam search with
beam width 5.

3.2 Fast&Simple Human Annotation

Traditional approaches for human evaluation of
automatically generated text, such as for image
captioning (Vinyals et al., 2016) and machine trans-
lation (Banchs et al., 2015), approach the task by
collecting human ratings across multiple evaluation
dimensions, such as correctness, informativeness
and fluency. Such fine-grained evaluations are typ-
ically used to expose model deficiencies during

Set Samples Unique
Images

Unique
Captions

Unique
Models

Train 58354 11027 34532 11
Dev 2392 654 1832 4
Test 4592 1237 3359 4

Table 1: The Caption-Quality dataset statistics

https://cloud.google.com/vision/
https://cloud.google.com/vision/
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development and can also assist during model se-
lection. However, obtaining fine-grained rating
on a large scale is a slow and costly process be-
cause it requires extensive manual labor by profes-
sionally trained human annotators. Furthermore, it
is not immediately clear how the resulting multi-
dimensional ratings can be combined to estimate
the overall caption quality in a human-like manner.

To avoid these complications we develop an eval-
uation process that asks the human evaluators to
rate the generated text not per dimension, but as a
whole. The benefits of our approach are threefold:
(1) the collected ratings better align with our end
goal of quality estimation from a human perspec-
tive (2) having a single question accelerates caption
evaluation, and (3) it substantially reduces the train-
ing and qualification requirements from the raters,
which further contributes to the scalability of the
evaluation process.

Specifically, we formulate the quality of an
image-caption as the binomial probability p =
P (GOOD|image, caption) that can be estimated
from the Bernoulli process in which every trial
corresponds to a different rater. We then leverage
Google’s crowdsourcing platform3 on which we
present (image, caption) pairs and ask volunteer
raters the following coarse binary question,

“Is this a good caption for the image?”.

The raters can then select YES/NO, or skip to the
next sample (SKIP) (see Fig. 1). In adopting this
approach we take into account the fact that the plat-
form’s community consists of passionate volunteer
raters, who may not have the linguistic background
to provide fine-grained annotations. Furthermore,
allowing the raters to skip captions reduces the risk
of an undecided rater arbitrarily picking YES/NO
just to move to the next image.

In order to reliably estimate the quality p we col-
lect a high number of 10 ratings per image-caption
sample. Once collected, the human ratings are
further processed by: (1) filtering out (image, cap-
tion) entries that received more than 2 SKIP rat-
ings (practically, the vast majority of images were
kept), and (2) estimating p by averaging the 8 to
10 ratings ri for each of the remaining (image, cap-
tion) pairs, and rounding to the closest score in
{0, 18 , . . . ,

7
8 , 1}, using the equation

p̂ = round(mean(ri) ∗ 8)/8,
3https://crowdsource.google.com

Figure 2: A histogram of the dev, test and train p∗. The
train set values were divided by 10 (for scale).

where ri is 0 for NO answers and 1 for YES.
The resulting dataset, which we call the Caption-

Quality v1.0 dataset, is then split into three image-
disjoint subsets, used as train, dev and test folds
in our experiments. We provide statistics for these
subsets in Table 1, as well as histograms of p̂ in
Fig. 2. Finally, we provide examples from the dev
set in Table 2.

3.3 Stability Analysis

As described above, the interpretation of what a
“GOOD” caption means is left up to the raters,
which could lead to unstable or inconsistent hu-
man ratings (Graham et al., 2013). In order to ver-
ify the stability of the quality ratings p̂, we study

Figure 3: A set of 509 captions were evaluated twice
by different sets of 10 raters and 4 weeks apart. The
figure shows a histogram of average human score differ-
ences (p̂1 − p̂2) ∈ [−1, 1], with scores p̂i (i ∈ {1, 2})
collected during the i-th evaluation. 85% of pairs are
within a 0.25 distance, indicating that the evaluation
setup produces a consistent and reliable signal.

https://crowdsource.google.com
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the degree of agreement between different sets of
10 raters. We ran an evaluation over the same set
of 509 image-captions twice, but 4 weeks apart4.
An analysis of the difference of scores (p̂1 − p̂2)
over these 509 pairs results in an almost zero mean
(mean=0.015) as well as low variance (std=0.212).
Figure 3 provides a histogram of the differences
(p̂1 − p̂2) which clearly shows a concentration of
the difference about 0. Furthermore, repeating this
analysis over a different set of image-captions re-
sults in similar statistics.

In conclusion, the stability analysis shows that by
collecting and averaging 8-10 coarse binary ratings,
we obtain consistent and reproducible P(GOOD)
estimates p̂ that are well-concentrated on a sample-
level.

