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Abstract

Naturally-occurring bracketings, such as an-
swer fragments to natural language ques-
tions and hyperlinks on webpages, can reflect
human syntactic intuition regarding phrasal
boundaries. Their availability and approx-
imate correspondence to syntax make them
appealing as distant information sources to
incorporate into unsupervised constituency
parsing. But they are noisy and incom-
plete; to address this challenge, we develop
a partial-brackets-aware structured ramp loss
in learning. Experiments demonstrate that
our distantly-supervised models trained on
naturally-occurring bracketing data are more
accurate in inducing syntactic structures than
competing unsupervised systems. On the En-
glish WSJ corpus, our models achieve an un-
labeled F1 score of 68.9 for constituency pars-
ing.1

1 Introduction

Constituency is a foundational building block for
phrase-structure grammars. It captures the notion
of what tokens can group together and act as a
single unit. The motivating insight behind this
paper is that constituency may be reflected in mark-
ups of bracketings that people provide in doing
natural tasks. We term these segments naturally-
occurring bracketings for their lack of intended syn-
tactic annotation. These include, for example, the
segments people pick out from sentences to refer to
other Wikipedia pages or to answer semantically-
oriented questions; see Figure 1 for an illustration.

Gathering such data requires low annotation ex-
pertise and effort. On the other hand, these data
are not necessarily suitable for training parsers, as
they often contain incomplete, incorrect and some-
times conflicting bracketing information. It is thus
an empirical question whether and how much we

1Our code is publicly available at https://github.
com/tzshi/nob-naacl21.

[ Republicans ] have been imploring the White 
House [ to compromise on [ the wage issue ] ].

Q: Who have been imploring something?

Q: What have someone been imploring?

Q: What will someone compromise on?

A: Republicans

A: To compromise on the wage issue

A: The wage issue

QA-SRL

Wikipedia
Science fiction (sometimes shortened to sci-fi or 
SF) is a genre of speculative fiction that typically 
deals with imaginative and futuristic concepts 
such as advanced science and technology, space 
exploration, time travel, parallel universes, and 
extraterrestrial life.

Republicans have been imploring the White 
House to compromise on the wage issue.

Context:

Q&As:

Corresponding bracketings:

Figure 1: Two example types of naturally-occurring
bracketings. Blue underlined texts in the Wikipedia
sentence are hyperlinks. We bracket the QA-SRL sen-
tence in matching colors according to the answers.

could learn syntax from these naturally-occurring
bracketing data.

To overcome the challenge of learning from this
kind of noisy data, we propose to train discrimina-
tive constituency parsers with structured ramp loss
(Do et al., 2008), a technique previously adopted
in machine translation (Gimpel and Smith, 2012).
Specifically, we propose two loss functions to di-
rectly penalize predictions in conflict with available
partial bracketing data, while allowing the parsers
to induce the remaining structures.

We experiment with two types of naturally-
occurring bracketing data, as illustrated in Figure 1.
First, we consider English question-answer pairs
collected for semantic role labeling (QA-SRL; He
et al., 2015). The questions are designed for non-

https://github.com/tzshi/nob-naacl21
https://github.com/tzshi/nob-naacl21
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experts to specify semantic arguments of predicates
in the sentences. We observe that although no syn-
tactic structures are explicitly asked for, humans
tend to select constituents in their answers. Second,
Wikipedia articles2 are typically richly annotated
with internal links to other articles. These links
are marked on phrasal units that refer to standalone
concepts, and similar to the QA-SRL data, they
frequently coincide with syntactic constituents.

Experiment results show that naturally-occurring
bracketings across both data sources indeed help
our models induce syntactic constituency structures.
Training on the QA-SRL bracketing data achieves
an unlabeled F1 score of 68.9 on the English WSJ
corpus, an accuracy competitive with state-of-the-
art unsupervised constituency parsers that do not
utilize such distant supervision data. We find that
our proposed two loss functions have slightly dif-
ferent interactions with the two data sources, and
that the QA-SRL and Wikipedia data have varying
coverage of phrasal types, leading to different error
profiles.

In sum, through this work, (1) we demonstrate
that naturally-occurring bracketings are helpful for
inducing syntactic structures, (2) we incorporate
two new cost functions into structured ramp loss
to train parsers with noisy bracketings, and (3) our
distantly-supervised models achieve results com-
petitive with the state of the art of unsupervised con-
stituency parsing despite training with smaller data
size (QA-SRL) or out-of-domain data (Wikipedia).

