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Abstract

The majority of work in targeted sentiment
analysis has concentrated on finding better
methods to improve the overall results. Within
this paper we show that these models are not
robust to linguistic phenomena, specifically
negation and speculation. In this paper, we
propose a multi-task learning method to
incorporate information from syntactic and
semantic auxiliary tasks, including negation
and speculation scope detection, to create
English-language models that are more robust
to these phenomena. Further we create
two challenge datasets to evaluate model
performance on negated and speculative
samples. We find that multi-task models
and transfer learning via language modelling
can improve performance on these challenge
datasets, but the overall performances indicate
that there is still much room for improve-
ment. We release both the datasets and the
source code at https://github.com/
jerbarnes/multitask_negation_
for_targeted_sentiment.

1 Introduction

Targeted sentiment analysis (TSA) involves jointly
predicting entities which are the targets of an opin-
ion, as well as the polarity expressed towards them
(Mitchell et al., 2013). The TSA task, which is part
of the larger set of fine-grained sentiment analysis
tasks, can enable companies to provide better rec-
ommendations (Bauman et al., 2017), as well as
give digital humanities scholars a quantitative ap-
proach to identifying how sentiment and emotions
develop in literature (Alm et al., 2005; Kim and
Klinger, 2019).

Modelling TSA has moved from sequence la-
beling using conditional random fields (CRFs)
(Mitchell et al., 2013) or Recurrent Neural Net-
works (RNN) (Zhang et al., 2015a; Katiyar and
Cardie, 2016; Ma et al., 2018), to Transformer
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models (Hu et al., 2019). However, all these im-
provements have concentrated on making the best
of the relatively small task-specific datasets. As an-
notation for fine-grained sentiment is difficult and
often has low inter-annotator agreement (Wiebe
et al., 2005; @vrelid et al., 2020), this data tends
to be small and of varying quality. This lack of
high-quality training data prevents TSA models
from learning complex, compositional linguistic
phenomena. For sentence-level sentiment classi-
fication, incorporating compositional information
from relatively small amounts of negation or spec-
ulation data improves both robustness and general
performance (Councill et al., 2010; Cruz et al.,
2016; Barnes et al., 2020). Furthermore, trans-
fer learning via language-modelling also improves
fine-grained sentiment analysis (Hu et al., 2019; Li
et al., 2019b). In this paper, we wish to explore
two research questions:

1. Does multi-task learning of negation and spec-
ulation lead to more robust targeted sentiment
models?

2. Does transfer learning based on language-
modelling already incorporate this informa-
tion in a way that is useful for targeted senti-
ment models?

We explore a multi-task learning (MTL) ap-
proach to incorporate auxiliary task information in
targeted sentiment classifiers in English in order
to investigate the effects of negation and specula-
tion in detail, we also annotate two new challenge
datasets which contain negated and speculative ex-
amples. We find that the performance is negatively
affected by negation and speculation, but MTL and
transfer learning (TL) models are more robust
than single task learning (STL). TL reduces the
improvements of MTL, suggesting that TL is simi-
larly effective at learning negation and speculation.
The overall performance on the challenge datasets,
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however, confirms that there is still room for im-
provement.

The contributions of the paper are the follow-
ing: 1) we introduce two English challenge datasets
annotated for negation and speculation, ii) we pro-
pose a multi-task model to incorporate negation
and speculation information and evaluate it across
four English datasets, iii) Finally, using the chal-
lenge datasets, we show the quantitative effect of
negation and speculation on TSA.

2 Background and related work

Fine-grained sentiment analysis is a complex
task which can be broken into four subtasks (Liu,
2015): i) opinion holder extraction, ii) opinion tar-
get extraction, iii) opinion expression extraction,
iv) and resolving the polarity relationship between
the holder, target, and expression. From these four
subtasks, targeted sentiment analysis (TSA) (Jin
and Ho, 2009; Chen et al., 2012; Mitchell et al.,
2013) reduces the fine-grained task to only the sec-
ond and final subtasks, namely extracting the opin-
ion target and the polarity towards it.

English TSA datasets include MPQA (Wiebe
et al., 2005), the SemEval Laptop and Restaurant
reviews (Pontiki et al., 2014, 2016), and Twitter
datasets (Mitchell et al., 2013; Wang et al., 2017).
Further annotation projects have led to review
datasets for Arabic, Dutch, French, Russian, and
Spanish (Pontiki et al., 2016) and Twitter datasets
for Spanish (Mitchell et al., 2013) and Turkish
(Pontiki et al., 2016). Prior work has also explored
the effects of different phenomena on TSA through
error analysis and challenge datasets. Wang et al.
(2017), Xue and Li (2018), and Jiang et al. (2019)
showed the difficulties of polarity classification of
targets on texts with multiple different polarities
through the distinct sentiment error splits, the hard
split, and the MAMS challenge dataset respectively.
Both Kaushik et al. (2020) and Gardner et al. (2020)
augment document sentiment datasets by asking
annotators to create counterfactual examples for
the IMDB dataset. More recently, Ribeiro et al.
(2020) showed how sentence-level sentiment mod-
els are affected by various linguistic phenomena
including negation, semantic role labelling, tempo-
ral changes, and name entity recognition. Previous
approaches to modelling TSA have often relied
on general sequence labelling models, e. g. CRFs
(Mitchell et al., 2013), probabilistic graphical mod-
els (Klinger and Cimiano, 2013), RNNs (Zhang

et al., 2015b; Ma et al., 2018), and more recently
pretrained Transformer models (Li et al., 2019b).

Multi-task and transfer learning The main
idea of MTL (Caruana, 1993) is that a model
which receives signal from two or more correlated
tasks will more quickly develop a useful induc-
tive bias, allowing it to generalize better. This
approach has gained traction in NLP, where several
benchmark datasets have been created (Wang et al.,
2019b,a). Under some circumstances, MTL can
also be seen as a kind of data augmentation, where
a model takes advantage of extra training data
available in an auxiliary task to improve the main
task (Kshirsagar et al., 2015; Plank, 2016). Much
of MTL uses hard parameter sharing (Caruana,
1993), which shares all parameters across some
layers of a neural network. When the main task
and auxiliary task are closely related, this approach
can be an effective way to improve model perfor-
mance (Collobert et al., 2011; Peng and Dredze,
2017; Martinez Alonso and Plank, 2017; Augen-
stein et al., 2018), although it is often preferable
to make predictions for low-level auxiliary tasks
at lower layers of a multi-layer MTL setup (S¢-
gaard and Goldberg, 2016), which we refer to as
hierarchical MTL.

Transfer learning methods (Mikolov et al., 2013;
Peters et al., 2018a; Devlin et al., 2019) can lever-
age unlabeled data, but require training large mod-
els on large amounts of data. However, it seems
even these models can be sensitive to negation
(Ettinger, 2020; Ribeiro et al., 2020; Kassner and
Schiitze, 2020)

Specific to TSA, previous research has used
MTL to incorporate document-level sentiment (He
et al., 2019), or to jointly learn to extract opin-
ion expressions (Li et al., 2019b; Chen and Qian,
2020).

Negation and Speculation Detection As nega-
tion is such a common linguistic phenomenon and
one that has a direct impact on sentiment, previous
work has shown that incorporating negation infor-
mation is crucial for accurate sentiment prediction.
Feature-based approaches did this by including fea-
tures from negation detection modules (Das and
Chen, 2007; Councill et al., 2010; Lapponi et al.,
2012), while it has now become more common
to assume that neural models learn negation fea-
tures in an end-to-end fashion (Socher et al., 2013).
However, recent research suggests that end-to-end
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models are not able to robustly interpret the effect
of negation on sentiment (Barnes et al., 2019), and
that explicitly learning negation can improve senti-
ment results (Barnes, 2019; Barnes et al., 2020).

