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Abstract

For task-oriented dialog systems, training a
Reinforcement Learning (RL) based Dialog
Management module suffers from low sample
efficiency and slow convergence speed due to
the sparse rewards in RL. To solve this prob-
lem, many strategies have been proposed to
give proper rewards when training RL, but
their rewards lack interpretability and cannot
accurately estimate the distribution of state-
action pairs in real dialogs. In this paper,
we propose a multi-level reward modeling ap-
proach that factorizes a reward into a three-
level hierarchy: domain, act, and slot. Based
on inverse adversarial reinforcement learning,
our designed reward model can provide more
accurate and explainable reward signals for
state-action pairs. Extensive evaluations show
that our approach can be applied to a wide
range of reinforcement learning-based dialog
systems and significantly improves both the
performance and the speed of convergence.

1 Introduction

Task-oriented dialog systems have become a fo-
cal point in both academic and industrial research
and have been playing a key role in conversa-
tional assistants such as Amazon Alexa and Ap-
ple’s Siri. (Budzianowski et al., 2018; Wei et al.,
2018; Chen et al., 2019b) Existing research on task-
oriented dialog systems mainly includes pipeline
and end-to-end methods (Zhang et al., 2020). For
pipeline-based systems, usually could be divided
into four components: Natural Language Under-
standing (NLU), Dialog State Tracking (DST), Dia-
log Management (DM), and Natural Language Gen-
eration (NLG). The modular structure makes the
systems more interpretable and stable than end-to-
end systems, which directly take natural language
context as input and output a response.

In pipeline-based dialog systems, DM is a core
component that is responsible for modeling the cur-
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Figure 1: An example of multi-domain task-oriented
dialog about train ticket booking and hotel reservation.
For each utterence, we show the fine-grained actions in
the form of [domain-act-slot:value].

rent belief state (structured information about the
current situation) and deciding the next action. Due
to its non-differentiable nature, many researchers
resort to Reinforcement Learning (RL) to learn
a DM (Peng et al., 2017; Casanueva et al., 2018;
Chen et al., 2019a; Vu, 2019). However, RL suffers
from the problems of low data efficiency and slow
convergence speed in dialog management due to
reward sparsity and huge action space (Takanobu
et al., 2019; Liu and Lane, 2018; Fang et al., 2019).
To solve these problems, existing research designs
reward models to estimate how similar a state-
action pair is to an expert trajectory. Liu and Lane
(2018) and Takanobu et al. (2019) combines a Gen-
erative Adversarial Network (GAN) with RL to
acquire a reward model which could give rewards
in turn/dialog level. However, introducing GAN
will bring other problems like model instability.
To solve this, Li et al. (2020) proposed to train a
discriminator and directly use it as a fixed reward
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estimator during RL training. However, there is no
thorough evaluation to analyze the performance of
their reward estimator. Besides, researchers ignore
the huge action space of RL that has a huge impact
on RL’s converging speed.

In this paper, we propose to interpret a state-
action pair from a multi-level and sequential per-
spective, instead of simply classifying them as
“right” or “wrong”. Fig. 1 shows an example of
multi-domain (‘“Train” and “Hotel”) task-oriented
dialog to illustrate our idea. For each utterance,
we infer the domain, act, and slot of it to form a
three-level hierarchy, leading to more accurate and
interpretable modeling of the dialog agent’s actions.
For example, for the utterance “Okay, your refer-
ence number is AONH”, the RL agent books a train
ticket of AONH. We infer the domain of the action
“book™ is “train”, and the slot is “Ref” (reference
number) with slot value “A9NH”. An RL agent will
get rewards from the action only if it belongs to
an appropriate domain, and will get slot rewards
only if it takes suitable action. For example, if
the RL agent in Fig. 1 chooses the wrong action
“Train-Book-Ref: A9NH” at the first turn (i.e., di-
rect booking without confirmation from the user),
it will only receive rewards for domain, since it
should take the action “inform” instead of “book”.