2 Naturally-Occurring Bracketings

Constituents are naturally reflected in various hu-
man cognitive processes, including speech pro-
duction and perception (Garrett et al., 1966; Gee
and Grosjean, 1983), reading behaviors (Hale,
2001; Boston et al., 2008), punctuation marks
(Spitkovsky et al., 2011), and keystroke dynam-
ics (Plank, 2016). Conversely, these externalized
signals help us gain insight into constituency repre-
sentations. We consider two such data sources:

a) Answer fragments When questions are an-
swered with fragments instead of full sentences,
those fragments tend to form constituents. This
phenomenon corresponds to a well-established con-
stituency test in the linguistics literature (Carnie,
2012, pg. 98, inter alia).

2We worked with articles in English.

Dataset QA-SRL Wikipedia

Number of sentences 1,241 926,077
Brackets/sentence 6.26 0.89

Single word 22.4% 35.8%
Constituent in reference 55.2% 31.1%
Conflicting w/ reference 11.8% 5.3%

SBAR 2.8% 0.07%
NP 36.8% 4.42%
VP 6.3% 0.07%
PP 13.3% 0.04%
ADJP 8.6% 1.48%
ADVP 30.5% 0.39%
Total 21.8% 1.91%

Table 1: Dataset statistics: number of bracketings per
sentence (top), percentage of bracketing types (mid-
dle), and the reference phrases per label found in the
natural bracketings (bottom). Conflicting means the
bracket crosses some reference span. Reference parses
for Wikipedia are generated by a parser trained on PTB.

b) Webpage hyperlinks Since a hyperlink is a
pointer to another location or action (e.g., mailto:
links), anchor text often represents a concep-
tual unit related to the link destination. Indeed,
Spitkovsky et al. (2010) first give empirical evi-
dence that around half of the anchor text instances
in their data respects constituent boundaries and
Søgaard (2017) demonstrates that hyperlink data
can help boost chunking accuracy in a multi-task
learning setup.

Both types of data have been considered in
previous work on dependency-grammar induction
(Spitkovsky et al., 2010; Naseem and Barzilay,
2011), and in this work, we explore their efficacy
for learning constituency structures.

For answer fragments, we use He et al.’s (2015)
question-answering-driven semantic role labeling
(QA-SRL) dataset, where annotators answer wh-
questions regarding predicates in sentences drawn
from the Wall Street Jounal (WSJ) section of the
Penn Treebank (PTB; Marcus et al., 1993). For hy-
perlinks, we used a 1% sample of 2020-05-01 En-
glish Wikipedia, retaining only within-Wikipedia
links.3

We compare our extracted naturally-occurring
bracketings with the reference phrase-structure an-
notations:4 Table 1 gives relevant statistics. Our
results re-affirm Spitkovsky et al.’s (2010) find-
ing that a large proportion of hyperlinks coin-

3See Appendix A for details.
4For “ground-truth” structures in the Wikipedia data, we

apply a state-of-the-art PTB-trained constituency parser (Ki-
taev et al., 2019).
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cide with syntactic constituents. We also find that
22.4%/35.8% of the natural bracketings are single-
word spans, which cannot facilitate parsing deci-
sions, while 11.8%/5.3% of QA-SRL/Wikipedia
spans actually conflict with the reference trees and
can thus potentially harm training. The QA-SRL
data seems more promising for inducing better-
quality syntactic structures, as there are more brack-
etings available across a diverse set of constituent
types.

3 Parsing Model

Preliminaries The inputs to our learning algo-
rithm are tuples (w,B), where w = w1, . . . , wn

is a length-n sentence and B = {(bk, ek)} is a set
of naturally-occurring bracketings, denoted by the
beginning and ending indices bk and ek into the
sentence w. As a first step, we extract BERT-based
contextualized word representations (Devlin et al.,
2019) to associate each token wi with a vector xi.5

See Appendix B for details.

Scoring Spans Based on the xi vectors, we as-
sign a score sij to each candidate span (i, j) in the
sentence indicating its appropriateness as a con-
stituent in the output structure. We adopt a biaffine
scoring function (Dozat and Manning, 2017):

sij = [li; 1]TW [rj ; 1],

where [v; 1] appends 1 to the end of vector v, and

li = MLPleft(xi) and rj = MLPright(xj)

are the outputs of multi-layer perceptrons (MLPs)
that take the vectors at span boundaries as inputs.6

Decoding We define the score s(y) of a binary-
branching constituency tree y to be the sum of
scores of its spans. The best scoring tree among all
valid treesY can be found using the CKY algorithm
(Cocke, 1969; Kasami, 1965; Younger, 1967).