On the other hand, speculation refers to whether
a statement is described as a fact, a possibility, or
a counterfact (Sauri and Pustejovsky, 2009). Al-
though there are fewer speculation annotated cor-
pora available (Vincze et al., 2008; Kim et al., 2013;
Konstantinova et al., 2012), including speculation
information has shown promise for improving senti-
ment analysis at document-level (Cruz et al., 2016).

There has, however, been little research on how
these phenomena specifically affect fine-grained
approaches to sentiment analysis. This is important
because, compared to document- or sentence-level
tasks where there is often a certain redundancy in
sentiment signal, for fine-grained tasks negation
and speculation often completely change the senti-
ment (see Table 2), making their identification and
integration within a fine-grained sentiment models
essential to resolve.

3 Data

We perform the main experiments on four English
language datasets: The Laptop dataset from Se-
mEval 2014 (Pontiki et al., 2014), the Restaurant
dataset which combines the SemEval 2014 (Pon-
tiki et al., 2014), 2015 (Pontiki et al., 2015), and
2016 (Pontiki et al., 2016), the Multi-aspect Multi-
sentiment (MAMS) dataset (Jiang et al., 2019), and
finally the Multi-perspective Question Answering
(MPQA) dataset (Wiebe et al., 2005)! shows the
distribution of the sentiment classes . We take the
pre-processed Laptop and Restaurant datasets from
Li et al. (2019a), and use the train, dev, and test
splits that they provide. We use the NLTK word
tokenizer to tokenise the Laptop, Restaurant, and
MPQA datasets and Spacy for the MAMS dataset.

We choose datasets that differ largely in their
domain, size, and annotation style in order to deter-
mine if any trends we see are robust to these data
characteristics or whether they are instead corre-
lated. We convert all datasets to a targeted setup by
extracting only the aspect targets and their polarity.
We use the unified tagging scheme? following re-
cent work (Li et al., 2019a,b) and convert all data

! All datasets contain the following three sentiment classes
positive, neutral, and negative. The MPQA dataset also in-
cludes a fourth rare class, both. Table 7 of Appendix A.

2This is also known as collapsed tagging scheme (Hu et al.,
2019)

to BIOUL format® with unified sentiment tags, e. g.
B-POS for a beginning tag with a positive senti-
ment, so that we can cast the TSA problem as a
sequence labeling task.

The statistics for these datasets are shown in
Table 1. MAMS has the largest number of training
targets (11,162), followed by Restaurant (3,896),
Laptop (2,044) and finally MPQA has the fewest
(1,264). MPQA, however, has the longest average
targets (6.3 tokens) compared to 1.3-1.5 for the
other datasets. This derives from the fact that entire
phrases are often targets in MPQA. Finally, due
to the annotation criteria, the MAMS data also
has the highest number of sentences with multiple
aspects with multiple polarities — nearly 100% in
train, compared to less than 10% for Restaurant.

3.1 Annotation for negation and speculation

Although negation and speculation are prevalent in
the original data — negation and speculation occur
in 13-25% and 9-20% of the sentences, respec-
tively — it is difficult to pry apart improvement on
the original data with improvement on these two
phenomena. Therefore, we further annotate the dev
and test set for the Laptop and Restaurant datasets*,
and when possible’, insert negation and specula-
tion cues into sentences lacking them, which we
call Laptopyeg, Laptopspe., Restauranty.g, and
Restaurantgy,.. Inserting negation and speculation
cues often leads to a change in polarity from the
original annotation, as shown in the example in
Table 2. We finally keep all sentences that contain
a negation or speculation cue, including those that
occur naturally in the data. As this process could
introduce errors regarding the polarity expressed
towards the targets, we doubly annotate the polar-
ity for 50 sentences from the original dev data, the
negated dev data, and the speculation dev data and
calculate Cohen’s Kappa scores. The statistics and
inter-annotator agreement scores (IAA) are shown
in Table 1°. The new annotations have similarly
high TAA scores (0.66-0.70) to the original data

SBIOUL format tags each token as either B: beginning
token, I: inside token, O: outside token, U: unit (single token),
or L: last token.

4For clarification this is the SemEval 2014 Laptop dataset
and the 2014, 2015, and 2016 combined Restaurant dataset.

SWhile inserting negation into new sentences is quite triv-
ial, as one can always negate full clauses, e. g. It’s good —
It’s not true that it’s good, adding speculation often requires
rewording of the sentence. We did not include sentences that
speculation made unnatural.

®Table 7 of Appendix A shows the distribution of the sen-
timent classes.
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Train Dev Test

sents.  targs. len. mult. sents. targs. len. mult. sents. targs. len. mult. TAA
Laptop 2,741 2,044 15 136 304 256 1.5 18 800 634 1.6 38 0.67
Laptopyeg - - - - 147 181 1.5 41 403 470 1.6 79 0.70
Laptopspec - - - - 110 142 14 10 208 220 1.5 19 0.64
Restaurant 3490 3,806 1.4 312 387 414 14 34 2,158 2288 14 136 0.71
Restaurant v, - - - - 198 274 14 61 818 1,013 14 161 0.66
Restaurantge, - - - - 138 200 1.3 35 400 451 14 49 0.66
MAMS 4297 11,162 1.3 4,287 500 1,329 1.3 498 500 1,332 1.3 500 -
MPQA 4,195 1,264 6.3 94 1,389 400 54 29 1,620 365 6.7 22 -

Table 1: Statistics for the sentiment datasets used in the experiments. The table indicates the number of sentences
in each split (sents.), the number of targets (targs.), the average length of the targets (len.), as well as how many
sentences in each have multiple targets with differing polarity (mult.). IAA scores are reported on a subset of the

data.

(0.67-0.71), confirming the quality of the annota-
tions.

3.2 Auxiliary task data

For the multi-task learning experiments, we use six
auxiliary tasks: negation scope detection using the
Conan Doyle (NEG¢p) (Morante and Daelemans,
2012), both negation detection (NEGgry) and
speculation detection (SPEC) on the SFU y¢g5pec
dataset (Konstantinova et al., 2012), and Universal
Part-of-Speech tagging (UPOS), Dependency Re-
lation prediction (DR) and prediction of full lexical
analysis (LEX) on the Streusle dataset (Schnei-
der and Smith, 2015). We show the train, dev,
test splits, as well as the number of labels, label
entropy and label kurtosis (Martinez Alonso and
Plank, 2017) in Table 3. An example sentence with
auxiliary labels is shown in Appendix B. Although
it may appear that the SFU dataset is an order of
magnitude larger than the Conan Doyle dataset,
in reality, most of the training sentences do not
contain annotations, leaving similar sized data if
these are filtered. Similar to the sentiment data, we
convert the auxiliary tasks to BIO format and treat
them as sequence labelling tasks.

4 Experiments

We experiment with a single task baseline (STL)
and a hierarchical multi-task model with a skip-
connection (MTL), both of which are shown in
Figure 1. For the STL model, we first embed a sen-
tence and then pass the embeddings to a Bidirec-
tional LSTM (Bi-LSTM). These features are then
concatenated to the input embeddings and fed to the
second Bi-LSTM layer, ending with the token-wise
sentiment predictions from the CRF tagger. For

the MTL model, we additionally use the output of
the first Bi-LSTM layer as features for the separate
auxiliary task CRF tagger. As seen from Figure 1,
the STL model and the MTL main task model use
the same the green layers. The MTL additionally
uses the pink layer for the auxiliary task, adding
less than 3.4% trainable parameters’ for all aux-
iliary tasks except LEX, which adds 221.4% due
to the large label set (see Table 3). Furthermore,
at inference time the MTL model is as efficient as
STL, given that it only uses the green layers when
predicting the targeted sentiment, of which this is
empirically shown in Table 20 of Appendix F.