To construct a multi-level reward model, we
propose the following designs. First, we utilize
a disentangled autoencoder to factorize and en-
code a dialog state into three independent latent
sub-states, characterizing domain, act, and slot, re-
spectively. Correspondingly, we also design an ac-
tion decomposer to decompose an action into three
sub-actions, taking the first user action in Figure
1 as an example, the decomposer will decompose
action "Train-Inform-Day:Weds" into "Train", "In-
form" and "Day". Second, we learn a multi-level
generator-discriminator framework. The generator
generates sub-states and sub-actions from noises,
and the discriminator learns to classify whether a
sub state-action pair is real or generated. In this
way, the learned discriminator can give rewards
to a state-action pair in terms of domain, act, and
slot. Lastly, we impose Markov property to our
multi-level rewards by only rewarding an act/slot
if the prior domain/act is appropriate. Such design
also alleviates the problem of huge action decision
space in RL, as the “domain-act-slot” hierarchy re-
stricts the choice of act/slot when the domain/act
has been decided.

We run extensive evaluations to test our multi-
level sequential reward model by incorporating it
into a variety of RL-based agents. The experimen-
tal results demonstrate that our reward model can
significantly improve the performance of RL agents
and accelerate the speed of convergence.

2 Related Work

Dialog reward modeling aims to give a proper re-
ward to the action made by an RL agent. Tradi-
tional hand-crafted rule-based reward modeling re-
quires expert knowledge and cannot handle unseen
actions or situations. Su et al. (2015) proposes a
reward shaping method to speed up online policy
learning, which models the sum of all rewards in
turn level.

After that, most researchers tend to exploit GAN
by considering an RL agent as a generator and a
reward function as a discriminator. Liu and Lane
(2018) first introduces the adversarial method for re-
ward computation. It learns a discriminator which
can give the probability of authenticity in the dia-
log level. Takanobu et al. (2019) further expands
the adversarial method by inferring a user’s goal
and giving a proper reward in turn level. How-
ever, adding adversarial training to RL will bring
potential drawbacks, as training RL is different
from normal GAN training whose dataset is fixed,
which needs training with the environment and sim-
ulated user which is changing all the time. Thus
RL and discriminator are training with a moving
target rather than a fixed object. It is hard to su-
pervise the adversarial training of generator and
discriminator due to no solid feedback. Besides,
as claimed in (Li et al., 2020), such adversarial
training is only suitable for policy gradient-based
methods like Proximal Policy Optimization (PPO),
but not working for value-based RL algorithm like
Deep Q-Network (DQN).

Recently, Li et al. (2020) utilizes a generator to
approximate the distribution of expert state-action
pairs and trains a discriminator to distinguish them
from expert state-action pairs. By introducing a
pretraining method, this approach can be extended
to both on-policy and off-policy RL methods. How-
ever, it is still confused that whether this reward
model could give correct rewards. Different from
the aforementioned methods, in this paper, our
model generates rewards in a more accurate se-
quential and multi-level manner.
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Figure 2: An overview of our multi-level and sequential reward modeling mechanism.

3 Method

We propose a novel multi-level sequential reward
estimator and learn it under an Inverse Reinforce-
ment Learning (IRL) framework. IRL aims to learn
a reward estimator based on expert data, which are
state-action pairs (S, A.) from expert policy. IRL
could be formally defined as:

R*(A.,S) > E VRE (A, S)

Erx(a.18) (1)

w9 (A|S
where the goal is to find an optimal reward function
R*, such that based on the same states S, expert
dialog policy 7 will obtain equal or higher rewards
than the agent’s policy mg. We denote expert action
and agent action as A, and A, respectively.

Our objective is approximating R* by capturing
the distribution of expert dialog f. and estimating
how likely a state-action pair is from f, as the re-
ward. To accurately model the expert distribution
fe, we disentangle f. into three levels: domain
distribution f§, action distribution f, and slot dis-
tribution f¢. Fig. 2 shows the framework of our
multi-level reward estimator. Given a state-action
pair from the input and output of a DM module in
a pipeline-based system, we combine three compo-
nents to estimate its quality. First, we acquire sub-
states and sub-actions by utilizing a Disentangled
Auto-Encoder (DAE) to encode states and a rule-
based decomposer to decompose actions. Second,
we learn different sub-generators to generate sub-
states and sub-actions from noises. Third, we train
different sub-discriminators to classify whether a
state-action pair is from expert data or agent policy.

