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Abstract
Knowledge graphs (KG) have become in-
creasingly important to endow modern rec-
ommender systems with the ability to gener-
ate traceable reasoning paths to explain the
recommendation process. However, prior re-
search rarely considers the faithfulness of the
derived explanations to justify the decision-
making process. To the best of our knowledge,
this is the first work that models and evaluates
faithfully explainable recommendation under
the framework of KG reasoning. Specifically,
we propose neural logic reasoning for explain-
able recommendation (LOGER) by drawing
on interpretable logical rules to guide the path-
reasoning process for explanation generation.
We experiment on three large-scale datasets in
the e-commerce domain, demonstrating the ef-
fectiveness of our method in delivering high-
quality recommendations as well as ascertain-
ing the faithfulness of the derived explanation.

1 Introduction

Compared with traditional recommender systems
(RS), explainable recommendation is not only ca-
pable of providing high-quality recommendation
results but also offers personalized and intuitive ex-
planations (Zhang and Chen, 2020). Incorporating
a knowledge graph (KG) into recommender sys-
tems has become increasingly popular, since KG
reasoning is able to generate explainable paths con-
necting users to relevant target item entities. At the
same time, there is increasing demand for systems
to ascertain the faithfulness of the generated expla-
nation, i.e., assess whether it faithfully reflects the
reasoning process of the model and is consistent
with the historic user behavior.

However, previous work has largely neglected
faithfulness in KG-enhanced explainable recom-
mendation (Xian et al., 2020a; Fu et al., 2020a). A
number of studies (Lakkaraju et al., 2019; ter Ho-
eve et al., 2018; Wu and Mooney, 2018) argue that
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faithful explanations should also be personalized
and gain the capability to reflect the personalized
user historic behavior. However, to the best of
our knowledge, none of the existing explainable
recommendation models based on KGs have con-
sidered faithfulness in the explainable reasoning
process and its evaluation on the generated explain-
able paths. For instance, PGPR (Xian et al., 2019;
Zhao et al., 2020) infers explainable paths over
the KG without considering personalized user be-
havior, and its prediction on next potential entities
is merely based on the overall knowledge-driven
rewards. CAFE (Xian et al., 2020b) builds user
module profiles to guide the path inference pro-
cedure. However, as illustrated in Subramanian
et al. (2020), such neural module networks only
implicitly abstract the reasoning process and lack
of considering the faithfulness of explanations.

In this paper, we propose a new KG-enhanced
recommendation model called LOGER to produce
faithfully explainable recommendation via neural
logic reasoning. To fully account for heterogeneous
information and rules about users and items from
the KG, we leverage an interpretable neural logic
model for logical reasoning, enhanced by a general
graph encoder that learns KG representations to
capture semantic aspects of entities and relations.
These two components are iteratively trained via
the EM algorithm by marrying the merits of inter-
pretability of logical rules and the expressiveness
of KG embeddings. Subsequently, the learned rule
weights are leveraged to guide the path reasoning
to generate faithful explanations. The derived logi-
cal rules are expected to be consistent with historic
user behavior and the resulting paths genuinely re-
flect the decision making process in KG reasoning.
We experiment on three large-scale datasets for
e-commerce recommendation that cover rich user
behavior patterns. The results demonstrate the su-
perior recommendation performance achieved by
our model compared to the state-of-the-art base-
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lines, with the guarantee of the faithfulness on the
generated path-based explanations. The contribu-
tions of this paper are threefold.
• We highlight the significance of considering faith-

fulness in explainable recommendation.
• We propose a novel approach that incorporates

interpretable logical rules into KG path reasoning
for recommendation and explanation generation.

• We experiment on three large-scale datasets
showing promising recommendation perfor-
mance as well as faithful path-based explanation.

