
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 2767–2776

June 6–11, 2021. ©2021 Association for Computational Linguistics

2767

EDGE: Enriching Knowledge Graph Embeddings with External Text

Saed Rezayi1, Handong Zhao2, Sungchul Kim2, Ryan A. Rossi2,
Nedim Lipka2, and Sheng Li1

1Department of Computer Science, University of Georgia, Athens, GA, USA
2Adobe Research, San Jose, CA, USA
{saedr,sheng.li}@uga.edu

{hazhao,sukim,ryrossi,lipka}@adobe.com

Abstract

Knowledge graphs suffer from sparsity which
degrades the quality of representations gener-
ated by various methods. While there is an
abundance of textual information throughout
the web and many existing knowledge bases,
aligning information across these diverse data
sources remains a challenge in the litera-
ture. Previous work has partially addressed
this issue by enriching knowledge graph enti-
ties based on “hard” co-occurrence of words
present in the entities of the knowledge graphs
and external text, while we achieve “soft” aug-
mentation by proposing a knowledge graph
enrichment and embedding framework named
EDGE. Given an original knowledge graph, we
first generate a rich but noisy augmented graph
using external texts in semantic and structural
level. To distill the relevant knowledge and
suppress the introduced noise, we design a
graph alignment term in a shared embedding
space between the original and augmented
graph. To enhance the embedding learning on
the augmented graph, we further regularize the
locality relationship of target entity based on
negative sampling. Experimental results on
four benchmark datasets demonstrate the ro-
bustness and effectiveness of EDGE in link pre-
diction and node classification.

1 Introduction

Knowledge Graph (KG)1 embedding learning has
been an emerging research topic in natural lan-
guage processing, which aims to learn a low di-
mensional latent vector for every node. One major
challenge is sparsity. Knowledge graphs are of-
ten incomplete, and it is a challenge to generate
low-dimensional representations from a graph with
many missing edges. To mitigate this issue, auxil-

1Knowledge graph usually represents a heterogeneous
multigraph whose nodes and relations can have different types.
However in the work, we follow (Kartsaklis et al., 2018), con-
sider knowledge graph enrichment problem where only one
relation type (connected or not) appears.
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Figure 1: An example illustrating the original (left) and
augmented knowledge graphs (right). Red nodes are
knowledge graph entities and small blue nodes are tex-
tual nodes obtained from the external text. In augmen-
tation process, a new set of keywords are discovered
and attached to the original entities. To keep the aug-
mented graph semantically close to the original graph,
a backward pass of knowledge distillation is achieved
by the proposed graph alignment.

iary texts that are easily accessible have been popu-
larly exploited for enhancing the KG (as illustrated
in Figure 1). More specifically, given that KG en-
tities contain textual features, we can link them to
an auxiliary source of knowledge, e.g., WordNet,
and therefore enhance the existing feature space.
With notable exceptions, the use of external textual
properties for KG embedding has not been exten-
sively explored before. Recently, (Kartsaklis et al.,
2018) used entities of the KG to query BabelNet
(Navigli and Ponzetto, 2012), added new nodes to
the original KG based on co-occurrence of entities,
and produced more meaningful embeddings using
the enriched graph. However, this hard-coded, co-
occurrence based KG enrichment strategy fails to
make connections to other semantically related enti-
ties. As motivated in Figure 1, the newly added en-
tities “wound", “arthropod" and “protective body",
are semantically close to some input KG entity
nodes (marked in red). However, they cannot be di-
rectly retrieved from BabelNet using co-occurrence
matching.

In this paper, we aim to address the sparsity is-
sue by integrating a learning component into the
process. We propose a novel framework, EDGE,
for KG enrichment and embedding. EDGE first
constructs a graph using the external text based on
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similarity and aligns the enriched graph with the
original KG in the same embedding space. It in-
fuses learning in the knowledge distillation process
by graph alignment, ensuring that similar entities
remain close, and dissimilar entities get as far from
each other. Consuming information from an auxil-
iary textual source helps improve the quality of fi-
nal products, i.e., low dimensional embeddings, by
introducing new features. This new feature space
is effective because it is obtained from a distinct
knowledge source and established based on affinity
captured by the learning component of our model.