Besides, we sequentially connect the three discrim-
inators, imposing Markov property to the multi-
level rewards, as well as alleviating the problem of
huge action space in RL. Finally, the discriminators
can serve as reward estimators for domian, action,
and slot during inference. Algorithm 1 summarizes
the training process of our model components. We
introduce more details in the following.

3.1 State-Action Decomposition and
Representation

We first decompose an action into sub-actions and
learn to decompose and encode a state into sub-
states from domain, act, and slot level.

For action decomposition, we decompose an ac-
tion .4 by rules based on how the action vector
is defined. Such a rule-based decomposer can be
easily implemented by first defining an assignment
matrix M, then multiply M with A and select three
sub-spans of 4 to form three sub-actions a4, a, and
as, which are all one-hot vectors.

For state decomposition and representation, we
decompose a discrete state S into sub-states of
domain, act, and slot, and learn a continuous rep-
resentation of them by DAE. As shown in Fig. 2,
the DAE contains three encoders E4, E, and E; to
extract and encode the sub-states from S:

[ha; ha; hs] = Encoder(S). 2
To enforce each encoder learn the sub-state corre-
sponding to domain, act and slot respectively, we
adopt three auxilary classifiers (Cy, C, and Cy)
which classify each sub-state representation (sg, Sq
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and s,) with the corresponding sub-action (ay, a,
and a) as label. To enhance model generalization,
we inject data-dependent noises into latent vari-
ables hgy, hy and hg. In particular, a noise variance
o2 is obtained via the Multilayer Perceptron (MLP)
transformation from state S: log 0> = M LP(S).
Then we sample noise z from a Gaussian distri-
bution A (h,o%I). The reparameterization trick
(Kingma and Welling, 2013) is further exploited to
achieve end-to-end training:

[Sd; Sa; Ss] = h+o0e, e~ N(0,I). (3)

In this way, the sub-state representations are dif-
ferent for every training time of input state S, and
thus the model is provided with additional flexibil-
ity to explore various trade-offs between noise and
environment.

Next, we reconstruct the state via a decoder:

S = Decoder([sq; Sa; Ss))- )

After that, since the state S is a discrete vector,
we can learn DAE by minimizing a binary cross
entropy loss:

S|
Liec = Z [Si log(Si) + (1 — &) log(1 — S))| .
i=1
(5)
The loss for the auxilary classifiers are:
) TW: .
Elenc - = exp(sz I/I;ZCLZ) , 1 E [d7 a, 3]7 (6)
>, exp(s] Wiaj)
ajc€A;

where W; € {Wy, W, W} is the learnable param-
eters of the classifiers and .A; is the action space
of the corresponding action level. Therefore, the
overall loss for training DAE is given by:

Lpap = Lace+ Y, Line (7)
i€[d,a,s]

3.2 Adversarial Learning of State-Action
Distribution

Different from previous adversarial training meth-
ods in which generator (policy) and discriminator
(reward estimator) are trained alternatively when
interacting with a simulated user, our GAN net-
work (Goodfellow et al., 2014) is trained offline
without the need of simulated users. As shown
in Fig. 2, our discriminator D is composed of

Algorithm 1 Reward Estimator Training

Require: Expert dialog [S. : A]
repeat
Training DAE by Eq. 7
until DAE converge
Initialize Gp, Dy with random weights 0, ¢
repeat
for g-steps do
Sample noise samples z from Gaussian
prior p(z)
Update ¢ by Eq. 8
end for
for d-steps do
Generate s3, 52, 5%, A, by Gy(2)