4 A Fine-Grained Caption Evaluation

We further collect fine-grained human annotations
of image-captions to ascertain that the signal in the
Caption-Quality dataset is beneficial for estimating
the quality of image captions and filtering out low-
quality ones. Specifically, we ask professional hu-
man annotators to evaluate image-captions across
two specific dimensions: helpfulness and correct-
ness5. Fig 4 shows the evaluation interface.

Distinguishing between correctness and helpful-
ness is particularly crucial for quality estimation,
as it helps diagnose models that produce abstract

4The evaluation platform roughly guarantees that the rat-
ings are provided by different subsets of raters.

5We also evaluate along a fluency dimension, but cur-
rent captioning models tend to produce overall fluent outputs,
which makes this dimension non-discriminative.

Figure 4: Fine-grained evaluation interface presented
to professional raters. The raters determine whether (1)
the caption provides a helpful description for a person
who cannot see the image, (2) the information in the
caption is correct.

or irrelevant captions which, while correct, do not
provide useful image descriptions (specifically, for
a person who is unable to see the image). For ex-
ample, consider the correct yet abstract caption
“Person in a sport event” compared to the more
descriptive caption “Ice hockey player celebrates
his goal against sports team” (See Fig 4). Another
example of a correct but unhelpful caption is “A
view of the game from my living room” because
it conveys more information about the camera po-
sition rather than the actual image content. While
the previously discussed Fast&Simple evaluation
may assign all these captions with similar scores,
the fine-grained evaluation is capable of capturing
such nuanced differences.

We posit that the large-scale annotations ob-
tained by the Fast&Simple approach will enable a
model to distinguish between correct-and-helpful
captions, and those that are not. We ran the fine-
grained evaluation once over 2,700 images, col-
lecting 3 ratings per image. The resulting dataset,
denoted Caption-Ext is used for our extrinsic QE
evaluations (Sec. 6.2).

5 Models

This section presents a simple bilinear QE model
which learns to combine the image and cap-
tion features to arrive at a quality estimate
QE(image, caption). To construct the bilinear
model we rely on expressive image and text repre-
sentations that are produced by pretrained models
that were themselves trained on vast amounts of
uni-modal data. Note that aside from building on
top of pretrained models, we restrict further mod-
eling to a simple architecture. This was done in
order to establish a baseline for our new QE task,
as well as to remain focused on providing evidence
that the signal in the Caption−Quality dataset is
both learnable and beneficial for quality estimation
of image captions.

5.1 A Bilinear QE model

Our bilinear neural network model relies on three
input types: caption, image and object labels.
These representations are produced by the follow-
ing pretrained models:

Global Image Embedding For a global image
representation, we used the latest Graph-RISE
model version (Juan et al., 2019) which produces a
compact image embedding i of dimensionDi = 64.
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Image Generated captions Human rating
a general view of atmosphere . 0.375
this is a picture of a yacht . 0.75
the yacht is a great place to take a rest . 0.875
person and her husband take a walk . 0.125
people walking along the beach 0.25
people walking along the beach 0.5
cat in the grass with a dog 0.25
a tiger in the grass 0.25
cat lying on the grass 0.75
a police car in the middle of the road 0.125
automobile model in the rain . 0.5
vehicles drive through a flooded street 0.875
plants for sale at the local market 0.625
a selection of plants in the flower market 0.875
flowers for sale at the market 1.0
the team at the opening . 0.375
the cast performs on stage . 0.5
the cast of musical film 0.75

Table 2: Samples from the Caption-Quality dataset (dev fold). Images are paired with 3 captions and their cor-
responding mean human ratings. Repeated captions (which were generated by different captioning models) were
rated by different sets of 10 raters, and tend to have similar scores (See stability analysis, cf. Figure 3). As can be
seen, the higher scoring captions tend to include more information or contain fewer mistakes.

Using this model enables transfer learning for QE
with respect to image representation.

Object Labels Embeddings Objects present in
the image (e.g. “cat”, “vehicle”, “flower”) can
help assess the correctness and helpfulness of a
candidate caption, where the intuition is that the
caption should likely mention the more salient ob-
jects. We use the object label model mentioned in
Sec. 3.1, whose resulting embedding sequence is
O = (o1, . . . , o|O|), where each oj has dimension
Do = 256.