More specifically, our framework takes KG, and
an external source of texts, T , as inputs, and gen-
erates an augmented knowledge graph, aKG. in
generating aKG we are mindful of semantic and
structural similarities among KG entities, and we
make sure it contains all the original entities of
KG. This ensures that there are common nodes in
two graphs which facilitates the alignment process.
To align KG and aKG in the embedding space, a
novel multi-criteria objective function is devised.
In particular, we design a cost function that mini-
mizes the distance between the embeddings of the
two graphs. As a result, textual nodes (e.g., blue
nodes in Figure 1) related to each target entity are
rewarded while unrelated ones get penalized in a
negative sampling setting.

Extensive experimental results on four bench-
mark datasets demonstrate that EDGE outperforms
state-of-the-art models in different tasks and sce-
narios, including link prediction and node classifi-
cation. Evaluation results also confirm the gener-
alizability of our model. We summarize our con-
tributions as follows: (i) We propose EDGE, a gen-
eral framework to enrich knowledge graphs and
node embeddings by exploiting auxiliary knowl-
edge sources. (ii) We introduce a procedure to gen-
erate an augmented knowledge graph from external
texts, which is linked with the original knowledge
graph. (iii) We propose a novel knowledge graph
embedding approach that optimizes a multi-criteria
objective function in an end-to-end fashion and
aligns two knowledge graphs in a joint embedding
space. (iv) We demonstrate the effectiveness and
generalizability of EDGE by evaluating it on two
tasks, namely link prediction and node classifica-
tion, on four graph datasets.

The rest of the paper is organized as follows. In
the next section, we try to identify the gap in the
existing literature and motivate our work. Next,

in Section 3, we set up the problem definition and
describe how we approach the problem by in-depth
explanation of our model. We evaluate our pro-
posed model by experimenting link prediction and
node classification on four benchmark datasets and
present the results and ablation study in Section 4.
Finally, we conclude our work and give the future
direction in Section 5.

2 Related Work

Knowledge graph embedding learning has been
studied extensively in the literature (Bordes et al.,
2013; Wang et al., 2014; Yang et al., 2015; Sun
et al., 2019; Zhang et al., 2019; Xian et al., 2020;
Yan et al., 2020; Sheu and Li, 2020). A large num-
ber of them deal with the heterogeneous knowl-
edge graph, where it appears different types of
edges. While in this work we consider the type
of knowledge graph with only one type (i.e. con-
nected or not) of relation, and only focus on entity
embedding learning. Our work is related to graph
neural networks, such as the graph convolutional
networks (GCN) (Kipf and Welling, 2017) and its
variants (Wu et al., 2020; Jiang et al., 2019, 2020),
which learn node embeddings by feature propaga-
tion. In the following, we mainly review the most
relevant works in two aspects, i.e., graph embed-
ding learning with external text and knowledge
graph construction.

2.1 Graph Embedding with External Text

The most similar line of work to ours is where
an external textual source is considered to enrich
the graph and learn low dimensional graph embed-
dings using the enriched version of the knowledge
graph. For instance, (Wang and Li, 2016) annotates
the KG entities in text, creates a network based on
entity-word co-occurrences, and then learns the
enhanced KG. Similarly, (Kartsaklis et al., 2018)
adds an edge (e, t) to KG per entity e based on
co-occurrence and finds graph embeddings using
random walks. However, there is no learning com-
ponent in these approaches in constructing the new
knowledge graph. And the enrichment procedure
is solely based on occurrences (“hard" matching)
of entities in the external text.