Decompose A into aj,a;,a;
Sample sg4, Sq, S5, A from DAE
Decompose A into ag, Gq, s
Update ¢ by Eq. 9
end for
until GAN converges

three sub-discriminators{ Dy, D,, Ds}, our gener-
ator G consists a set of parallel sub-generators
{G4, Gq, Gs, Gyer } with the same Gaussian noise
Z as input to generate sub-states {s7, 57, sZ} and
actioin .A. Then A is decomposed into {aZ,a%,a
by the same rule-based decomposer we described
in Sec. 3.1. As a true action A is discrete,
we use Straight-Through Gumbel Softmax (Jang
et al., 2016) to approximate the sampling pro-
cess. The generators aim to approximate the distri-
bution of expert dialog (S, A.) by learning dis-
tributions {f9, f¢, £} of sub state-actions with
{G4,Gq,Gs} and Ggee. We train the generators
by the following loss:

Lg(0) = Ezop(z)(log(1 = D(G(2)))),  (8)

where 6 represents the parameters of generator G.
For discriminator, it consists of three paralleled
and independent MLP networks with a sigmoid out-
put layer. The discriminator outputs three scores
{Yd; Ya, ys } that respectively denote the probability
a sub state-action pair is from a true expert distri-
bution. The traininig loss could be written as:

Lp, = —[E(s; a:)~ e 10g Dy, (83, ai)
+E2~P(Z)(1 —log Dy, (s7,a;7))],i € [d,a, s].
€))

2996



3.3 Reward Shaping and Combination

Reward shaping provides an RL agent with extra
rewards in addition to the original sparse rewards
Tori 1N a task to alleviate the problem of reward
sparsity. We follow the same assumption of (Liu
and Lane, 2018; Pack and Pieraccini, 2008), in
which state-action pairs similar to expert data will
receive higher rewards.

The rewards from our discriminators are calcu-
lated as:

Rd = Yd,
R, =y, - Sigmoid(7(Ry + b)),
Rs = ys - Sigmoid(7 (R, + b)),

(10)

where {y4, Ya,ys} are the outputs of discrimina-
tors { Dy, Dg, Ds} in Fig. 2. Note that we impose
Markov property into multi-level reward calcula-
tion by taking the reward of domain/act level into
account when calculating the reward of act/slot
level. An agent will receive a low reward when it
chooses a wrong domain even if y, or ys is high.
We accomplish this by the sigmoid functions in Eq.
10. 7 and b are two hyper-parameters controlling
the shape of the sigmotd function. A smaller 7
will introduce a softer penalty given by prior-level
reward.

After getting the three-level rewards, we propose
two reward integration strategies. The first strategy
we denote as Rseqprq 18 simply using Rg from Eq.
10 as the combined reward. This strategy will bring
reward to nearly 1 or 0. The second strategy we
denote as Rgeqa0g 1S computing the mean of the
three rewards { Ryq, R,, Rs} as the final reward.
Finally, we augment the original reward r,.; by
adding Rgeqprd OF Rgeqavg for reward shaping.

3.4 Details of Modeling and Training

For the Disentangled Auto-Encoder, the input of its
encoder is binary states S. We use three paralleled
MLP layers with same hidden size 64 as the sub-
encoders to get hidden states {hg, hq, hs}, which
are the same with the architecture of the MLP net-
work for generating noise variance 2. We train
the encoder, decoder, and classifier network simul-
taneously.

For the generator part, we utilize four indepen-
dent and parallel MLP layers. All layers share the
same gaussian noise as input. The first three aim to
capture the distribution in the field of d, a, s with
output size = 64. The output size of G4 is 300 with
an output layer of ST-Gumbel Softmax. To make

the output of generators be similar to the encod-
ing representation of DAE and bring noise to the
discriminator as well, we further add two MLP net-
works separately after generation layer to simulate
the sampling process of mean and variance. We
add weight regularization in a form of {2 norm to
avoid overfitting. In our experiments, the generator
is weaker compared to the discriminator, therefore
we set the training frequency ratio of generator and
discriminator to be 5:1.

For the discriminator part, we utilize three par-
allel MLP layers followed by a sigmoid function
as the output layer. Training a multi adversarial
network is not easy. Three discriminators will be
insensitive to their own field if training all G and
D jointly. Thus, we train G and D in the follow-
ing way. D takes all outputs from G as input, but
only chosen sub-generator and sub-discriminator
pairs have gradient backpropagation, and others
are frozen. During the experiment, we found start
training from one pair to two pairs than to all pairs
brings good results.