‘ CRF Tagger ‘

EXIIT:

Bi-LSTM ‘ ‘ Auxilary CRF Tagger
! f

Ftrt

‘ Bi-LSTM ‘

Embedding Layer
NN NN NN ..

i

‘ Input Sentence ‘

Figure 1: The overall architecture where the STL
model contains all of the green layers and the MTL
uses the additional |pink auxiliary CRF tagger. The
second Bi-LSTM has a skip connection from the em-
bedding layer which concatenates the word embed-
dings with the output from the first Bi-LSTM.

Embeddings: For the embedding layer, we per-
form experiments using 300 dimensional GloVe

"The STL model had 1,785,967 parameters of which
364,042 were trainable as the embedding layer was frozen.
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original
negated
speculative

this is good, inexpensive sushi.
this is not good, inexpensive sushi.
I’m not sure if this is good, inexpensive sushi.

Table 2: Example of how adding negation and speculation can change the polarity of a target (added tokens are
shown in bold). While in the original, the target “sushi” has a positive polarity, in the negated example it is

negative, and in the speculative example it is neutral.

train dev test #labels label entropy label kurtosis
NEG¢p 842 144 235 5 1.0 -0.8
NEGgpy 13,712 1,713 1,703 5 0.2 0.2
SPEC 13,712 1,713 1,703 5 0.1 0.2
UPOS 2,723 554 535 17 2.5 -0.6
DR 2,723 554 535 49 3.1 1.3
LEX 2,723 554 535 570 39 75.7

Table 3: Statistics for the auxiliary datasets.

embeddings (Pennington et al., 2014), as well as
TL from Transformer ELMo embeddings (Peters
et al., 2018b)®. The GloVe embeddings are pub-
licly available and trained on English Wikipedia
and Gigaword data. For the MPQA dataset we use
the Transformer ELMo from Peters et al. (2018b)°
which was trained on the 1 billion word benchmark
(Chelba et al., 2014). For the MAMS and Restau-
rant datasets we tuned a Transformer ELMo on
27 million (M) sentences from the 2019 Yelp re-
view dataset'?, and for the Laptop dataset on 28M
sentences'! from the Amazon electronics reviews
dataset (McAuley et al., 2015)!2. Training these
models on large amounts of in-domain data gives
superior performance to models trained on more
generic data, e. g¢. BERT (Devlin et al., 2019). For
all experiments we freeze the embedding layer in
order to make the results between GloVe and TL
more comparable with respect to the number of
trainable parameters. For TL, we learn a summed
weighting of all layers'3, as this is more effective

8This is a 6 layer transformer model with a bi-directional
language model objective that contains 56 million parameters
excluding the softmax. In comparison BERT uses a masked
language modelling objective and contains 110 and 340 mil-
lion parameters for the base and large versions (Devlin et al.,
2019).

°Found at https://allennlp.org/elmo under
Transformer ELMo.

Ohttps://www.yelp.com/dataset

"'More specifically there was 9M unique sentences and the
model was trained for 3 epochs.

2For full details of on how the fine tuned Transformer
ELMo models were trained see https://github.com/
apmoorel/language—-model.

BFor this Transformer ELMo it uses the output from the 6

than using the last layer (Peters et al., 2018a). For
more details on the number of parameters used for
each model see Table 19 in Appendix F.
Training: For the STL and the MTL models,
we tune hyperparameters using AllenTune (Dodge
et al., 2019) on the Laptop development dataset.
We then use the best hyperparameters on the Laptop
dataset for all the STL and MTL experiments, in or-
der to reduce hyperparameter search. We follow the
result checklist for hyperparameter searches from
(Dodge et al., 2019) (details found in Tables 17 and
18 of Appendix E along with Figure 2 showing the
expected validation scores from the hyperparam-
eter tuning). For the MTL model, a single epoch
involves training for one epoch on the auxiliary task
and then an epoch on the main task, as previous
work has shown training the lower-level task first
improves overall results (Hashimoto et al., 2017).
In this work, we assume all of the auxiliary training
tasks are conceptually lower than TSA.
Evaluation: For all experiments, we run each
model five times (Reimers and Gurevych, 2017)
and report the mean and standard derivation. We
also take the distribution of the five runs to per-
form significance testing (Reimers and Gurevych,
2018), eliminating the need for Bonferroni correc-
tion. Following Dror et al. (2018), we use the non-
parametric Wilcoxon signed-rank test (Wilcoxon,
1945) for the F; metrics and a more powerful para-
metric Welch’s t-test (Welch, 1947) for the accu-

transformer layers and the output from the non-contextualised
character encoder, thus in total 7 layers are weighted and
summed.
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Laptop MAMS Restaurant MPQA
Aux. GloVe TL GloVe TL GloVe TL GloVe TL
NEGcp 54.65 62.89 62.50 65.17 6506  71.04 18.88 22.25*
(1.37) (1.18) 0.42) (0.35) (2.66) (1.13) (1.17) (2.00)
DR 53.67 6229 6205 6510  66.06  71.45 17.03  22.09*
0.94) (1.32) 0.32) 0.63) (2.63) (1.47) (1.12) 0.70)
MTL LEX 54.85 62.55 62.14* 64.65*  65.89 71.77 18.66 22.74
(0.99) (1.66) (0.83) (0.88) (1.32) (1.88) (1.22) (1.68)
NEGsry  53.73 62.61  62.34* 6500 6582  71.63 17.60  22.30*
(1.93) (1.79) (0.54) (0.48) (1.31) (1.64) 0.57) (1.19)
SPEC 51.65 62.03 62.16  64.50*  65.16 71.51 1670  22.86*
(2.32) (1.14) 0.71) (0.79) (1.50) (1.16) (2.26) (0.98)
UPOS 5417  62.35 62.79 64.88 65.73 70.38 18.70  23.05*
(2.26) 0.77) 0.37) (0.46) (1.46) (1.63) 0.25) (0.88)
STL 5437 6370 6320 6570  65.60  70.68 18.11 24.66
(2.56) (1.14) (0.65) (0.55) (1.06) (1.53) (2.83) (1.07)

Table 4: The F-i results for the test split, where the values represent the mean (standard deviation) of five runs
with a different random seed. The bold values represent the best performing model for that dataset and embedding.
The * represent the models that perform statistically significantly worse than the STL model for that dataset and

embedding at a 95% confidence level.

racy metric.

4.1 Results

We report the F; score for the target extraction
(F1-a), macro F7 (F1-s) and accuracy score (acc-s)
for the sentiment classification for all targets that
have been correctly identified by the model, and
finally the F; score for the full targeted task (£-i),
following He et al. (2019). Unlike He et al. (2019),
we do not use any of the samples that contain the
conflict label on Laptop or Restaurant. The test
results for the main F-i metric are reported in
Table 4, and the other metrics for the test split are
reported in Tables 9 and 10 of Appendix C.

The MTL models outperform STL on four of the
eight experiments (see Table 4), although the STL
TL model is significantly better than the majority
of MTL models on MPQA. Of the MTL models,
NEG¢p + GloVe performs best on MPQA (18.88),
DR + GloVe is best on Restaurant (66.06), and LEX
is the best model on Laptop (54.85) with GloVe
and Restaurant (71.77) with TL. The TL models
consistently outperform the GloVe models — by an
average of 5.4 percentage points (pp) across all
experiments — and give the best performance on all
datasets.

The results suggest that transfer learning reduces
the beneficial effects of MTL. At the same time,
the results suggest that MTL does not hurt the STL
models, as no STL model is significantly better
than all of the MTL models across the datasets and

embeddings for the F1-i metric. '*

5 Challenge Dataset Results

In order to isolate the effects of negation and spec-
ulation on the results, we test all models trained
on the original Laptop and Restaurant datasets on
the Laptopy.y, Restauranty.y, Laptopspe., and
Restaurantg,,. test splits. Tables 5 and 6 show the
results for negation and speculation, respectively.
The results for the dev split and the F;-s of the test
split are shown in Appendix D.