For graph completion task, (Malaviya et al.,
2020) uses pre-trained language models to improve
the representations and for Question Answering
task, (Sun et al., 2018) extracts a sub-graph Gq
from KG and Wikipedia, which contains the an-
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Figure 2: Our proposed framework for aligning two graphs in the embedding space. The graph alignment compo-
nent, LJ , requires an additional matrix, R, that selects embeddings ofKG entities from ZT , so the resulting matrix,
RZT , would have the same dimension as ZK . Furthermore, LN penalizes additional entities that are unrelated to
the target entity, while rewards the related ones. We omit the graph reconstruction loss for simplicity.

swer to the question with a high probability and
apply GCN on Gq which is limited to a specific
task. We emphasize that the main difference be-
tween our model and previous work is that we first
create an augmented knowledge graph from an ex-
ternal source, and improve the quality of node rep-
resentation by jointly mapping two graphs to an
embedding space. To the best of our knowledge,
this is the first time that a learning component is
incorporated to enriching knowledge graphs.

2.2 Knowledge Graph Construction

Knowledge graph construction methods are broadly
classified into two main groups: 1) Curated ap-
proaches where facts are generated manually by
experts, e.g., WordNet (Fellbaum, 1998) and
UMLS (Bodenreider, 2004), or volunteers such
as Wikipedia, and 2) Automated approaches where
facts are extracted from semi-structured text like
DBpedia (Auer et al., 2007), or unstructured text
(Carlson et al., 2010). The latter approach can be
defined as extracting structured information from
unstructured text. In this work, we do not intend to
construct a knowledge base from scratch, instead
we aim to generate an augmented knowledge graph
using side information. Hence, we employ existing
tools to acquire a set of new facts from external
text and link them to an existing KG.

3 Proposed Model

3.1 Problem Statement

We formulate the knowledge graph enrichment and
embedding problem as follows: given a knowledge
graph KG = (E ,R, X) with |E| nodes (or enti-
ties), |R| edges (or relations) and X ∈ R|E|×D as
feature matrix, where D is the number of features
per entity, also given an external textual source, T ,

the goal is to generate an augmented knowledge
graph and jointly learn d (d << |E|) dimensional
embeddings for knowledge graph entities, which
preserve structural and semantic properties of the
knowledge graph. The learned representations are
then used for the tasks of link prediction and node
classification. Link prediction is defined as a binary
classification whose goal is to predict whether or
not an edge exists in KG, and node classification
is the task of determining node labels in labelled
graphs.

To address the problem of knowledge graph en-
richment and embedding, we propose EDGE, a
framework that contains two major components,
i.e., augmented knowledge graph construction, and
knowledge graph alignment in a joint embedding
space.

3.2 Augmented Knowledge Graph
Construction

Given the entities of KG and an external source of
textual data, T , we aim to generate an augmented
graph, aKG, which is a supergraph of KG (i.e., KG
is a subgraph of aKG). Augmentation is the pro-
cess of adding new entities to KG. These newly
added entities are called textual entities or textual
nodes. A crucial property of aKG is that it contains
entities ofKG. The presence of these entities estab-
lishes a relationship between the two graphs, and
such a relationship will be leveraged to learn the
shared graph embeddings. To construct aKG, we
need to find a set of keywords to query an external
source, To obtain high quality keywords and ac-
quire new textual entities, we design the following
procedure per target entity et (For every step of this
process refer to Table 1 for a real example from
SNOMED dataset).

First, we find a set of semantically and struc-
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Table 1: We employ representation learning algorithms to find a set of semantically and structurally similar entities
to each target entity (column 2). We then find a set of keywords, K, that are representative of the target entity
(column 3) and use them to query an external text and obtain a set of sentences, S (column 4). Finally, we extract
textual entities (column 5), and connect them to the target entity.