Learning Large-margin training (Taskar et al.,
2005) is a typical choice for supervised training
of constituency parsers. It defines the following

5The use of pre-trained language models can mitigate the
fact that our distant supervision data are either out-of-domain
(Wikipedia) or small in size (QA-SRL).

6This is inspired by span-based supervised constituency-
parsing methods (Stern et al., 2017), which in turn was based
on Wang and Chang (2016). These papers look at the differ-
ence vectors between two boundary points, while our scoring
function directly uses the vectors at the boundaries (which is
more expressive than only using difference vectors).

loss function to encourage a large margin of at
least ∆(y, y∗) between the gold tree y∗ and any
predicted tree y:

l = max
y∈Y

[s(y) + ∆(y, y∗)]− s(y∗),

where ∆(y, y∗) is a distance measure between y
and y∗. We can reuse the CKY decoder for cost-
augmented inference when the distance decom-
poses into individual spans with some function c:

∆(y, y∗) =
∑

span (i,j) in y c(i, j, y
∗).

In our setting, we do not have access to the gold-
standard y∗, but instead we have a set of bracket-
ings ỹ. The scoring s(ỹ) is not meaningful since ỹ
is not a complete tree, so we adopt structured ramp
loss (Do et al., 2008; Gimpel and Smith, 2012) and
define

l =

(
max
y∈Y

[s(y) + ∆(y, ỹ)]− s(ỹ)

)
+

(
s(ỹ)−max

y∈Y
[s(y)−∆(y, ỹ)]

)
= max

y∈Y
[s(y) + ∆(y, ỹ)]

−max
y∈Y

[s(y)−∆(y, ỹ)] ,

using a combination of cost-augmented and cost-
diminished inference. This loss function can be
understood as a sum of a convex and a concave
large margin loss (Collobert et al., 2006), canceling
out the term for directly scoring the gold-standard
tree. We consider two methods for incorporating
the partial bracketings into the cost functions:

cloose(i, j, ỹ) = 1(span (i, j) conflicts with ỹ)

cstrict(i, j, ỹ) = 1(span (i, j) not in ỹ),

where 1 is an indicator function. cloose is more le-
nient than cstrict as it does not penalize spans that do
not conflict with ỹ. Both cost definitions promote
structures containing bracketings in ỹ.7 In the su-
pervised setting where ỹ refers to a fully-annotated
tree y∗ without conflicting span boundaries, cstrict is
equal to cloose and the resulting ∆(y, y∗) cost func-
tions both correspond to the Hamming distance
between y and y∗.

4 Experiments and Results

Data and Implementation We evaluate on the
PTB (Marcus et al., 1993) with the standard splits

7One may also consider a linear interpolation of cloose and
cstrict, but that would introduce an additional hyper-parameter.
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Model PLM Mean Max

Random Trees 19.2 19.5
Left Branching 8.7
Right Branching 39.5

Upper bound 84.3

URNNG (Kim et al., 2019b) — 45.4
PRPN (Shen et al., 2018) 47.3 47.9
ON (Shen et al., 2019) 48.1 50.0
DIORA (Drozdov et al., 2019) ◦ — 58.9
CPCFG (Kim et al., 2019a) 55.2 60.1
S-DIORA (Drozdov et al., 2020) ◦ 57.6 64.0
Constituency Tests (Cao et al., 2020) • 62.8 65.9

+URNNG (Cao et al., 2020) • 67.9 71.3
This work:
NOBQA-SRL, cloose • 64.5 65.2
NOBQA-SRL, cstrict • 68.9 70.0
NOBWikipedia, cloose • 58.2 63.0
NOBWikipedia, cstrict • 56.1 57.0

Table 2: Sentence-level unlabeled F1 scores (%) on the
WSJ test set. • in the PLM column denotes the use of
context-sensitive pre-trained language models; ◦ uses
context-insensitive embedders from PLMs. Methods
producing only binary-branching structures (including
everything in this table) have an upperbound of 84.3%
F1 score, since the gold trees can be non-binary.