Firstly, all models perform comparatively worse
on the challenge datasets, dropping an average
of 24 and 25 pp on Fi-i on the negation and
speculation data, respectively. Nearly all of this
drop comes from poorer classification (acc-s, F1-
s), while target extraction (F1-a) is relatively sta-
ble. This demonstrates the importance of resolving
negation and speculation for TSA and the useful-
ness of the annotated data to determine these ef-
fects.

On Laptop v, and Restaurant ., incorporating
negation auxiliary tasks gives an average improve-
ment of 3.8 pp on the F;-i metric when using GloVe
embeddings. More specifically, MTL with nega-
tion improves the sentiment classification scores,
but does not help extraction. This makes sense con-
ceptually, as negation has little effect on whether
or not a word is part of a sentiment target. Instead,

“These findings also generalise to the results on the devel-

opment splits, shown in Tables 11 and 12 within Appendix
C.
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NEG¢cp DR LEX NEGgpry SPEC UPOS STL
. GloVe 42.80 38.54* 38.72* 45.26 41.23* 38.92* 38.32*
sentiment (2.48) (0.98) (3.00) (1.45) (2.90) (1.74) (1.73)
- TL 48.49 45.90 45.93 47.04 45.71 46.29 46.50
3 (2.32) (3.54) 2.13) (2.93) (2.19) (2.03) (3.30)
g ) GloVe 75.36* 76.05* 78.68 75.04* 76.14 77.98 76.52*
= extraction (0.91) (1.20) (0.97) (1.92) (2.06) (1.41) (1.24)
— TL 82.39 82.95 83.47 83.25 82.24* 82.58 82.10
(1.34) (1.36) (1.26) (1.80) (1.39) (1.58) (L11)
GloVe 32.28 29.30* 30.47* 33.96 31.36* 30.36* 29.33*
targeted (2.23) (0.54) (2.45) (1.30) (1.78) (1.56) (1.47)
TL 39.95 38.08 38.35 39.18 37.59 38.23 38.14
(2.02) (3.13) (2.01) (2.88) (1.99) (1.89) (2.23)
. GloVe 53.41 49.78*  47.69* 56.01 48.86* 50.58* 49.86*
sentiment (4.28) (2.10) (1.19) (1.07) (3.94) (2.18) 1.77)
5 TL 60.69 62.61 60.80 60.45 61.70 60.06 60.66
Z (1.91) @2.11) (3.20) (2.04) (1.42) (2.13) (2.24)
=
g ) GloVe 80.97 82.22 82.15 80.74 81.53 81.92 80.97
I  extraction (1.47) (1.29) (0.74) (1.58) (0.32) (0.91) (1.14)
3 TL 83.04 82.94* 84.10 83.94 83.48 82.33* 83.50
R~ (1.26) 0.97) (0.86) (1.67) (1.59) (1.37) (1.16)
GloVe 43.28 40.95* 39.19* 45.22 39.85* 41.43* 40.38*
targeted (3.95) (2.31) (1.23) (0.80) (3.35) (1.87) (1.82)
TL 50.40 51.92 51.15 50.75 51.49 49.45 50.68
(2.03) (1.64) (3.04) (2.10) (0.86) .01 (2.52)

Table 5: Sentiment (acc-s), extraction (F-a) and full targeted (F;-i) results for Laptopy¢, and Restauranty. test
split, where the values represent the mean (standard deviation) of five runs with a different random seeds. The
bold values represent the best model, while highlighted models are those that perform better than the single task
baseline. The * represents the models that are significantly worse (p < 0.05) than the best performing model on

the respective dataset, metric, and embedding.

jointly learning dependency relations (DR) and full
lexical analysis (LEX) improve extraction results.
Furthermore, when using TL instead of GloVe em-
beddings, the best MTL model (NEGgryr) does
marginally beat the STL TL equivalent on average,
indicating that multi-task learning is still able to
contribute something to transfer learning.

On Laptopsye. and Restaurantsy,.. MTL mod-
els improve results when using GloVe embeddings,
with the additional speculation (SPEC) and depen-
dency relation (DR) data improving the F;-i met-
ric by 0.5 pp and 0.49 pp respectively on average.
However, with TL, MTL only leads to benefits
on the Restaurant dataset. Unlike the negation
data results, the speculation results appear to be
helped more by syntactic auxiliary tasks like DR
than semantic tasks like NEGop and to some ex-
tent NEGgry.

The best MTL GloVe models on the original
datasets (LEX 'S and DR, respectively) also outper-

5The development Fi-i result for LEX on the Laptop

form the STL GloVe models on the challenge data,
indicating that MTL leads to greater robustness.
When comparing the STL model using GloVe and
TL on average the model improves by 9.55 pp on
the negation dataset compared to 3.65 pp for the
speculation suggesting that transfer learning is less
effective for speculation.

6 Conclusion

In this paper, we have compared the effects of
MTL using various auxiliary tasks for TSA and
have created a negation and speculation annotated
challenge dataset'® for TSA in order to isolate the
effects of MTL. We show that TSA methods are
drastically affected by negation and speculation ef-
fects in the data. These effects can be similarly
reduced by either incorporating auxiliary task in-
formation into the model through MTL or through
transfer learning. Additionally, MTL of negation
dataset is worse than STL by 0.05 but for all other F; -i Laptop

results LEX is better than STL.
Ynttps://bit.1ly/312kwpP
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NEG¢cp DR LEX NEGgpry SPEC UPOS STL
. GloVe 34.32 35.67 36.75 35.98 36.74 35.57 34.67
sentiment (1.86) (1.00) (1.91) (2.05) (1.64) (1.31) (1.40)
o TL 35.42 34.76 35.06 34.08* 35.03 35.01 35.97
g (3.54) (1.63) (1.97) (0.40) (2.36) (1.04) (1.45)
)
& ) GloVe 7477 74.01* 77.80 75.99 73.39* 76.80 75.01
§ extraction (1.54) (1.93) (1.34) (2.48) (1.74) (0.99) (1.93)
— TL 80.11* 80.77 81.47* 83.14 81.49 81.07 79.84*
(1.40) (1.23) (0.50) (2.22) (1.24) (1.38) (0.58)
GloVe 25.67* 26.39* 28.59 27.33 26.95 27.31 26.01*
targeted (1.62) (0.60) (1.42) (1.70) (1.07) (0.82) (1.26)
TL 28.36 28.09 28.56 28.33 28.54 28.37 28.72
2.81) (1.68) (1.60) (0.52) (1.83) 0.77) (1.20)
. GloVe 62.38 64.01 63.44 63.33 64.30 63.15 63.94
sentiment (3.75) (2.72) (2.21) (1.87) (3.14) (3.38) (1.84)
é TL 67.23 68.98 69.70 67.62 66.93 68.13 68.17
o (1.08) (1.17) (2.51) (1.58) (1.79) (1.25) (2.44)
=
g ) GloVe 75.53 76.40 75.75 75.66 75.29 75.87 75.58
§ extraction (1.03) (1.90) (1.18) (1.65) 0.77) 0.97) (1.48)
5 TL 77.92 77.84 79.10 78.76 78.20 77.15 77.61
~ (1.36) (0.84) (1.48) (1.27) (1.80) (1.92) (1.87)
GloVe 47.14 48.94 48.07 47.90 48.41 47.94 48.35
targeted (3.24) (3.06) 2.22) (1.25) (2.48) (.14) 232)
TL 52.39 53.69 55.15 53.25 52.34 52.55 52.94
(1.18) (0.69) (2.70) (1.10) (1.85) (1.22) (2.99)

Table 6: Sentiment (acc-s), extraction (F1-a) and full targeted (F;-i) results for Laptopsy.. and Restaurantgy..
test split, where the values represent the mean (standard deviation) of five runs with a different random seeds. The
bold values represent the best model, while highlighted models are those that perform better than the single task
baseline. The * represents the models that are significantly worse (p < 0.05) than the best performing model on

the respective dataset, metric, and embedding.

can lead to small improvements when combined
with transfer learning. Returning to the two orig-
inal research questions, we can conclude that in
general 1) MTL using negation (speculation) as an
auxiliary task does make TSA models more robust
to negated (speculative) samples and 2) transfer
learning seems to incorporate much of the same
knowledge. Additionally, incorporating syntactic
information as an auxiliary task within MTL cre-
ates models that are more robust to both negation
and speculation.