Target Entity semantically and structurally Similar Entities
Most definitive
keywords

Sentences obtained from auxiliary text
Entities obtained from
information extraction

Nonvenomous insect bite
of hip without infection se

m
an

tic
1. Nonvenomous insect bite of foot with infection
2. Crushing injury of hip and/or thigh
3. Superficial injury of lip with infection
4. Infected insect bite of hand

1. bite
2. insect
3. nonvenomous
4. infect

1. a wound resulting from biting by an animal or a person
2. small air-breathing arthropod
3. not producing or resulting from poison
4. contaminate with a disease or microorganism

1. wound
2. arthropod
3. poison
4. microorganism

st
ru

ct
ur

al 1. Insect bite, nonvenomous, of back
2. Tick bite
3. Animal bite of calf
4. Inset bite, nonvenomous, of foot and toe

Insect bite, nonvenomous,
of foot and toe infected se

m
an

tic

1. Insect bite, nonvenomous, of lower limb, infected
2. Infected insect bite of hand
3. Insect bite, nonvenomous, of hip
4. Insect bite granuloma

1. bite
2. insect
3. lower
4. skin

1. a wound resulting from biting by an animal or a person
2. small air-breathing arthropod
3. move something or somebody to a lower position
4. a natural protective body

1. wound
2. arthropod
3. position
4. protective body

st
ru

ct
ur

al 1. Nonvenomous insect bite of hip without infection
2. Insect bite, nonvenomous, of back
3. Recurrent infection of skin
4. Skin structure of lower leg

turally similar entities to et denoted by Eet . This set
creates a textual context around et which we use to
find keywords to query an external text, e.g., Word-
Net or Wikipedia. Here by query we mean using
the API of the external text to find related sentences,
S (for instance for a given keyword “bite” we can
capture several sentences from the wikipedia page
for the entry “biting” or find several Synsets2 from
WordNet when we search for “bite”).

Finally, we extract entities from S and attach
them to et. We call these new entities, textual
entities or textual features. By connecting these
newly found textual entities to the et, we enhance
KG and generate the augmented knowledge graph,
aKG. We observed that the new textual entities are
different from our initial feature space. Also, it is
possible that two different target entities share one
or more textual nodes, hence the distance between
them in aKG would decrease. The implementation
details of this process is provided in Supplementary
materials.

Querying an external text allows us to extend
the feature space beyond the context around et.
By finding other entities in KG that are similar to
the target entity and extracting keywords from the
collection of them to query the external text, distant
entities that are related but not connected would
become closer to each other owing to the shared
keywords.

Figure 1 illustrates a subset of SNOMED graph
and its augmented counterpart by following the
above procedure. As this figure reveals, the struc-
ture of aKG is different from KG, and as a result
of added textual nodes, distant but similar enti-

2Synset is the fundamental building block of WordNet
which is accompanied by a definition, example(s), etc.

ties would become closer. Therefore, augmenting
knowledge graphs would alleviate the KG sparsity
issue. Although we may introduce noise by adding
new entities but later in the alignment process we
address this issue.

Remarks. In the above procedure, we need to
obtain similar entities before looking for textual
entities, and the rationality of such a strategy is dis-
cussed as follows. One naive approach is to simply
use keywords included in the target entity to find
new textual features. In this way, we would end up
with textual features that are related to that target
entity, but we cannot extend the feature space to
capture similarity (i.e., dependency) among enti-
ties.

3.3 Knowledge Graph Alignment in Joint
Embedding Space

With the help of augmented knowledge graph aKG,
we aim to enrich the graph embeddings of KG.
However, inevitably, a portion of newly added enti-
ties are noisy, and even potentially wrong. To miti-
gate this issue, we are inspired by Hinton et al. (Hin-
ton et al., 2015), and propose a graph alignment
process for knowledge distillation. In fact, aKG
and KG share some common entities, which makes
it possible to map two knowledge graphs into a
joint embedding space. In particular, we propose to
extract low-dimensional node embeddings of two
knowledge graphs using graph auto-encoders (Kipf
and Welling, 2016), and design novel constraints
to align two graphs in the embedding space. The
architecture of our approach is illustrated in Fig-
ure 2.