Const.
Type

Cao et al.
(2020)

NOBQA-SRL NOBWikipedia
cloose cstrict cloose cstrict

SBAR 85.3 89.0 87.7 66.7 48.3
NP 84.3 85.5 85.2 71.8 70.3
VP 80.8 52.3 70.9 62.4 49.6
PP 84.4 83.5 86.5 67.7 74.8
ADJP 55.6 58.1 57.3 62.7 60.1
ADVP 54.6 76.9 75.3 66.4 63.9

Table 3: Average recall (%) per consituent type.

(section 23 as the test set). QA-SRL contains 1,241
sentences drawn from the training split (sections
02-21) of the PTB. For Wikipedia, we use a sample
of 332,079 sentences that are within 100 tokens
long and contain multi-token internal hyperlinks.
We fine-tune the pretrained BERTbase features with
a fixed number of mini-batch updates and report
results based on five random runs for each setting.
See Appendix B for detailed hyper-parameter set-
tings and optimization procedures.

Evaluation We follow the evaluation setting of
Kim et al. (2019a). More specifically, we dis-
card punctuation and trivial spans (single-word and
full-sentence spans) during evaluation and report
sentence-level F1 scores as our main metrics.

Results Table 2 shows the evaluation results of
our models trained on naturally-occurring brack-
etings (NOB); Table 3 breaks down the recall

ratios for each constituent type. Our distantly-
supervised models trained on QA-SRL are com-
petitive with the state-of-the-art unsupervised re-
sults. When comparing our models with Cao
et al. (2020), we obtain higher recalls on most con-
stituent types except for VPs. Interestingly, QA-
SRL data prefers cstrict, while cloose gives better F1
score on Wikipedia; this correlates with the fact
that QA-SRL has more bracketings per sentence
(Table 1). Finally, our Wikipedia data has a larger
relative percentage of ADJP bracketings, which ex-
plains the higher ADJP recall of the models trained
on Wikipedia, despite their lower overall recalls.

5 Related Work

Unsupervised Parsing Our distantly-supervised
setting is similar to unsupervised in the sense that
it does not require syntactic annotations. Typ-
ically, lack of annotations implies that unsuper-
vised parsers induce grammar from a raw stream
of lexical or part-of-speech tokens (Clark, 2001;
Klein, 2005) along with carefully designed in-
ductive biases on parameter priors (Liang et al.,
2007; Wang and Blunsom, 2013), language univer-
sals (Naseem et al., 2010; Martínez Alonso et al.,
2017), cross-linguistic (Snyder et al., 2009; Berg-
Kirkpatrick and Klein, 2010; Cohen and Smith,
2009; Han et al., 2019) and cross-modal (Shi et al.,
2019) signals, structural constraints (Gillenwater
et al., 2010; Noji et al., 2016; Jin et al., 2018), etc.
The models are usually generative and learn from
(re)constructing sentences based on induced struc-
tures (Shen et al., 2018, 2019; Drozdov et al., 2019;
Kim et al., 2019a,b). Alternatively, one may use re-
inforcement learning to induce syntactic structures
using rewards defined by end tasks (Yogatama et al.,
2017; Choi et al., 2018; Havrylov et al., 2019). Our
method is related to learning from constituency
tests (Cao et al., 2020), but our use of bracketing
data permits discriminative parsing models, which
focus directly on the syntactic objective.

Learning from Partial Annotations Full syn-
tactic annotations are costly to obtain, so the alter-
native solution of training parsers from partially-
annotated data has attracted considerable research
attention, especially within the context of active
learning for dependency parsing (Sassano, 2005;
Sassano and Kurohashi, 2010; Mirroshandel and
Nasr, 2011; Flannery et al., 2011; Flannery and
Mori, 2015; Li et al., 2016; Zhang et al., 2017)
and grammar induction for constituency parsing
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(Pereira and Schabes, 1992; Hwa, 1999; Riezler
et al., 2002). These works typically require ex-
pert annotators to generate gold-standard, though
partial, annotations. In contrast, our work consid-
ers the setting and the challenge of learning from
noisy bracketing data, which is more comparable to
Spreyer and Kuhn (2009) and Spreyer et al. (2010)
on transfer learning for dependency parsing.

6 Conclusion and Future Work

We argue that naturally-occurring bracketings are
a rich resource for inducing syntactic structures.
They reflect human judgment of what constitutes a
phrase and what does not. More importantly, they
require low annotation expertise and effort; for
example, webpage hyperlinks can be extracted es-
sentially for free. Empirically, our models trained
on QA-SRL and Wikipedia bracketings achieve
competitive results with the state of the art on un-
supervised constituency parsing.