2 Problem Formulation

A knowledge graph (KG) for recommendation is
defined as G = {(eh, r, et) | eh, et ∈ E , r ∈ R},
where E denotes the entity set consisting of sets of
users U , items I, and other entities, while R de-
notes the relation set. Each triplet (eh, r, et) repre-
sents a fact indicating head entity eh interacts with
tail entity et via relation r. In recommendation
tasks, we are particularly interested in user–item
interactions {(u, rui, v) | u ∈ U , rui ∈ R, v ∈ I}
with the special relation rui meaning purchase in
e-commerce or like in movie recommendation.

The problem of KG reasoning for explainable
recommendation is formulated as follows. Given
an incomplete KG G with missing user–item inter-
actions, for every user u ∈ U , the goal is to select
a set of items as recommendations {v|(u, rui, v) 6∈
G, v ∈ I} along with a set of paths as explanations
connecting each pair of the user and a predicted
item. The key challenge is to not only guarantee
the recommendation quality with the rich informa-
tion in KG, but also generate faithful explanations
that reflect the actual decision-making process of
the recommendation model and are consistent with
historic user behavior.

3 Proposed Method

We introduce the novel neural LOGic Explainable
Recommender (LOGER) for producing faithfully
explainable recommendations with a KG. As illus-
trated in Fig. 1, it consists of three components: (i)
a KG encoder for learning embeddings of KG enti-
ties and relations to capture their semantics, (ii) a
neural logic model for conducting interpretable log-
ical reasoning to make recommendations, and (iii) a
rule-guided path reasoner for generating faithfully
explainable paths. Both KG encoder and neural
logic model are trained iteratively via the EM algo-
rithm (Neal and Hinton, 1998) so that they mutually

benefit to make recommendations via logical rea-
soning. Additionally, personalized rule importance
scores are derived for every user and leveraged to
guide the path reasoning for faithful explanation
generation.

3.1 KG Encoder

Let Xhrt be a binary random variable indicating
whether a triplet (eh, r, et) is true or not, XG =
{Xhrt | (eh, r, et) ∈ G} be a random variable
regarding all observed triplets in the KG G, and
XH = {Xhrt | (eh, r, et) ∈ H} be a random
variable of hidden user–item interactions in H =
{(u, rui, v) | u ∈ U , v ∈ I, (u, rui, v) 6∈ G}. The
KG encoder is generally defined as a triplet-wise
function fθ : E ×R× E 7→ [0, 1] parametrized by
θ that maps each triplet to a real-valued score. For
any triplet (eh, r, et) ∈ G ∪ H , we can interpret
its truth probabilistically via the KG encoder fθ
as q(Xhrt|θ) = Bernoulli(Xhrt|fθ(eh, r, et)). The
KG encoder fθ can be instantiated with any existing
KG embedding (Ji et al., 2020) or graph neural
network (Wu et al., 2020) model.

3.2 Neural Logic Model

We focus on composition rules for user–item in-
teractions, i.e., rui is a composition of relations
r1, . . . , rj if (u, r1, e1) ∧ · · · ∧ (ej−1, rj , v) ⇒
(u, rui, v), ∀u ∈ U , v ∈ V, e1, . . . , ej−1 ∈ E .
Given a set of logical rules L mined from the
KG, the goal of this component is, for every user
u ∈ U , to emit a set of personalized rule impor-
tance scores yu = {yu,l}l∈L to capture the his-
toric user behavior. To achieve this, we build upon
Markov Logic Networks (Qu and Tang, 2019), an
interpretable probabilistic logic reasoning method
that models the joint distribution of all triplets
via a set of logical rules L, i.e., p(XG , XH |w) =
1
Z exp

(∑
l∈Lwlnl

)
, where w = {wl}l∈L with wl

being the global weight of rule l ∈ L, and nl de-
notes the number of true groundings of rule l over
observed and hidden triplets. Accordingly, we de-
fine the personalized rule importance score to be
yu,l = wlnl(u)∑

l′∈L nl′ (u)
, where nl(u) is the number

of groundings of rule l over the observed triplets
in {(u, rui, v) ∈ G}. However, it is intractable
to directly maximize the log likelihood of ob-
served triplets to learn the global weights w, i.e.,
maxw log p(XG |w). Instead, we employ the EM
algorithm to iteratively optimize the objective to
acquire optimal global weights.
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Figure 1: Illustration of the proposed method for explainable recommendation including (i) a KG encoder, (ii) a neural logic
model, and (iii) a rule-guided path reasoner.