4 Experiments

4.1 Experimental Setup

Dataset We run evaluations based on the Mul-
tiWOZ dataset (Budzianowski et al., 2018)' . Tt
is a multi-domain dialog dataset that constructed
from human dialog records, mainly ranging from
restaurant booking to hotel recommending scenar-
ios. There are 3,406 single-domain dialogs and
7,032 multi-domain dialogs in total. The average
number of turns is 8.93 and 15.39 for single and
multi-domain dialogs, respectively.

Platform We implement our methods and base-
lines based on the Convlab platform (Lee et al.,
2019)2. It is a multi-domain dialog system platform
supporting end-to-end system evaluation, which in-
tegrates several RL algorithms.

Implementation Details For fair comparisons,
we follow the same experiment settings in (Li et al.,
2020). Specifically, an agenda-based user simu-
lator (Schatzmann et al., 2007) is embedded and
exploited to interact with dialog agent. We set the
training environment to a “dialog-act to dialog-act
(DA-to-DA)” level, where the agent interacts with
a simulated user in a dialog act way rather than an
utterance way. We use a rule-based dialog state

'https://github.com/budzianowski/multiwoz
Zhttps://github.com/sherlock 1987/SeqReward
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tracker (DST) to track 100% of the user goals. We
train on millions of frames (user-system turn pairs)
with 392-dimensional state vectors as inputs and
300-dimensional action vectors as outputs. For all
the RL networks, we use a hidden layer of 100
dimensions and ReL.U activation function.

Evaluation metrics During the evaluation, the
simulated user will generate a random goal first for
each conversation and then complete the session
successfully if the dialog agent has accomplished
all user requirements. We exploit average turn,
success rate and reward score to evaluate the effi-
ciency of proposed reward model. In particular, the
reward score metric is defined as

—T + 80,
—T — 40,

if success
reward score = { f fail (11D
where 7' denotes the number of system-user turns
in each conversation session. The performances av-
eraged over 10 times with different random seeds
are reported as the final results. Besides, we evalu-
ate our RL models in every 1, 000 frame (system-
user turn) by using 1, 000 dialogs interacting with

a simulated user.

4.2 Baselines

We evaluate the proposed reward estimator via
two classical RL algorithms: i) Deep Q-Network
(DQN) (Mnih et al., 2015), which is a value-based
RL algorithm; ii) Proximal Policy Optimization
(PPO) (Mnih et al., 2015), which is a policy-based
RL algorithm.

In terms of the DQN-based methods, we com-
pare our method DQNge,4,y and DQNge,prq
(corresponding t0 Rgeqavg and Rgeqprd, respec-
tively) with DQN,,,,,i114» Whose reward function
is defined in Eq. 11, and DQN, ¢4, (L1 et al.,
2020), which also pretrains an reward function
to achieve performance gains. Similarly, we
also evaluate on Warm-up DQN (WDQN) with
different reward function, named WDQN,,,,.i114
WDQNoffgan’ WDQNSquUg and WDQNSeqPrd’
respectively.

For the implementation details of DQN-based
agents, we use e—greedy action exploration and set
a linear decay from 0.1 in the beginning to 0.01
after 500k frames. We train DQN on 500 batches
of size 16 every 200 frames. Besides, we use a
relay buffer of size 50, 000 to stabilize training.

In terms of the PPO-based methods, we pick up
two adversarial methods: 1) Guided Dialog Policy

Learning (AIRL) (Takanobu et al., 2019); and ii)
Generative Adversarial Imitation Learning (GAIL)
(Ho and Ermon, 2016). AIRL works on turn level
and gives reward scores based on state-action-state
triple (s¢, at, s¢+1). For GAIL, it works on dialog
level and gives rewards after dialog ends.