Let AK and AT denote the adjacency matrices
of KG and aKG, respectively. The loss functions
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of graph auto-encoders that reconstruct knowledge
graphs are defined as:

LK = min
ZK

||AK − ÂK ||2, (1)

LT = min
ZT

||AT − ÂT ||2, (2)

where ÂK = σ(ZKZ>K) is the reconstructed graph
using node embeddings ZK . And ZK is the output
of graph encoder that is implemented by a two-
layer GCN (Kipf and Welling, 2016):

ZK = GCN(AK ,XK) = ÃK tanh(ÃKXKW0)W1,
(3)

where ÃK = D−
1
2

K AKD−
1
2

K . DK is the degree ma-
trix, tanh (.) is the Hyperbolic Tangent function
that acts as the activation function of the neurons,
Wi are the model parameters, and XK is the fea-
ture matrix.3 Similarly, ÂT = σ(ZTZ>T ), and ZT

is learned by another two-layer GCN. Equations (1)
and (2) are l2-norm based loss functions that aim
to minimize the distance between original graphs
and the reconstructed graphs.

Furthermore, to map KG and aKG to a joint em-
bedding space and align their embeddings through
common entities, we define the following graph
alignment loss function:

LJ = ||ZK −RZT ||2, (4)

where R is a transform matrix that selects common
entities that exist in KG and aKG. Note that the
two terms ZK and RZT should be of the same
size in the L2 norm equation. Our motivation is to
align the embeddings of common entities across
two knowledge graphs. By using R, the node em-
beddings of common entities can be selected from
ZT . Note that ZT is always larger than ZK , as
KG is a subgraph of aKG. Equation (4) also helps
preserve local structures of the original knowledge
graph KG in the graph embedding space. In other
words, nodes that are close to each other in the
original knowledge graph will be neighbors in the
augmented graph as well.

Moreover, we notice that the proposed aug-
mented knowledge graph aKG involves more com-
plicated structures than the original knowledge
graphKG, due to the newly added textual nodes for
each target entity in KG. In aKG, one target entity

3In case of a featureless graph, an identity matrix, I, re-
places XK .

Algorithm 1 Training process of EDGE

Input: AK , XK , AT , XT , POS, NEG,
Input: R ∈ R|EK |×(|ET |−|EK |)

1: for each epoch do
2: ÂK = σ(ZKZ>K)

3: ZK = ÃK tanh(ÃKXKWK
0 )WK

1

4: ÂT = σ(ZT Z>T )
5: ZT = ÃT tanh(ÃT XT WT

0 )WT
1

6: Calculate LK and LT using Equations (1) and (2).
7: Compute LJ using Equation (4)
8: Find negative and positive samples and calculate LN

using Equation (5)
9: Sum up all losses with their corresponding ratios

using Equation (6)
10: Run Adam optimizer to minimize L
11: Update model parameters WK

i and WT
i

12: end for
Output: ZK

is closely connected to its textual nodes, and their
embeddings should be very close to each other in
the graph embedding space. However, such local
structures might be distorted in the graph embed-
ding space. Without proper constraints, it is pos-
sible that one target entity is close to textual enti-
ties of other target entities in the embedding space,
which is undesired for downstream applications.
To address this issue, we design a margin-based
loss function with negative sampling to preserve
the locality relationship as follows:

LN = − log(σ(z>e zt))− log(σ(−z>e zt′)), (5)

where zt are the embeddings of the related textual
nodes, z′t are the embeddings of textual nodes that
are not related to the target entity, and σ is the
sigmoid function.

Finally, the overall loss function is defined as:

L = min
ZK ,ZT

LK + αLT︸ ︷︷ ︸
reconstruction

loss

+ βLJ︸︷︷︸
graph

alignment

+ γLN︸︷︷︸
locality

preserving

, (6)

where α, β, and γ are hyper-parameters. We per-
form full-batch gradient descent using the Adam
optimizer to learn all the model parameters in an
end-to-end fashion. The whole training process of
our approach is summarized in Algorithm 1.

The learned low-dimensional node embeddings
ZK could benefit a number of unsupervised and
supervised downstream applications, such as link
prediction and node classification. Link prediction
is the task of inferring missing links in a graph, and
node classification is the task of predicting labels
to vertices of a (partially) labeled graph. Extensive
evaluations on both tasks will be provided in the
experiment section.
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Table 2: Link prediction results for SNOMED and three citation networks. Numbers for SNOMED are obtained
from rerunning their code on the dataset. The rest of the results are reported from corresponding papers.