E-Step We introduce a mean-field variational dis-
tribution q(XH |θ) ≈

∏
(eh,r,et)∈H q(Xhrt|θ) over

hidden user–item interactions in H . The goal of
the E-step is to estimate q(XH |θ) by minimizing
the KL divergence between q(XH |θ) and the pos-
terior distribution p(XH |XG , w) with fixed w. For
each triplet (eh, r, et) ∈ H , we denote by Lhrt the
set of rules associated with the triplet and by Ghrt
the corresponding groundings of all logical rules in
Lhrt. Following Qu and Tang (2019), the optimal
q(XH |θ) can be achieved under the fixed-point con-
dition, i.e., q(Xhrt|θ) ≈ p(Xhrt|XGhrt

, w), for all
(eh, r, et) ∈ H . Here, q(Xhrt|θ) is approximated
by the KG encoder fθ, and p(Xhrt|XGhrt

, w) can
be estimated with the global weights w of the rules
in Lhrt from the last iteration:

p(Xhrt = 1|XGhrt , w) = σ

(∑
l∈Lhrt

wl

|Lhrt|

)
, (1)

where σ(·) is the sigmoid function. In other words,
if a hidden triplet (eh, r, et) is asserted to be true
by the rules (e.g., p(Xhrt = 1 | XGhrt

, w) > 0.5),
the probability q(Xhrt = 1 | θ) given by the KG
encoder is also expected to be high. Therefore,
to learn the parameter θ, we aim to maximize the
log-likelihood function over all observed triplets in
G and the plausibly true hidden triplets in H+ =
{(eh, r, et) | p(Xhrt = 1|XGhrt

, w) ≥ τ}, which
leads to the objective

`(θ) =
∑

(eh,r,et)∈G∪H+

log q(Xhrt = 1 | θ), (2)

where τ is a hyperparameter.

M-Step The goal of the M-step is to learn the
global rule weights w by maximizing the log-
likelihood function Eq(XH)[log p(XG , XH ;w)]
given a fixed θ from the E-step. Since the
log-likelihood term models the joint distribution
over all triplets, which is hard to compute
for a large KG, we approximate it with the
pseudolikelihood (Besag, 1975): `PL(w) =∑

(eh,r,et)∈G∪H Eq(XH |θ)[log p(Xhrt|XGhrt
, w)].

Then, we can invoke gradient ascent to acquire the
optimal w, with the gradient defined as:

∇wl`PL(wl) =
∑

(eh,r,et)∈G

1− phrt
|Lhrt|

+

∑
(eh,r,et)∈H

q(Xhrt = 1|θ)− phrt
|Lhrt|

,

(3)

where phrt = p(Xhrt = 1|XGhrt
, w). Once the

optimal global weights are acquired, we can make
a recommendation by calculating the ranking score
of a user u ∈ U and an item v ∈ I as q(Xurv|θ) +
αp(Xurv = 1|XGurv , w), where r = rui and α ∈
R is a hyperparameter.

3.3 Rule-Guided Path Reasoner
We draw on the KG encoder fθ and the personal-
ized rule importance scores yu from the last two
steps to generate explainable paths for every user u.
Specifically, we train an LSTM-based path reason-
ing network φ that takes the start user embedding
as input and predicts a sequence of entities and re-
lations to form a path. For every user u, we restrict
the reasoner to generate the paths that follow the
rules with the largest scores in yu. The details of φ
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and path reasoning are described in the Appendix.