Caption Universal Sentence Embedding The
caption text is embedded using a pretrained version
of the Universal Sentence Encoder (USE) (Cer
et al., 2018) into a Ds = 512 dimensional vector s.
The USE model itself is trained on large amounts
of English sources (Wikipedia, web news, discus-
sion forums, etc.) and fine-tuned using supervised
labels from the SNLI corpus (Bowman et al.,
2015). We have alternatively tried a BERT (Devlin
et al., 2019) model as an encoder, but observed it
provides no additional gains (Alikhani et al., 2020)

Given these features, the bilinear QE model (il-
lustrated in Figure 5) processes each individual
feature using a dense layer with a leaky-ReLU acti-

vation (Xu et al., 2015), and then combines each of
the resulting vector pairs using bilinear layers (see
below). All bilinear outputs are then concatenated
and fed to a dense layer with a sigmoid activation,
to produce the quality estimation ŷ.

5.1.1 Bilinear Layers
A bilinear layer models the inner product of its two
inputs after applying a linear transformation to the
second input. This layer is defined as:

b(x, y;B) = xTBy = 〈x,By〉 (1)

where x ∈ RDx and y ∈ RDy are input features,
and B ∈ RDx×Dy is the learned parameter matrix.
Linear and bias terms can be added by appending
a constant 1 to each of x and y.

We use three such parameter matrices to capture
the interaction between each pair of input-types:

1. Bo,i ∈ RDo×Di , applied to each of the object-
label embeddings [o1, . . . , o|O|] and the image
embedding i.

2. Bo,s ∈ RDo×Ds , applied to each of the object-
label embeddings [o1, . . . , o|O|] and the sen-
tence embedding s

3. Bi,s ∈ RDi×Ds , for the image embedding i
and sentence embedding s.
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Figure 5: The bilinear QE model: Each input-modality pair has its own dedicated bilinear layer. The inputs to the
model are pre-trained embeddings (blue) for the image, caption and object-label input types. The model parameters
(pink) may further be warm-started by pretraining the model on an image-text similarity task (see Section 5.2).

5.2 An Image-Text Similarity Baseline

Having the large scale Conceptual Captions dataset
(Sharma et al., 2018) opens up the option to pre-
train a QE model on an image-text similarity task
(Cui et al., 2018) before fine-tuning on the Caption-
Quality dataset. We exercise this option by setting
up a classification task whose goal is to match each
image within a mini-batch with its corresponding
ground truth caption. Specifically, we feed the
bilinear QE model mini-batches of size 256 and
train it to detect the ground-truth caption of each
image among the other ground-truth captions in
the batch (along the lines of noise-contrastive esti-
mation (Gutmann and Hyvärinen, 2010)). The pre-
trained model achieves 62% accuracy over the Con-
ceptual Captions dev set and serves as an image-
text similarity baseline. In addition, its parameters
serve as a fine-tuning initialization point that is bet-
ter informed about the relationship between image
and text compared to random initialization.

6 Experimental Results

All QE models are trained on the Caption-Quality
training set (Section 3). We use Mean Squared
Error (MSE =

∑B
j=1

1
N (yj − ŷj)

2) as the loss
function, where ŷj are the predicted scores and
yj the ground-truth human scores. For optimiza-
tion, we use Adam (Kingma and Ba, 2015) with
batch size B = 256 and tune the learning rate
lr ∈ {1e-4, 1e-5, 1e-6}. Dropout rate is set to 0.2,
and applied on the inputs of all trainable layers.
The following pretrained models are fixed during
optimization: the image encoder, the USE caption
encoder, and object-label encoder. The number of
object-labels is tuned over {0, 5, 10, 20}, while the
pretrained variants were fixed to 16.

Model selection is done by picking the check-
point that maximizes the dev set Spearman’s corre-
lation ρS(y, ŷ). Specifically, compared to MSE (the

objective), the Spearman-based selection criterion
better matches the intended use of the QE model,
where at inference time, only images whose QE
scores pass some threshold will be served. Since
this threshold can be tuned, the absolute value of
the predicted scores ŷ is not as critical as obtaining
a monotonic relationship between the predicted and
ground truth scores (using ρS as the loss function
is less feasible due to non-differentiability).

6.1 Spearman’s ρ Analysis

We present in Table 3 our dev and test Spearman re-
sults based on selecting the best-performing model
configurations over the dev set.

Rows 1 and 2 show the bilinear model achieves
minor improvements given additional 20 object la-
bels. The poor Spearman scores in row 3, which
were obtained without fine tuning over the Caption-
Quality dataset, demonstrate that predicting the
human ratings cannot be trivially achieved with
an image-text similarity model, even when trained
on a large dataset as Conceptual Captions. On the
other hand, after fine-tuning it for the QE task (row
4), both dev and test Spearman scores increase sub-
stantially by 6-7 Spearman points over the best
non-pretrained variant, which demonstrates the ef-
fectivenss of bi-modal pretraining for the QE task.