Model
SNOMED Cora Citeseer PubMed

AUC AP AUC AP AUC AP AUC AP

GAE (Kipf and Welling, 2016) 0.773 0.844 0.914 0.926 0.908 0.920 0.964 0.965
LoNGAE (Tran, 2018) 0.890 0.910 0.954 0.963 0.953 0.961 0.960 0.963

ARVGE (Pan et al., 2018) 0.805 0.864 0.924 0.926 0.924 0.930 0.968 0.971
SCAT (Zou and Lerman, 2019) 0.902 0.918 0.945 0.946 0.973 0.976 0.975 0.972

GIC (Mavromatis and Karypis, 2020) - - 0.935 0.933 0.970 0.968 0.937 0.935

EDGE (This work) 0.916 0.944 0.973 0.975 0.974 0.976 0.969 0.968

3.4 Model Discussions
We have proposed a general framework for graph
enrichment and embedding by exploiting auxiliary
knowledge sources. What we consider as a source
of knowledge is a textual knowledge base that can
provide additional information about the entities
of the original knowledge graph. It is a secondary
source of knowledge that supplies new sets of fea-
tures outside of the existing feature space, which
improves the quality of representations.

The proposed graph alignment approach can
fully exploit augmented knowledge graph and thus
improve the graph embeddings. Although aKG is
a supergraph of KG, its connectivity pattern is dif-
ferent. With the help of our customized loss func-
tion for graph alignment, both graphs contribute in
the quality of derived embeddings. We will also
demonstrate the superiority of our joint embedding
approach over the independent graph embedding
approach (with only aKG) in the experiments, and
we investigate which component of our model con-
tributes more in the final performance in the abla-
tion study in Subsection 4.4.

4 Experiment

We design our experiments to investigate effective-
ness of different components of EDGE as well as its
overall performance. To this end, we aim to answer
the following three questions4.

Q1 How well does EDGE perform compared to
state-of-the-art in the task of link prediction?
(Section 4.1)

Q2 How is the quality of embeddings generated
by EDGE compared to similar methods? (Sec-
tions 4.2 and 4.3)

Q3 What is the contribution of each component
(augmentation and alignment) in the overall
performance? (Section 4.4)

4We plan to release our code upon publication.

4.1 Task 1: Link Prediction

To investigate Q1 we perform link prediction on
four benchmark datasets, and compare the perfor-
mance of our model with five relevant baselines.
For this task we consider SNOMED and three ci-
tation networks. For SNOMED, similar to (Kart-
saklis et al., 2018), we select 21K medical con-
cepts from the original dataset. Each entity in
SNOMED is a text description of a medical con-
cept, e.g., Nonvenomous insect bite of hip without
infection. According to the procedure explained in
subsection 3.2, we construct an augmented knowl-
edge graph, aKG. Additionally, we consider three
other datasets, namely Cora, Citeseer, and PubMed,
which are citation networks consisting of 2,708,
3,312, and 19,717 papers, respectively. In all three
datasets, a short text accompanies each node which
is extracted from the title or abstract of the paper.
For these networks, relation is defined as citation
and the textual content of the nodes enables us to
obtain aKG. Cora and Citeseer datasets come with
a set of default features. We defer the detailed
description of datasets in the supplementary.

In this experiment, for each dataset, we train the
model on 85% of the input graph. Other 15% of
the data is split into 5% validation set and 10%
as part of the test set (positive samples only). An
additional set of edges are produced, equal to the
number of positive samples, which does not exist
in the graph, as negative samples. The union of
positive and negative samples are used as the test
set. In all baselines, we test the model on KG.
We obtain the following values for loss ratios after
hyper-parameter tuning: α = 0.001, β = 10, γ =
1. We discuss parameter tuning and explain the
small value of α in Section 4.5.