Neither MTL nor TL are currently guarantees for
improved performance'’. Additionally, the results
from the challenge datasets indicate that different
auxiliary tasks improve the performance of differ-
ent subtasks of TSA. This may suggest that the
target extraction and sentiment classification tasks
should not be treated as a collapsed labelling task,
as the sentiment and extraction tasks are too dissim-
ilar (Hu et al., 2019). Future work should consider

Compare the performance of LEX using GloVe (28.59)
to when it uses TL (28.56) in Table 6 for the Laptop dataset.

using pipeline or joint approaches, where each sub-
task can be paired with the most beneficial auxiliary
tasks. This decoupling could also allow MTL and
transfer learning to compliment each other more.

Finally, in order to improve reproducibility and
to encourage further work, we release the code!®,
dataset, and trained models associated with this
paper, hyperparameter search details with compute
infrastructure (Appendix E), number of parameters
and runtime details (Appendix F), and further de-
tailed dev and test results (appendices C and D),
in line with the result checklist from Dodge et al.
(2019).
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A Class Distribution of the Sentiment
Datasets
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Train Dev Test

pos neu neg both pos neu neg both pos neu neg both

Laptop 19.9 432 369 - 18.0 40.6 414 - 26.0 535 205 -
Laptopneg - - - - 17.1 354 475 - 26.7 233 50.0 -
Laptopspec - - - - 50.7 162 33.1 - 382 205 414 -
Restaurant 158 60.0 24.2 - 123 652 225 - 11.5 66.6 21.9 -
Restaurantyy g - - - - 16.4 325 S5l1.1 - 150 322 528 -
Restaurantgye.. - - - - 30,0 29.0 41.0 - 16.9 39.7 435 -
MAMS 45.1 302 247 - 455 303 243 - 455 299 246 -
MPQA 133 439 39.1 37 170 425 370 35 192 332 414 63

Table 7: Sentiment class distribution statistics as a percentage of the number of targets (samples), for the sentiment
datasets used in the experiments. pos, neu, neg, and both represent the sentiment classes positive, neutral, negative,
and both respectively.

2851



B Examples of Auxiliary Tasks
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you might

NEGC D B scope ISCOPe
NEGsru  Bscope Lscope

SPEC
UPOS
DR
LEX

B scope B cue
PRON  AUX
nsubj aux

Opron Ouavux

not

B cue

B cue

B scope
PART
advmod

Oapv

like
B scope
B scope

Iscope
VERB
root

BV—v.emotion

the
Iscope
Iscope

Iscope
DET
det

Oper

service
Iscope
Iscope
Iscope
NOUN

obj
BN_n.acT

Table 8: A toy example sentence with the labels from each auxiliary task
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C Additional Main Result Tables
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NEGop DR  LEX NEGgey SPEC  UPOS  STL
GloVe 71.90 70.66 70.36 70.30 68.11~* 69.60* 70.80
acc-s (1.32) (1.55) (2.24) (1.86) (2.19) (1.98) (2.02)
TL 75.30 74.75 74.56 74.36 74.47* 74.70* 76.85
o 0.54) (1.14) (1.49) (1.74) 0.82) (1.02) (1.96)
S
§ Fl GloVe 65.00 63.19 63.07 62.60* 59.83* 61.51 61.90
3 -S (1.36) 23 351) 274 (2.46) (2.66) (3.32)
TL 66.92 67.76 67.26 66.00 66.92* 66.63* 69.91
2.41) (1.75) 2.27) (3.03) 121 (1.61) 2.72)
. GloVe 76.00* 75.98* 77.99 76.43 75.81 77.81 76.76
extraction (0.99) (1.17) (1.14) (1.57) (1.57) (1.10) (1.69)
TL 83.51 83.32 83.88 84.21 83.29 83.48 82.90
(1.09) 0.94) (0.88) (1.81) (1.15) (1.30) 072)
GloVe 54.65 53.67 54.85 53.73 51.65* 54.17 54.37
targeted 137 0.94) (0.99) (1.93) 232) 2.26) (2.56)
TL 62.89 62.29 62.55 62.61 62.03 62.35 63.70
(118) (132) (1.66) (1.79) (1.14) 0.77) (1.14)
GloVe 78.18 74.37 75.94 77.38 72.82* 73.83* 73.01*
ace-s @72 (3.47) (3.02) “91) (3.88) (2.30) (4D
TL 71.84 72.01 73.08 70.96 72.79 72.61 70.47
Eﬂy (3.46) 3.01) @.01) 2.03) (3.13) (3.84) asn
% Fl GloVe 42.03 39.96 40.58 41.16 39.19 39.90* 39.00
=S (1.50) (1.66) (1.28) 2.32) (1.94) (1.06) (1.86)
TL 39.92 40.27 41.13 39.17 39.84 39.90 39.25
(1.15) (0.80) (.05 079 (156) (1.66) (0.68)
. GloVe 24.17 22.93* 24.58 22.84* 22.90* 25.34 24.77
extraction (1.44) (1.57) (1.36) (1.58) (2.49) (0.46) (3.55)
TL 30.98* 30.71* 31.19* 31.41% 3141~ 31.88* 34.99
(2.40) (1.10) (2.69) (1.16) 0.51) (2.62) (1.10)
d GloVe 18.88 17.03* 18.66 17.60* 16.70* 18.70 18.11
targete 117 (1.12) (122) 0.57) (2.26) 0.25) (2.83)
TL 22.25* 22.09* 22.74 22.30* 22.86* 23.05* 24.66
(2.00) 0.70) (1.68) (1.19) (0.98) (0.88) (1.07)

Table 9: acc-s, F1-s, extraction (F1-a) and full targeted (F;-i) results for Laptop and MPQA test split, where
the values represent the mean (standard deviation) of five runs with a different random seed. The bold values
represent the best model, while highlighted models are those that perform better than the single task baseline. The
* represent the models that are statistically significantly worse than the best performing model on the respective