Similar to DQNs, we also compare our methods
with PPOygpii1q and PPO, rgan (Li et al., 2020).
There is one extra hyperparameter named training
epoch for GAIL and AIRL, which represents the
training ratio of discriminator and PPO models.
Here we set it to 4. Apart from these, all the other
hyperparameters stay the same. Different from
the settings for DQN, the e—greedy stays 0.001
without decay. Besides, we set val-loss-coef to be
1, meaning no discount for value loss. We also set
the training frequency to be 500 frames.

4.3 Results with DQN-based Agents

From Fig. 3 (a), DQNg.,p,q achieves the best per-
formance with a success rate of 0.990 and con-
verges after 130K, which speeds up the training
process by almost 300% compared to DQN,,ii1a-
Compared with DQN,,,...114- the methods using
pre-trained reward functions Rffgan, RSeqarg
Rseqprq are better than vanilla in terms of both con-
vergence speed and success rate. This phenomenon
suggests that these three reward estimators could
speed up dialog policy training.

Different from DQN,, ¢ ¢44,,, Whose reward func-
tion is also learned by adversarial training, we fur-
ther apply disentangled learning and multi-view dis-
criminator to obtain fine-grained rewards. The per-
formance of DQNg,,p,q and WDQNg,,p,q gains
received in convergence speed and final perfor-
mance of our methods confirm the superiority of
the hierarchical reward.

For WDQN agent, since first warmed up with
human dialogs, the WDQN-based methods share
a similar success rate (around 6%) before training
and consistently converge faster than DQN-based
models. However, the usage of warm-up operation
will mislead the model to local optimum and dete-
riorate the final success rate. This phenomenon can
be found in the last 100 frames, the performances
of WDQN,,4,i11, and WDQN, ¢ ¢, drop signifi-
cantly. Another attractive property of our method,
compared with WDQN ;.11 and WDQN,, ¢ ¢4,
is the variance of success rate is obviously small,
which strongly supports the remarkable benefit of
exploiting disentangled representation to learn prof-
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Figure 3: The training process of dialog agents based on different reinforcement learning algorithms.

Model SRate RScore  ATurn
DQNuanitia 0.843  55.18 8.02
DQNoffgan 0.964 71.87 5.86
DQNseqavg 0981 7421 557
DQNSE(]P’I‘d 0.990 75.43 5.40
WDQNygnitia  0.678 32.53 10.84
WDQNoffgan 0760  43.88 933
WDQNsegav, 0798 4001 8.79
WDQNseqpra 0960  71.05 6.09
AIRL 0.793  50.63 10.14
GAIL 0.832 51.65 10.01
PPOvanilla 0.861 56.93 8.30
PPOOffgan 0.860 56.96 8.20
PPOSeqPrd 0.806 49.86 9.34
PPOSEqA’Ug 0.879 59.04 8.07

Table 1: The performance of dialog agents with differ-
ent reward functions. SRate, Rscore and ATurn repre-
sent success rate, reward score and average turn.

itable sequential reward in dialog management.

4.4 Results with PPO-based Agents

For the policy gradient-based agents, we compare
our models with two other strong baselines, i.e.,
GAIL and AIRL, whose reward functions are up-
dated during RL training. Similar to DQN-based
methods, we employ PPO algorithms to train di-
alog agents with different reward functions. Be-
fore training a PPO agent, we perform imitation
learning with human dialogs to warm-up PPO
agents, achieving around 33% success rate. For
fair comparisons, we also pretrain the discrimina-
tor in GAIL and reward model in AIRL by feeding
positive samples and negative samples from pre-
train process of dialog agents.

As demonstrated in Fig. 3 (c), although AIRL
rises faster than others during the first 50 frames,
it converges to a worse result, compared with
PPOgcqavg.- An interesting observation is that
PPO,¢ni1o €ven performs better than AIRL. This

Model | Acc Prec Rec F1 JS

Rofrgan ‘ 0.79 0.84 0.76 0.80 1.39
Ry 0.86 0.97 0.80 0.88 0.69
R, 0.71 091 065 0.76 0.14
R 0.77 0.95 0.69 0.80 0.33
Rseqavg | 0.87 091 0.85 0.88 1.00
Rseqpra | 0.87  0.87 0.87 0.87 3.73