4 Experiment

Dataset We experiment on three domain-specific
e-commerce datasets from Amazon, namely Cell-
phones, Grocery, and Automotive. There are two
requirements that lead to the selection of these cat-
egories in our experiments. First, the constructed
KG should contain rich user behavior patterns, e.g.,
user mentioned features or preferred styles, etc.
This is the major difference from most of the exist-
ing work (Zhao et al., 2019), which only extends
knowledge on the item side. Second, the KGs
are assumed to be large-scale. We select several
large subsets from Fu et al. (2020b), where the con-
structed KG can be regarded as an updated version
of those of Ai et al. (2019) based on the Amazon
review dataset (Ni et al., 2019). The remaining
three datasets are the ones that satisfy both of the
aforementioned requirements. Statistical details of
datasets are provided in the Appendix.

Baselines & Metrics We consider several state-
of-art baselines in the following experiments.
CKE (Zhang et al., 2016) uses semantic repre-
sentations derived from TransR (Lin et al., 2015)
to enhance the matrix factorization process. Rip-
pleNet (Wang et al., 2018) is a hybrid method
combining regularization and path formats, and
augmenting user representations with a memory-
network-like approach. PGPR (Xian et al., 2019)
designed a policy-guided graph search algorithm
for recommendation over KGs. HeteroEmbed (Ai
et al., 2018) aims to learn the embeddings of a
heterogeneous graph including users, items, and
relations for recommendation. KGAT (Wang et al.,
2019) explicitly models higher-order KG connectiv-
ity and learns node representations by propagating
the embedding of neighbors with corresponding im-
portance discriminated by an attention mechanism.
We adopted the same metrics as Ai et al. (2018)
to evaluate the recommendation performance of
all models: Precision, Recall, Normalized Dis-
counted Cumulative Gain (NDCG), and Hit Rate
(HR).

4.1 Recommendation Results

We first evaluate the recommendation quality of
our model. The results of all methods across all
three datasets are reported in Table 1. In general,
our method significantly outperforms all state-of-
the-art baselines on all metrics. Taking Cellphones

as an example, our method achieves an improve-
ment of 6.01% in NDCG against the best base-
line (underlined), and an improvement of 5.82% in
Hits@10. Similar trends can be observed on other
benchmarks as well. Note that both our model
and HeteroEmbed adopt TransE for KG representa-
tion learning, yet our model achieves better perfor-
mance, mainly attributed to the iterative learning
of graph encoder and neural logic model.

4.2 Faithfulness of Explanation

We aim to measure whether the generated explain-
able paths are consistent with the historic user be-
havior via a faithfulness metric and a user study.

Measuring Faithfulness Inspired by previous
work (Maaten and Hinton, 2008; Serrano and
Smith, 2019; Subramanian et al., 2020), we de-
fine the faithfulness to be the Jensen–Shannon (JS)
divergence of rule-related distributions from train-
ing and test sets. Specifically, we randomly sample
50 users from the training set. For each user u,
we further sample around 1,000 paths between the
user and the connected item nodes, and calculate
the rule distribution over these paths, denoted by
F (u). We compare the proposed LOGER with two
baselines, PGPR, and KGAT, each of which is used
to generate 20 explainable paths for every selected
user in the test phase. Similarly, we can calculate
the rule distribution over these 20 paths, denoted
by Qf (u). The JS scores are defined as follows.

JSf = Eu∼U [DJS(Qf (u) ‖F (u))]
JSw = Eu∼U [DJS(Qw(u) ‖F (u))]

Here, Qw(u) is the rule weight distribution derived
from the personalized rule importance scores of our
method or the path weights of baselines. Smaller
values of two JS scores correspond to better faith-
fulness of the explainable paths. This faithfulness
evaluation is motivated in terms of the consistency
of the explainable paths with respect to the user
historic behavior.