Structural probes have been successful in ex-
tracting syntactic knowledge from frozen-weight
pre-trained language models (e.g., Hewitt and Man-
ning, 2019), but they still require direct syntactic
supervision. Our work shows that it is also feasi-
ble to retrieve constituency trees from BERT-based
models using distant supervision data.

Our models are limited to the unlabeled setting,
and we leave it to future work to automatically
cluster the naturally-occurring bracketings and to
induce phrase labels. Our work also points to po-
tential applications in (semi-)supervised settings
including active learning and domain adaptation
(Joshi et al., 2018). Future work can also consider
other naturally-occurring bracketings induced from
sources such as speech production, reading behav-
ior, etc.
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A Data

A.1 QA-SRL

He et al.’s (2015) question-answering-driven se-
mantic role labeling dataset (QA-SRL) contains
question-answer pairs for 1,241 sentences drawn
originally from the training sections of the Penn
Treebank (PTB; Marcus et al., 1993). The ques-
tions are generated by templates that ask about
semantic arguments for all the predicates in a given
sentence. Recorded human responses to the ques-
tions typically correspond to spans in the sentence.
Each question can have multiple answers.

For all question-answer pairs, we first map the
answers to consecutive spans in the corresponding
sentences. We keep all exact matches when the
answer text appears multiple times in the sentence,
and we discard any answers that cannot be mapped
to a consecutive span in the sentence.

A.2 Wikipedia

We randomly sample 1% of the articles from the
2020-05-01 snapshot of English Wikipedia8. We
then split the documents into sentences and tok-
enize with spaCy.9 This step leads to 926,077 sen-
tences, as reported in Table 1. For ground-truth
parse trees, we parse the sentences with Kitaev
et al.’s (2019) state-of-the-art constituency parser
trained on the PTB. For all the internal hyper-
links in the documents, where there is a hyperlink-
tokenization mismatch, we retrieve the smallest
span of tokens that covers the hyperlink. To con-
struct the training set in our main experiments, we
filter out sentences longer than 100 tokens and sen-
tences without any multiple-token internal hyper-
links. These pre-processing procedures produce
332,079 training sentences.

B Implementation Details

Feature Extractor We use the pretrained
BERTbase model as our feature extractor.10 For
each word in the sentence, we tokenize it with
BERT’s WordPiece tokenizer, and we take the
BERT vector of the last token at the final BERT
hidden layer as representation for each word. The
feature extractor is fine-tuned along with model
training.

8https://dumps.wikimedia.org/enwiki/
9https://spacy.io

10Pytorch interface of the model is provided by https:
//github.com/huggingface/transformers.

Span Scoring MLPleft and MLPright are single-
layer MLPs: they both consist of a linear layer pro-
jecting BERT representations to 256-dimensional
vectors, followed by a leaky ReLU activation func-
tion (Maas et al., 2013). The constituent scoring
component has parameter W ∈ R257×257. All the
parameters are randomly initialized (Glorot and
Bengio, 2010).

Training and Optimization We optimize the
neural networks using the Adam optimizer
(Kingma and Ba, 2015) with β1 = 0.9, β2 = 0.999
and ε = 1 × 10−12. For each batch, we sample
8 sentences from the training set and average the
loss collected for each sentence. The gradients are
clipped at 1.0 before back propagation. The learn-
ing rate linearly increases from zero to 1 × 10−5

in 2,000 training steps. After warmup, we keep
training the model until we reach 20,000 training
steps. We do not perform early stopping, since in
the unsupervised parsing setting, we do not look at
validation accuracies until we finish training. We
leave it as future work to explore other model se-
lection strategies.

Hyperparameter Selection We use the default
recommended β1, β2, and ε values for the Adam
optimizer, and we use a typical fine-tuning learning
rate for the pre-trained BERT model (Devlin et al.,
2019). The number of training steps is based on our
preliminary observation of the convergence of the
training loss, and the batch size is limited by our
computating hardware. We fix the initial values we
set for the size of the biaffine matrix (257 × 257)
and the number of warmup steps (2,000) through-
out our experiments. A better hyperparameter se-
lection strategy may lead to improved results.

Speed For a length-n sentence, the time complex-
ity for the CKY decoder is O(n3). On a RTX 2080
GPU, our model parses 409 sentences per second
on average and the training process for each model
finishes within 2 hours.

https://dumps.wikimedia.org/enwiki/
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https://github.com/huggingface/transformers
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