dataset, metric and TL at a 95% confidence level.
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NEG¢cp DR LEX NEGgsriy SPEC UPOS STL
GloVe 81.72 81.42 81.24 81.10 80.90 81.58 81.70
acc-s 12 032) (0.44) (0.46) (0.70) (0.96) (0.79)
TL 84.59 84.81 83.99* 83.73 84.28 83.90* 84.67
% (0.50) 0.84) 0.68) (0.39) 051) (0.56)
Z 0.78)
%ﬂ GloVe 81.05 80.71 80.53 80.39 80.22 80.81 80.94
F1-s w1s) 0.43) (0.60) (0.69) (0.80) (1.0 (0.88)
TL 84.24 84.39 83.59* 83.30 83.89 83.44* 84.24
©051) 0:50) 0.87) 0.67) 0.32) (0.60) (0.58)
) GloVe 76.49 76.21* 76.49 76.87 76.83 76.97 77.36
extraction (0.99) (0.39) (1.06) 0.64) (0.48) 0.54) (0.19)
TL 77.04 76.76* 76.98 77.64 76.54* 77.33 77.59
0.35) 0.13) 0.84) 036) (0.79) 061) (0.35)
GloVe 62.50 62.05* 62.14* 62.34* 62.16 62.79 63.20
targeted (0.42) 032) (0.83) 0.54) ©.71) 037) (0.65)
TL 65.17 65.10 64.65*  65.00* 64.50* 64.88 65.70
(0.35) 0.63) (0.88) (0.48) (0.79) (0.46) (0.55)
GloVe 83.02 83.23 83.26 83.80 83.01 83.36 83.65
acc-s (1.82) (1.69) (0.89) (0.78) (1.16) (1.09) (0.48)
= TL 87.40 87.63 87.37 87.26 87.36 87.00* 87.32
g 0.67) 076) 0.90) (0.96) 048) (0.56) (0.66)
=
g GloVe 66.75 67.79 67.59 67.75 67.35 67.13 68.00
3 F1-s (3.75) (3.00) (1.39) (1.92) (3.02) @31 (1.61)
TL 72.27 72.96 73.73 72.12 73.90 71.61 73.47
(1.14) (1.79) 260 (2.30) 252 (1.13) (1.10)
) GloVe 78.33 79.34 79.13 78.53 78.48 78.84 78.42
extraction (1.55) (1.60) 0.93) (0.96) ©.81) (0.78) ©0.85)
TL 81.27 81.53 82.13 82.08 81.85 80.89* 80.94
(0.90) 1.01) (135) (1.09) (122) .37 (1.18)
d GloVe 65.06 66.06 65.89 65.82 65.16 65.73 65.60
targete (2.66) 2.63) (132) 131 (1.50) (1.46) (1.06)
TL 71.04 71.45 71.77 71.63 71.51 70.38 70.68
(1.13) (1.47) (1.88) (1.64) (1.16) (1.63) (1.53)

Table 10: acc-s, F1-s, extraction (F1-a) and full targeted (F-i) results for MAMS and Restaurant test split, where
the values represent the mean (standard deviation) of five runs with a different random seed. The bold values
represent the best model, while highlighted models are those that perform better than the single task baseline. The
* represent the models that are statistically significantly worse than the best performing model on the respective
dataset, metric and TL at a 95% confidence level.
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NEG¢p DR LEX  NEGgry SPEC UPOS STL
GloVe 7747 77.53 76.52 78.34 77.32 76.67 77.22

ace-s (1.43) 0.69) (138) 2.23) (1.06) (L77) (1.05)
TL 81.22 79.63* 80.54 80.05* 80.87 79.31* 81.89
& (1.42) (1.56) 2.27) (1.28) (1.64) (1.12) (1.07)
§ Fl GloVe 71.55 70.75 70.61 72.04 70.70 67.82 67.27
—~ =S 0.81) .75) (2.46) (3.85) (1.83) (1.20) (2.80)
TL 74.53 74.84 74.89 73.70 75.22 71.90* 75.33
(3.09) (1.87) (3.32) (1.98) (2.03) 77 (1.61)
. GloVe 74.87 73.55 75.70 74.81 74.75 74.15* 75.06
extraction (1.15) (2.09) ©096) (1.18) 0.57) (1.84) (1.06)
TL 80.82 80.89 80.39 81.86 80.05* 81.37 81.23
(1.35) 0.83) (1.02) (1.24) (0.59) 0.99) 0.82)
GloVe 57.99 57.02 57.92 58.62 57.80 56.82 57.97
targeted ©.69) (1.53) (1.08) .19 (1.10) 0.71) (1.24)
TL 65.62* 64.42 64.73 65.52* 64.72* 64.55* 66.51
(0.76) (1.64) (1.30) 0.52) ©.97) (153) (0.43)
GloVe 87.75 88.65 87.64 89.11 86.85 88.16 85.29*
ace-s (3.15) (4.20) G371 (3.29) (1.46) (3.20) (0.89)
TL 88.63 90.08 87.23 85.62 88.71 88.75 88.01
éﬂy (1.83) (2.94) (1.80) (414 (2.89) (156) (136)
% Fl GloVe 54.18 59.87 51.51 56.39 48.09 52.32 45.92
-s (8.15) (14.46) (8.83) (10.28) (4.83) (9.96) (3.06)
TL 52.83* 55.80 59.03 54.48 56.55 53.82 55.74
(3.40) (528) (5.99) 9.33) (3.8) a.01) (6.52)
. GloVe 20.68 21.00 20.78 20.48* 19.54* 21.73 20.11
extraction 0.65) (1.73) (152) 0.85) @.18) ©.74) (238)
TL 32.33 30.39* 31.75 32.18 30.65* 31.00* 33.38
3.1 (1.09) (1.78) (129 (1.52) (1.92) ©.67)
d GloVe 18.14 18.57 18.18 18.23 16.94* 19.16 17.16
targete 0.58) (1.13) (1.10) (0.55) (1.66) (0.89) 2.07)
TL 28.60 27.35* 27.67* 27.53* 27.15* 27.49* 29.39
2.82) ©.72) (1.29) (130) 0.92) (138) (0.95)

Table 11: acc-s, F;-s, extraction (F;-a) and full targeted (F;-i) results for Laptop and MPQA development split,
where the values represent the mean (standard deviation) of five runs with a different random seed. The bold values
represent the best model, while highlighted models are those that perform better than the single task baseline. The
* represent the models that are statistically significantly worse than the best performing model on the respective
dataset, metric and TL at a 95% confidence level.
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NEGcp DR LEX NEGgsry SPEC UPOS STL
GloVe 80.73* 80.98 80.89*  80.68*  80.87* 81.36 82.14
ace-S 0.22) (1.17) 0.45) (0.48) (0.53) 0.82) 0.77)
TL 84.37 83.99* 84.73 84.18 84.17 83.79* 84.43
n 0.22) (0.25) 034) (0.49) (0.53) (0.40) 0.41)
=
< GloVe 80.20* 80.48* 80.38* 80.14*  80.38* 80.76 81.67
= Fl-s 0.24) (1.15) (0.50) (0.57) (0.56) (0.95) 0.77)
TL 84.14*  83.72* 84.46 83.96* 83.93 83.54* 84.12
(0.24) 0.21) 035) (0.47) (0.47) (0.42) (0.45)
. GloVe 78.93 79.11 79.24 79.00 78.86 78.68 79.15
extraction (0.66) (0.52) 062) (0.47) (0.67) (0.35) (0.39)
TL 77.81 77.86 77.62* 78.32 77.59* 78.54 78.35
(0.48) (0.59) 0.34) 0.31) 0.21) 038) (0.40)
GloVe 63.72* 64.06© 64.100 63.74* 63.76* 64.01* 65.01
targeted 0.63) (0.66) (0.48) (0.28) 0.21) 0.62) (0.44)
TL 65.65 65.39*  65.77* 65.93 65.31* 65.81 66.15
(0.39) (0.47) (0.44) (0.20) (0.56) (0.41) (0.54)
GloVe 78.42* 78.78 79.58 78.75 78.31* 79.14 78.76
ace-s 0.78) 0.67) (0.89) 0.52) (0.78) 041 0.37)
= TL 81.90 81.90 81.53 81.89 81.02 80.47* 81.77
s 0.69) (0.69) (0.86) (0.84) (0.85) (1.10) (0.46)
=
% Fl GloVe 62.89 64.01 65.37 62.49*  62.54* 63.00* 63.15*
~ -S (2.84) (2.56) (147) (0.86) (2.28) (1.64) (1.94)
TL 67.98 69.26 69.09 68.18 67.54 67.14* 69.37
(3.46) 1.07) 1.72) (1.90) (3.88) (1.05) 0.97)
. GloVe 78.22* 79.20 78.85 78.38* 78.21 79.62 79.18
extraction 0.78) (1.07) (1.08) 0.73) (1.37) (0.48) (0.76)
TL 81.69 81.84 82.56 82.25 82.07 82.48 82.33
0.71) (0.88) 0.79) 0.22) (0.68) 0.61) 0.52)
d GloVe 61.34* 62.39 62.75 61.73*  61.25* 63.02 62.36
targete 0.73) ©95) (1.26) (0.77) (1.26) 042) (0.60)
TL 66.90 67.03 67.31 67.36 66.49 66.38* 67.32
(0.40) (1.06) 0.32) (0.66) (0.52) 1.31) (0.55)