We provide comparison against VGAE (Kipf and
Welling, 2016) and its adversarial variant ARVGE
(Pan et al., 2018). Also we consider LoNGAE
(Tran, 2018), SCAT (Zou and Lerman, 2019) and
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Table 3: Node classification results in terms of accu-
racy for citation networks. TR stands for training ratio
and un. and semi. are short for unsupervised and semi-
supervised.

Model Approach
Cora

TR=0.5
Citeseer
TR=0.03

PubMed
TR=0.003

DeepWalk un. 0.67 0.43 0.65
GCN semi. 0.81 0.70 0.79
GAT semi. 0.83 0.72 0.79

LoNGAE semi. 0.78 0.71 0.79
MixHop semi. 0.82 0.71 0.81
EDGE un. 0.81 0.66 0.76

GIC (Mavromatis and Karypis, 2020) which are de-
signed for link prediction task on graphs, hence
they make strong baselines. Table 2 presents
the Area Under the ROC Curve (AUC) and av-
erage precision (AP) scores for five baselines and
our methods across all datasets. We observe that
EDGE outperforms all baselines in three out of
four datasets and produces comparable results for
PubMed dataset.

4.2 Task 2: Node Classification on Citation
Networks

To evaluate the quality of embeddings (Q2) we
design a node classification task based on the fi-
nal product of our model. For this task, we use
Cora, Citeseer and PubMed datasets, and follow
the same procedure explained in 3.2 to generate
aKG and jointly map the two graphs into an em-
bedding space. All the settings are identical to Task
1. To perform node classification, we use the final
product of our model, which is a 160 dimensional
vector per node. We train a linear SVM classi-
fier and obtain the accuracy measure to compare
the performance of our model with state-of-the-
art methods. Training ratio varies across different
datasets, and we consider several baselines to com-
pare our results against.

We compare our approach with state-of-the-art
semi-supervised models for node classification,
including GCN (Kipf and Welling, 2017), GAT
(Veličković et al., 2018), LoNGAE (Tran, 2018),
and MixHop (Abu-El-Haija et al., 2019). These
models are semi-supervised, thus they were ex-
posed to node labels during training while our ap-
proach is completely unsupervised. We also in-
clude DeepWalk, an unsupervised approach, to
have a more complete view for our comparison.
Table 3 reveals that our model achieves reason-
able performance compared with semi-supervised
models in two out of three datasets. Since EDGE

(a) EDGE (b) GAE

Figure 3: Pair-wise similarity comparison between
GAE and EDGE.

(a) feature-based (b) featureless

Figure 4: Visualization of embedding vectors on Cora:
a) with and b) without features to study the effect of fea-
tures on quality of embeddings in node classification.

is fully unsupervised, it is fair to declare that its
performance is comparable as other methods are
exposed to more information (i.e., node labels).

4.3 Embedding Effectiveness

Further, to measure the quality of embeddings pro-
duced by our model and compare it against the
baseline, we visualize the similarity matrix of node
embeddings for two scenarios on the Cora dataset:
1) GAE onKG, and 2) EDGE onKG and aKG. The
results are illustrated in Figure 3. In this heatmap,
elements are pair-wise similarity values sorted by
different labels (7 classes). We can observe that the
block-diagonal structure learned by our approach
is clearer than that of GAE, indicating enhanced
separability between different classes.

Next, we examine our model in more details and
study how different parameters affect its perfor-
mance.

4.4 Ablation Study

To investigate the effectiveness of different mod-
ules of our model (Q3), we consider two scenarios.
First we use a single graph to train our model. Note
that when we use a single graph, the graph align-
ment and locality preserving losses are discarded
and our model is reduced to GAE. In single graph
scenario we consider two versions of augmented
graph, aKG that was explained in subsection 3.2
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(a) Cora β = 1, γ = 1 (b) Cora α = 1, γ = 1 (c) Cora α = 1, β = 1 (d) Cora β = 10, γ = 1

Figure 5: Effect of parameterization on link prediction performance

Table 4: Link prediction results for SNOMED dataset.
In this table aKG∗ is the augmented knowledge graph
generated using the method explained in (Kartsaklis
et al., 2018)