Table 2: The accuracy, precision, recall, F1 and JS
divergence scores on test dataset with equal number of
positive and negative samples.

may be due to the fact that adversarial learning
is extremely unstable in RL. Therefore, we aim
to learn an off-line reward function to guide the
evolution of agents, as we motivate in the intro-
duction. In the comparison between PPO, fgan
and PPOgqAvg, the performance gains obtained
by our model verifies the advantage of exploiting
multi-level reward signals. Moreover, it can be
seen that, in the PPO-based RL algorithm, the per-
formance of the agent with the reward function
Rseqpra 1s worse than that of Rgeqa44, but the op-
posite is true in the DQN and WDQN-based meth-
ods. This may be caused by that the multiplicative
reward (i.e., Rgeqprq) may cause the gradient to be
very steep, which makes the training of the policy
gradient-based model unstable. However, in the
value-based RL method, an average reward (i.e.,
Rseqa0g) might degenerate the performance, as a
hierarchical reward is more general and intuitive,
which has access to precise intermediate reward
signals. The performances of the last frame in
terms of success rate, reward score and average
turn are shown in Table 1, in which we could claim
again that our method PPOge 4,4 outperforms all
baseline models by a substantial margin.
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Figure 4: Histogram of distribution about fake/real state-action pairs in different rewards setting. Horizontal axis
means the reward score, and vertical axis means frequency.

4.5 Analysis of Different Rewards

To visualize the model performance and what ben-
efits a sequential reward will bring, we view the
evaluation as a binary classification and distribu-
tion distance problem. we use accuracy, precision,
recall, and F1 to find out how good this binary
model is, and use JS divergence to evaluate the
ability of the reward model to divide positive and
negative distributions, the larger the better. We con-
struct a test dataset with equal numbers (7, 372) of
positive and negative samples from the test dataset.
All positive samples are original state-action pairs.
For negative samples, we fix states and randomly
pick actions from those with different domains. We
evaluate three reward models separately in Table
2. Ry is the best one among the three with the
highest five scores. This is pretty straightforward
since domain is the first identity to divide action
space into groups. And for R, and Rg, the JS
divergence is lower, this is because some actions
could have different domains with the same action-
slot. For example, action “Train-Inform-Arrive”
and “Hotel-Inform-Arrive” have the same action-
slot with different domains. Thus, R, and R will
only give an ambiguous decision boundary. But
from a sequential view, we make a new combina-
tion of Rgeqavg and Rgeqprq, Which gives good
results.

Ry fgan could give the right rewards to some
extent, but from Fig. 4 (c), there is a large inter-
section between fake and real distributions among
three, which means it wrongly classifies fake action
as right. And this is the reason why its F1 score
is lower. Besides, this reward model is a biased
model, its ratio of true negative and true positive
samples is 0.89 thus it tends to give fake results.
For both of our model, there is little bias, Rgeqprd
15 0.99 and Rgeqavg is 0.98, which benefits from

sequential combination.

For RSeqPrda RSquvg and Roffgana RSeqPrd
perform the best, no matter from the view of binary
classification or JS divergence. And the distribu-
tion is much sharper than Rgcq4.4 With prediction
score centering at 0 or 1. For Rgeqavg, the dis-
tribution is softer than Rg.,p-q as shown in Fig.
4. Although there is no exact evaluation to say
how bad one action is, from the good results of
PPOge¢qa44, nearly the same binary classification
score with Rgeqprq as well as lower JS divergence,
we could get the conclusion that it is the most ac-
curate rewards among the three.

5 Conclusion

We propose a multi-level and sequential reward
modeling mechanism that models expert state-
action pairs in terms of domain, act, and slot. Our
approach combines a disentangled auto-encoder
and a generator-discriminator framework to model
the distribution of expert state-action pairs. The
learned discriminators can thereby serve as a multi-
level reward estimator. Experimental results show
that our three-level modeling mechanism gives
more accurate and explainable reward estimations
and significantly boosts the performance of a vari-
ety of RL-based dialog agents, as well as accelerat-
ing the convergence speed of training.
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