Table 12: acc-s, F1-s, extraction (F1-a) and full targeted (F;-i) results for MAMS and Restaurant development
split, where the values represent the mean (standard deviation) of five runs with a different random seed. The
bold values represent the best model, while highlighted models are those that perform better than the single task
baseline. The * represent the models that are statistically significantly worse than the best performing model on

the respective dataset, metric and embedding at a 95% confidence level.
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NEG¢p DR LEX  NEGgry SPEC UPOS STL

Laptopeg

GloVe 40.88 38.11* 38.89 42.33 39.46* 38.11* 37.13*

F1-s 2.17) (1.71) (3.32) (L19) (2.98) (2.02) 2.78)
TL 44 81 45.05 44.58 43.53 43.83 44.77 45.08

(2.40) (3.47) (2.29) (2.74) (1.90) (1.54) (2.68)

Restaurant y ¢4

GloVe 46.58 44.16*  42.74* 47.65 44.00 44,78 44.14*

F1-s (3.24) (2.18) (1.09) (135) (3.99) (1.85) (1.89)
TL 52.85* 54.41 54.08 52.54* 55.63 52.16* 53.59*

(1.69) (1.51) (3.87) (1.99) 2.01) (1.95)

(1.65)

Table 13: F-s results for the negation test split, where the values represent the mean (standard deviation) of five
runs with a different random seed. The bold values represent the best model, while highlighted models are those
that perform better than the single task baseline. The * represent the models that are statistically significantly worse
than the best performing model on the respective dataset, metric and embedding at a 95% confidence level.

NEGc¢p DR LEX  NEGgry SPEC UPOS STL

Laptopspec

| GloVe 32.74 33.14 35.24 33.62 33.83 33.21 31.99*

Fl-s (2.35) (0.98) (2.16) (2.59) (1.62) (1.00) (1.92)
TL 33.02 33.33 33.14 31.72* 33.25 32.71 34.08

@07 (1.56) .10) (0.88) .14) (1.38) (1.40)

Restaurantgy..

GloVe 55.27 57.77 56.27* 55.59* 57.35 56.55 57.32

Fl-s (3.82) 291) (2.36) (1.09) 375 (.14) 2.30)
TL 58.84* 60.95 62.36 58.44* 60.52 59.23 60.74

(1.58) 09%) 2.56) (2.24) (3.25) (1.81) 2.32)

Table 14: F;-s results for the speculation test split, where the values represent the mean (standard deviation) of
five runs with a different random seed. The bold values represent the best model, while highlighted models are
those that perform better than the single task baseline. The * represent the models that are statistically significantly
worse than the best performing model on the respective dataset, metric and embedding at a 95% confidence level.
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NEGop DR LEX NEGspy SPEC  UPOS  STL
GloVe 37.07 32.99* 33.98 36.64 34.83 32.09* 29.45*
ace-s (3.78) (0.96) (2.60) (.17 (1.09) (3.41) (1.46)
= TL 41.84* 39.38* 40.85* 45.40 43.00* 38.77* 41.15*
2 054) (2.69) (2.50) (170, 57 2.64) (3.28)
o
% F1 GloVe 34.02 31.48* 33.06 34.61 33.66 28.92* 24 .92*
S -S 2.05) (2.66) @20 (334 (1.13) @11 (133)
TL 38.26* 38.05 39.42 42.32 41.39 36.73 38.92
(1.67) (3.06) 402 (3.45) (197 (3.67) (3.45)
) GloVe 72.49 74.40 73.91 71.25* 73.83 73.33 74.60
extraction (1.45) (1.64) (0.99) (1.20) (0.93) (1.90) (1.51)
TL 80.94 81.31 81.21 81.94 79.00* 81.92 82.75
(1.64) (1.29) (1.36) (1.46) 0.87) (1.36) (1.80)
d GloVe 26.87 24.56 25.12 26.14 25.71 23.54 21.98*
targete .75 .21 (1.99) 2.55) 0.68) (2.66) (1.26)
TL 33.86* 32.04* 33.14* 37.20 33.98* 31.78* 34.01*
©.71) (2.54) (1.56) (1:59) (1.47) (2.46) (2.29)
GloVe 46.02 43.13*  41.06* 49.02 41.65* 44.02*  42.69*
acc-s “388) (3.24) (3:36) (131) (*06) (3.09) @0
(=)
> TL 53.79 54.40 52.25 54.42 53.16 54.31 52.25
‘g (2.56) (3.63) (3.63) (.18) (1.92) (2.49) @50
E Fl GloVe 40.03 38.56* 37.54 41.05 37.01 38.03 38.45
Z -S 5:30) 3.10) (3.69) (245 (4.16) (3.40) (2.28)
R TL 48.03 49.13 48.31 49.18 48.80 49.42 48.06
(3.48) 2.62) 371 (3.58) 2.03) (2.76) 212)
) GloVe 81.74 82.37 82.36 80.61% 81.34 82.38 81.32
extraction ©.77) 0.64) (0.80) 072) (1.48) (1.00) 0.37)
TL 84.08 82.87* 84.32 83.71 83.45 84.02 84.84
©.72) 0.66) (0.68) 0.55) (1.09) 1.12) (0.99)
q GloVe 37.61 35.54* 33.82* 39.51 33.88* 36.27* 34.71*
targete (3.86) 2.81) 2.78) (1.03) (3.38) (2.64) (1.58)
TL 45.23 45.07 44.04 45.57 44 38 45.62 44 .31
219 (2.90) @1 291 (2.05) (1.88) .74

Table 15: acc-s, F-s, extraction (F;-a) and full targeted (F;-i) results for the negation development split, where
the values represent the mean (standard deviation) of five runs with a different random seed. The bold values
represent the best model, while highlighted models are those that perform better than the single task baseline. The
* represent the models that are statistically significantly worse than the best performing model on the respective
dataset, metric and embedding at a 95% confidence level.
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NEGcp DR LEX NEGgry SPEC  UPOS  STL
GloVe 33.56* 3500 31.70~ 34.67 3724  31.59* 32.57*

acc-s 239 298 (1.64) 221) (2.48) .57 (1.94)
3 TL 34.73 35.02 35.16 32.79 34.24 34.27 34.28
& (194) (3:50) (248 (1.43) (1.95) (1.56) (1.19)
a.
% Fl GloVe 32.66 33.99 30.72* 33.20 34.99 29.88* 30.75
S =S 2.33) (.14) (1.33) (2.36) @91 (150 (2.02)
TL 33.60 34.14 33.83 30.92 33.36 32.45 32.47
(2.30) (3.47) 2.83) (1.48) (1.98) 1.32) (1.67)
) GloVe 71.10 69.42 72.61 70.46 69.33* 70.58* 73.04
extraction (1.97) (2.25) (0.95) (1.41) (1.58) (2.46) (2.48)
TL 80.50 80.25 79.91* 80.83 79.35* 80.95 82.00
(0.95) (0.90) 0.61) 0.61) (134) 0.43) (132)
GloVe 23.88 24.26 23.02* 24.44* 25.82 22.32* 23.80
targeted (2.05) (1.81) (1.35) (1.81) (1.82) a.73) (.77
TL 27.96 28.11 28.08 26.51 27.16 27.74 28.12
(1.60) (2.92) (1.81) (134) (1.39) 1.31) (1.32)
GloVe 35.54* 40.09 37.98 37.18 37.97 38.32 37.23
. ace-s (0.90) (2.95) 2.38) @14 2.28) (1.31) (1.65)
% TL 38.80 38.50 40.72 40.84 39.69 39.49 40.55
g 2.17) (1.19) w1s) 230 (1.69) (0.89) (1.16)
5 GloVe 31.46* 35.99 34.37 32.53 34.02 32.92 33.18
2 Fl-s (1.47) (3.98) 2.9 (1.82) 203 (1.74) (1.15)
% . .
~ TL 33.00* 33.28 35.92 35.26 34.47 35.08 35.40
(3.34) (1.65) (184) (337 (3.78) (1.78) (1.59)
) GloVe 78.26* 80.38 80.33 79.75*  79.99* 81.98 80.59
extraction (0.92) (1.86) (1.13) (1.05) (1.20) (LO4) (1.29)
TL 8391 83.93 84.60 84.77 83.40 85.03 84.85
(0.67) (1.03) (0.63) 0.29) (1.58) (147 (0.83)
GloVe 27.82* 32.25 30.51* 29.64* 30.37 31.43 30.02
targeted ©.79) 2.79) (2.06) (1.60) .90 (1.42) 174
TL 32.56 32.31* 34.45 34.62 33.08 33.59 34.41
(1.83) (1.13) (1.00) (196) 1.01) (1.20) (1.23)