Input Model AUC AP

KG GAE (Kipf and Welling, 2016) 0.77 0.84
aKG∗ GAE (Kipf and Welling, 2016) 0.85 0.88
aKG GAE (Kipf and Welling, 2016) 0.86 0.90
KG + aKG∗ EDGE (This work) 0.90 0.93
KG + aKG EDGE (This work) 0.91 0.94

and aKG∗ that was created based on co-occurrence
proposed by (Kartsaklis et al., 2018). In the sec-
ond scenario, we use two graphs to jointly train
EDGE, and we feed our model with KG + aKG∗
and KG+ aKG to show the effect of augmentation.

For link prediction we only consider SNOMED
dataset which is the largest dataset, and as Table 4
presents we observe that our augmentation process
is slightly more effective than co-occurrence based
augmentation. More importantly, by comparing
second two rows with first two rows we realize that
alignment module improves the performance more
than augmentation process which highlights the
importance of our proposed joint learning method.
Moreover, we repeat this exercise for node classifi-
cation (see Table 5) which results in a similar trend
across all datasets.

Finally, we plot the t-SNE visualization of em-
bedding vectors of our model with and without
features. Figure 4 clearly illustrates the distinc-
tion between quality of the clusters for the two
approaches. This implies that knowledge graph
text carries useful information. When the text is
incorporated into the model, it can help improve
the model performance.

4.5 Parameter Sensitivity

We evaluate the parameterization of EDGE, and
specifically we examine how changes to hyper pa-
rameters of our loss function (i.e., α, β and γ) could
affect the model performance in the task of link pre-
diction on Cora dataset. In each analysis, we fix
the values of two out of three parameters and study

Table 5: Node classification results in terms of accuracy
for citation networks. TR stands for training ratio and
aKG∗ is an augmented knowledge graph produced by
the method proposed in (Kartsaklis et al., 2018)

Input Model
Cora

TR=0.5
Citeseer
TR=0.03

PubMed
TR=0.003

KG GAE 0.62 0.51 0.60
aKG∗ GAE 0.70 0.57 0.65
aKG GAE 0.75 0.61 0.67
KG + aKG∗ EDGE 0.80 0.64 0.73
KG + aKG EDGE 0.81 0.66 0.76

the effect of the variation of the third parameter
on evaluating AUC scores across 200 epochs. The
detailed results are shown in Figure 5.

Figure 5a shows the effect of varying α, when
β = 1 and γ = 1 are fixed. We observe a somewhat
consistent trend across performance for different
values of α. It is evident that decreasing α im-
proves the performance. α is the coefficient of LT
(see Equation 2). This examination suggests that
the effect of this loss function is less significant,
because we re-address it in the LN part of the loss
function, where we consider the same graph (aKG)
and try to optimize distance between its nodes but
with more constraints.

Figure 5b illustrates the effect of varying β,
while α = 1 and γ = 1 are fixed. Tuning β results
in more radical changes in the model performance,
which is again consistent between the two datasets.
Small values for β degrades performance remark-
ably, and we observe a much more improved AUC
score for larger values of β. This implies the dom-
inant effect of the joint loss function, LJ , which
is defined as the distance between corresponding
entities of KG and aKG.

Next, we fix α = 1 and β = 1 and tweak γ from
0.1 to 10. As Figure 5c reveals, the variation in
performance is very small. Finally, as we obtained
the best results when β = 10, we set γ = 1 and
once again tune α. Figure 5d shows the results for
this updated setting. These experiments confirm
the insignificance of parameter α. In practice, we
obtained the best results by setting α to 0.001.
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5 Conclusion

Sparsity is a major challenge in KG embedding,
and many studies failed to properly address this
issue. We proposed EDGE, a novel framework to
enrich KG and align the enriched version with the
original one with the help of auxiliary text. Using
external source of information introduces new sets
of features that enhance the quality of embeddings.
We applied our model on three citation networks
and one large scale medical knowledge graph. Ex-
perimental results show that our approach outper-
forms existing graph embedding methods on link
prediction and node classification.
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