6.2 Extrinsic Evaluation

So far we have shown that the signal in Caption-
Quality is both consistent and learnable. In this sec-
tion, we further show that the collected signal is ef-
fective for filtering out low-quality image captions.
To do so, we evaluate the performance of Caption-
Quality trained QE models over the Caption-Ext
dataset, a more challenging setting which contains
out-of-domain images (non-OID) and where each
caption is annotated by three trained raters for its
correctness and helpfulness (Sec. 4). Our analysis
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Model QE training features learning
rate

ρS
dev ρS

test MSEdev MSEtest

Bilinear image, caption 1e-5 0.49 0.47 0.055 0.056
Bilinear + 20 object labels 1e-5 0.50 0.47 0.055 0.058

Bilinear (Pretrained) - 1e-5 0.26 0.25 0.075 0.073
Bilinear (Pretrained) image, caption, 16 labels 1e-5 0.57 0.53 0.053 0.053

Table 3: Spearman’s ρS scores on the Caption-Quality dev and test dataset (higher is better). The pretrained and
fine-tuned bilinear model exhibits the best Spearman results on the QE task. MSE results show the same trend and
are included for completeness.

reveals that QE models trained over the Caption-
Quality dataset generalize well to this harder task,
having the ability to distinguish between correct-
and-helpful image-captions and those that are not,
even though these models were never exposed to
such fine-grained signal.

Specifically, for a given image, we define a
caption as Ext-Good (extrinsically good) if a ma-
jority of raters agreed that it is at least partially-
correct, and, a majority of raters agreed it is at least
somewhat-useful. With this definition, we compute
the Ext-Good precision and recall statistics of a QE
model Q for each threshold th ∈ [0, 1] using the
following equations:

precisionQth =

∑
s 1

s
Ext−Good · 1QE(s)>th∑

s 1QE(s)>th
(2)

recallQth =

∑
s 1

s
Ext−Good · 1QE(s)>th∑

s 1
s
Ext−Good

(3)

where the indicator variable 1sExt−Good is on only
when s is Ext-Good, and similarly the indicator

Figure 6: Precision-Recall curves for the various Bi-
linear models. AUC values are reported in the legend.
The pretrained and fine-tuned model (black) attains the
highest precision values across almost all recall values.

variable 1QE(s)>th is on only when the QE score
of sample s is higher than the threshold th.

Figure 6 shows the precision-recall curves and
AUC scores for the same models analyzed in the
previous section. A visual inspection of this figure
shows that the precision of the pretrained and fine-
tuned bilinear model (black) dominates the other
models across almost all recall values. Indeed, in
terms of AUC, the worst performing model is the
image-text similarity baseline (blue; AUC=0.76)
which has no access to the Caption-Quality dataset
and its human ratings. On the other hand, the pre-
trained and fine-tuned model (which is also the
Spearman maxmizing model) attains the highest
AUC score (AUC=0.84).

Put differently, to achieve precision=0.8 (i.e.,
80% of served captions are both correct and help-
ful), the image-text similarity model would be
thresholded to serve only its top 21% scoring
image-captions (recall=0.21) while the pretrained
and fine-tuned model would serve its top 71% scor-
ing image-captions (recall=0.71, or x3.4 improve-
ment). This analysis clearly demonstrates the use-
fulness of the Caption-Quality dataset for filtering
out image-captions of low quality (where quality is
determined by professional human raters).

7 Future Work

Beyond its relevance for the QE task, we expect
that the collected signal in the Caption-Quality
dataset will find usage in other image captioning
tasks, such as (1) fine-grained caption evaluation
(that is, caption classifiers that evaluate captions
across multiple dimensions) for example, by way
of pretraining against our dataset, as well as (2)
improving caption generation itself, for example,
by means of QE-based caption re-ranking, or by
using the ratings in a reinforcement learning setup,
as has recently been done by (Seo et al., 2020).
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8 Conclusion

In this paper we discussed how low-quality image-
captions can negatively impact end-users and pro-
posed a thresholding solution that relies on quality
estimation of image captions, where caption qual-
ity is defined from a human perspective. To make
this solution feasible we developed a scalable hu-
man evaluation process with which we annotated
a large number of image-captions with their hu-
man estimated quality. We provided supporting
evidence that the resulting dataset contains a con-
sistent and reliable signal, as well as reported ex-
perimental results over professionally labeled fine-
grained caption annotations, which verify that QE
models trained over the Caption-Quality dataset are
effective at filtering out low-quality image captions.

To encourage further research in auto-
matic evaluation of image-captions, we
make available our large-scale dataset of
human judgments at https://github.
com/google-research-datasets/
Image-Caption-Quality-Dataset.
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