User Study Additionally, we conduct a user
study to evaluate the faithfulness of the explain-
able paths. We display 50 sampled KG paths start-
ing from one user towards purchased items in the
training set to represent examples of user histori-
cal behaviors. For comparison, we also present 10
explainable paths generated by three methods for
the same user in the test dataset. We ask 20 human
subjects to rank these methods based on whether
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Cellphones Grocery Automotive

Precision Recall NDCG HR Precision Recall NDCG HR Precision Recall NDCG HR

CKE 0.0360 0.1760 0.1847 0.3067 0.0612 0.2528 0.3070 0.4511 0.0458 0.1871 0.2257 0.3621
RippleNet 0.0419 0.2141 0.2177 0.3715 0.0591 0.2682 0.2858 0.4800 - - - -
PGPR 0.0462 0.2148 0.2366 0.3801 0.0649 0.2710 0.3174 0.4926 0.0589 0.2315 0.2804 0.4409
KGAT 0.0476 0.2274 0.2365 0.3835 0.0702 0.2916 0.3381 0.5020 0.0601 0.2500 0.2859 0.4514
HeteroEmbed 0.0527 0.2543 0.2626 0.4226 0.0785 0.3316 0.3701 0.5572 0.0695 0.2923 0.3314 0.5082
LOGER 0.0622 0.2977 0.3227 0.4808 0.0906 0.3754 0.4370 0.6121 0.0743 0.3091 0.3653 0.5346

Table 1: Recommendation quality of all methods on three datasets. The results are computed based on the top-10 recommendation
on the test set. The best results are highlighted in bold and the second best results are underlined.

Cellphones Grocery

JSf JSw Avg. Rank JSf JSw Avg. Rank

PGPR 0.56 0.49 2.52 0.42 0.38 2.27
KGAT 0.53 0.45 2.14 0.39 0.41 2.08
LOGER 0.47 0.32 1.52 0.34 0.28 1.75

Table 2: Results of measuring the faithfulness of the generated
paths obtained by three methods. Bold numbers indicate the
best results.
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Figure 2: Recommendation quality under varying sizes of
estimated hidden triples.

the generated paths are consistent with those from
the training set. Then, we calculate the average
ranking scores (Avg. Rank) by averaging the rank
given by each human tester on each method.

Results The results on the Cellphones and Gro-
cery datasets are reported in Table 2. We observe
that our method LOGER achieves the lowest JS
scores and average ranking score, which reveal the
effectiveness of our model in producing more faith-
ful explanations in both quantitative measurements
and in the user study.

4.3 Ablation Study

We further study how hidden triplets used in
training KG encoder (Eq. 2) influence the rec-
ommendation performance. We experiment on

the Cellphones data under different sizes of hid-
den triplet sets H+. We choose the sizes of
{10, 20, 30, 40, 50} and keep all other settings un-
changed. The results are plotted in Fig. 2, including
our model (red circles) and the best baseline Het-
eroEmbed (blue crosses). We find that our model
consistently outperforms the baseline in all the met-
rics under different numbers of hidden triplets. Bet-
ter recommendation performance can be achieved
with more hidden triplets included in training the
KG encoder, because more candidate items will
enhance the capability of our model to discern the
logical rules of good quality and hence benefit the
recommendation prediction.

5 Conclusion

In this paper, we propose LOGER for faithfully
explainable recommendation, which generates ex-
plainable paths based on personalized rule impor-
tance scores via neural logic reasoning that ade-
quately captures historic user behavior. We experi-
ment on three large-scale datasets for e-commerce
recommendation showing superior recommenda-
tion quality of LOGER as well as the faithfulness
of the generated explanations both quantitatively
and qualitatively. We hope to encourage future
work that values explainability and in particular the
faithfulness of explanations. Our code is available
at https://github.com/orcax/LOGER.
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A Detail of Rule-Guided Path Reasoning

Our LSTM-based path reasoner φ is based on the
graph walker in Moon et al. (2019). It takes as
input the embedding of the current entity et−1 and
outputs the embeddings of the next relation rt and
the next entity et, i.e., rt, et = φ(et−1). In par-
ticular, the next relation embedding rt is defined
as:

αt = σ(Wαet−1 + bα),

rt =
∑
r∈R

αt,rr,

where Wα, bα are parameters and αt are the atten-
tion weights over all relations in the KG. The next
entity embedding et is defined as:

zt = et−1 + rt

it = σ(Wi[et−1; ct−1] + bi)

ct = (1− it)� ct−1 + it � tanh(Wc[zt; et−1] + bc)

ot = σ(Wo[zt, et−1, ct] + bo)

et = ot � tanh(ct)

Here, [; ] denotes concatenation, � is elementwise
multiplication, it, ot are vectors passing through
corresponding gates, and zt is the context vector.

During training, for every user and its observed
user–item triplets, we sample a set of training paths
following the rules, with numbers proportional to
the rule weights. The goal is to make the path rea-
soner φ generate paths that are close to the training
samples, which can be optimized by the hinge loss.

The inference pipeline using the trained path-
reasoning network is described in Alg. 1. Starting
with a user u encoded as e0 = u, the estimated
entity embedding et and relation embedding rt at
the t-th hop is obtained by the model φ. At each
hop, for all potential neighbors, we calculate a rank-
ing score based on the dot-product of the neighbor
and estimated (et, rt). After ranking these neigh-
bors based on such scores, we can filter a set of
candidate neighbors and invoke a Beam Search to
identify a set of paths as well as corresponding
items for u.

B Implementation Details

In order to guarantee path connectivity, we add
reverse relations into the knowledge graph, i.e., if
(eh, r, et) ∈ G, then (et, r

−1, eh) ∈ G. We restrict
the length of candidate rules to be 3. We adopt
TransE (Bordes et al., 2013) as the KG encoder

Algorithm 1 Rule-guided path reasoning
1: Input: KG G, user u, item v, rule set L
2: Output: a set of paths P
3: procedure MAIN()
4: P ← {{u}}.
5: for t← 1 to T do . T is path length.
6: Pcurr ← {}.
7: for path p ∈ P do
8: et−1 ← last node of p.
9: Vcurr ← {}.

10: for (et−1, r
′, e′) ∈ G do

11: êt, r̂t = φ(et−1)
12: s = 〈êt, e

′〉+ 〈r̂t, r′〉.
13: Vcurr ← Vcurr ∪ {(r′, e′, s)}.
14: Pcurr ← Pcurr ∪ {p ∪ {r′, e′}|rank(s) ≤

β, (r′, e′, s) ∈ Vcurr}.
15: P ← Pcurr.
16: P ← {p|p ∈ P,rule(p) ∈ L,lastnode(p) =

v}.
17: return P .

fθ, with the dimensionality of entity and relation
embeddings set as 100.

To learn the global rule weights, we first generate
the hidden triplet set according to the result of the
KG encoder. For each user, the top 50 estimated
items with the highest scores predicted by KG en-
coder are taken as the hidden triplet set H+. The
threshold τ is set to 0.5 and the weighting factor α
is set to 0.3 by default. In the path reasoning algo-
rithm, we set the neighboring size β to 10. Other
training details can be found in Table 3.

Parameter Cellphones Grocery Automotive

# of epochs 4 2 3
KGE batch size 512 512 512
KGE optimizer Adam Adam Adam
KGE learning rate 1e-4 1e-4 1e-4
NLM learning rate 1e-5 1e-5 1e-5
# of sample node 100 100 100

Table 3: Training detail for three datasets. KGE = KG encoder.
NLM = neural logic model.

C Dataset Statistics

The statistics of our datasets are shown in Table 4.

Dataset Cellphones Grocery Automotive

#Users 61,254 57,822 95,445
#Items 47,604 40,694 78,557
#Interactions 607,673 709,280 1,122,776

#Entities 169,331 173,369 270,543
#Relations 45 45 73
#Triples 3,117,051 3,742,954 4,580,318

Table 4: Overall statistics of three datasets.