Table 16: acc-s, Fi-s, extraction (Fi-a) and full targeted (F-i) results for the speculation development split,
where the values represent the mean (standard deviation) of five runs with a different random seed. The bold values
represent the best model, while highlighted models are those that perform better than the single task baseline. The
* represent the models that are statistically significantly worse than the best performing model on the respective
dataset, metric and embedding at a 95% confidence level.
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E Hyperparameter Search Space
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GPU Infrastructure 1 GeForce GTX 1060 6GB GPU

CPU Infrastructure AMD Ryzen 5 1600 CPU
Number of search trials 30
Search strategy uniform sampling
Best validation span F1/F1-i 0.6156
Training duration 14232 sec

Model implementation https://bit.ly/31Az6yf

Hyperparameter Search space Best assignment
embedding GloVe 300D GloVe 300D
embedding trainable False False
number of epochs 150 150
patience 10 10
metric early stopping Span F1/F1-i Span F1/F1-i
monitored
batch size 32 32
dropout uniform-float[0, 0.5] 0.5
1%t layer LSTM hidden uniform-integer[30, 110] 60
dimension
main task LSTM hidden 50 50
dimension
skip connection between True True
embedding and main task layer
learning rate optimiser Adam Adam
learning rate loguniform-float|1e-4, 1e-2] 1.5e-3
gradient norm 5.0 5.0
regularisation type L2 L2
regularisation value le-4 le-4

Table 17: STL search space and best assignment using the Laptop dataset.
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https://bit.ly/3lAz6yf

GPU Infrastructure

1 GeForce GTX 1060 6GB GPU

CPU Infrastructure AMD Ryzen 5 1600 CPU
Number of search trials 30
Search strategy uniform sampling
Best validation span F1/F1-i 0.6017
Training duration 18473 sec

Model implementation

https://bit.ly/31Az6yf

Hyperparameter Search space Best assignment
embedding GloVe 300D GloVe 300D
embedding trainable False False
number of epochs 150 150
patience 10 10
metric early stopping Span F1/F1-i Span F1/F1-i
monitored
batch size 32 32
dropout uniform-float[0, 0.5] 0.27
Shared/1* layer LSTM hidden uniform-integer[30, 110] 65
dimension
main task LSTM hidden 50 50
dimension
skip connection between True True
embedding and main task layer
learning rate optimiser Adam Adam
learning rate loguniform-float[1e-4, 1e-2] 1.9e-3
gradient norm 5.0 5.0
regularisation type L2 L2
regularisation value le-4 le-4

Table 18: MTL search space and best assignment using the Laptop dataset.
detection using the Conan Doyle (NEG<p) dataset.
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The auxiliary task was negation


https://bit.ly/3lAz6yf
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Figure 2: Hyperparameter budget against expected span F1/F;-i performance for the STL and MTL models. The
hyperparameter search space is stated within Tables 17 and 18 for the STL and MTL models respectively. The
shaded areas represent the expected performance 11 standard deviation. Note the shaded area does not go beyond
the maximum observed validation score as recommended Dodge et al. (2019).
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F Additional Reproducibility Statistics
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Number of Parameters
Including Auxiliary Task
Yes No
Trainable All Trainable All
STL 364,042 1,785,967 364,042 1,785,967
NEGep 385,851 2,403,876 385,122 2,403,147
NEGgsry | 385,851 7,066,176 385,122 7,065,447

Model

Embedding

o
E SPEC 385,851 7,066,176 | 385,122 | 7,065,447
© UPOS 388,413 2,952,738 385,122 | 2,949,447
DR 397,213 | 2,961,538 385,122 | 2,949,447
LEX 1,191,204 | 3,755,529 | 385,122 | 2,949,447
STL 1,001,170 | 56,870,931 | 1,001,170 | 56,870,931
NEG¢p | 1,051,939 | 56,921,700 | 1,051,210 | 56,920,971
NEGgry | 1,051,939 | 56,921,700 | 1,051,210 | 56,920,971
ﬁ SPEC 1,051,939 | 56,921,700 | 1,051,210 | 56,920,971

UPOS 1,054,501 | 56,924,262 | 1,051,210 | 56,920,971
DR 1,063,301 | 56,933,062 | 1,051,210 | 56,920,971
LEX 1,857,292 | 57,727,053 | 1,051,210 | 56,920,971

Table 19: Number of parameters for each model using different embeddings ordered by number of trainable pa-
rameters. The number of parameters is different for the MTL models depending on whether the parameters from
the auxiliary task are included or not. The auxiliary task specific layer is shown as the pink layer in Figure 1.
The number of parameters including and not including the auxiliary task is stated as the MTL models at infer-
ence time would not use the auxiliary task parameters. There are many more trainable parameters for the MTL
models ignoring the auxiliary task parameters. This is because the hyperparameter search finds a larger shared
LSTM hidden dimension to be preferable for the MTL models (see Tables 17 and 18). For the GloVe MTL models
the total number of parameters changes depending on the auxiliary task. This is because the GloVe embeddings
contain different numbers of vocabulary words, as we filter words based on those in the auxiliary and main task
datasets/corpora. The large difference in the number of trainable parameters between GloVe and TL models is due
to the fact that the TL is 724 parameters larger than the 300 parameter GloVe embeddings. Lastly, the number of
trainable parameters is dataset agnostic, the number of all parameters is not dataset agnostic for the GloVe models
due to the vocabulary size, for clarification the model parameters reported here are for those trained on the Laptop
dataset.
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Embedding | Model | Device | Batch Size | Min Time (s) | Max Time (s)
1 10.24 10.45
S S 1
STL O
I B
Glove 312 166.1026 166.2266
CPU o0 |69
L
OPU e |6
32 6.10 6.20
1 64.79 71.26
1
L 1
OPU 55T s
L %ﬁ SZii, é?ii)
CPU e | s
MTL R T
S
32 8.43 8.70

Table 20: Run/inference times for STL and MTL models that have been trained on the Laptop dataset using either
GloVe or TL embeddings. Each model was timed in seconds (s) to generate predictions for 800 sentences, that were
taken from the Laptop test split, of which this process was repeated five times and here we report the minimum
(min) and maximum (max) time to generate predictions for those 800 sentences. We report these timings across
different model configurations based on different batch sizes at prediction time and different devices. The trained
MTL model used in this experiment was the MTL (NEGgry7) version, this was chosen as it contains the largest
number of total parameters as shown in Table 19. Further all of these times were based on the model already
loaded into memory and using the Python timeit library for timings. Additionally the GPU used was a GeForce
GTX 1060 6GB GPU, CPU was an AMD Ryzen 5 1600 CPU, and the computer had 16GB of RAM.
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