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Abstract

Synthesizing data for semantic parsing has
gained increasing attention recently. How-
ever, most methods require handcrafted (high-
precision) rules in their generative process,
hindering the exploration of diverse unseen
data. In this work, we propose a generative
model which features a (non-neural) PCFG
that models the composition of programs (e.g.,
SQL), and a BART-based translation model
that maps a program to an utterance. Due to
the simplicity of PCFG and pre-trained BART,
our generative model can be efficiently learned
from existing data at hand. Moreover, explic-
itly modeling compositions using PCFG leads
to a better exploration of unseen programs,
thus generate more diverse data. We evalu-
ate our method in both in-domain and out-of-
domain settings of text-to-SQL parsing on the
standard benchmarks of GEOQUERY and SPI-
DER, respectively. Our empirical results show
that the synthesized data generated from our
model can substantially help a semantic parser
achieve better compositional and domain gen-
eralization.

1 Introduction

Recently, synthesizing data for semantic parsing
has gained increasing attention (Yu et al., 2018a,
2020; Zhong et al., 2020). However, these mod-
els require handcrafted rules (or templates) to syn-
thesize new programs or utterance-program pairs.
This can be sub-optimal as fixed rules cannot cap-
ture the underlying distribution of programs which
usually vary across different domains (Herzig
and Berant, 2019). Meanwhile, designing such
rules also requires human involvement with expert
knowledge. To alleviate this, we propose to learn
a generative model from the existing data at hand.
Our key observation is that programs (e.g., SQL)
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Domain PCFG

select area where state_name = ‘texas’ 
select population where state_name = ‘california’

sample

what is the area of Texas?
how many people live in California?

translate

SQL

utterance

Figure 1: A two-stage generative process for synthesiz-
ing utterance-SQL pairs.

are formal languages that are intrinsically compo-
sitional. That is, the underlying grammar of pro-
grams is usually known and can be used to model
the space of all possible programs effectively. Typ-
ically, grammars are used to constrain the program
space during decoding of neural parsers (Yin and
Neubig, 2018; Krishnamurthy et al., 2017). In this
work, we utilize grammars to generate (unseen)
programs, which are then used to synthesize more
parallel data for semantic parsing.

Concretely, we use text-to-SQL as an example
task, and propose a generative model to synthe-
size utterance-SQL pairs. As illustrated in Fig-
ure 1, we first employ a probabilistic context-free
grammar (PCFG) to model the distribution of SQL
queries. Then with the help of a SQL-to-text trans-
lation model, the corresponding utterances of SQL
queries are generated subsequently. Our approach
is in the same spirit as back-translation (Sennrich
et al., 2016). The major difference is that the ‘target
language’, in our case, is a formal language with
known underlying grammar. Just like the training
of a semantic parser, the training of the data synthe-
sizer requires a set of utterance-SQL pairs. Hence,
our generative model is unlikely to be useful if it is
as data-hungry as a semantic parser. Our two-stage
data synthesis approach, i.e. the PCFG and the
translation model, is designed to be more sample-
efficient compared to a neural semantic parser. To
achieve better sample efficiency, we use the non-
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neural parameterization of PCFG (Manning and
Schütze, 1999) and estimate it via simple count-
ing. For the translation model, we use the pre-
trained text generation model BART (Lewis et al.,
2020). We sample synthetic data from the genera-
tive model to pre-train a semantic parser. The re-
sulting parameters can presumably provide a strong
compositional inductive bias in the form of initial-
izations.

We conduct experiments on two text-to-SQL
parsing datasets, namely GEOQUERY (Zelle and
Mooney, 1996) and SPIDER (Yu et al., 2018b). In
the query split of GEOQUERY, where training and
test sets do not share SQL patterns, synthesized
data helps boost the performance of a base parser
by a large margin of 12.6%, leading to better com-
positional generalization of a parser. In the cross-
domain 1 setting of SPIDER, synthesized data also
boosts the performance by 3.1% in terms of execu-
tion accuracy, resulting in better domain general-
ization of a parser. Our work can be summarized
as follows:
• We propose to efficiently learn a generative

model that can synthesize parallel data for
semantic parsing.

• We empirically show that the synthesized
data can help a neural parser achieve
better compositional and domain general-
ization. Our code and data are available
at https://github.com/berlino/
tensor2struct-public.

2 Related Work

Data Augmentation Data augmentation for se-
mantic parsing has gained increasing attention
in recent years. Dong et al. (2017) use back-
translation (Sennrich et al., 2016) to obtain para-
phrase of questions. Jia and Liang (2016) induce
a high-precision SCFG from training data to gen-
erate more new “recombinant” examples. Yu et al.
(2018a, 2020) follow the same spirit and use a hand-
crafted SCFG rule to generate new parallel data.
However, the production rules of these approaches
usually have low coverage of meaning represen-
tations. In this work, instead of using SCFG that
accounts for rigid alignments between utterance
and programs, we use a two-stage approach that
implicitly models the alignments by taking advan-
tage of powerful conditional text generators such

1We use the terms domain and database interchangeably.

as BART. In this way, our approach can generate
more diverse data. The most related work to ours is
GAZP (Zhong et al., 2020) which synthesizes par-
allel data directly on test databases in the context
of cross-database semantic parsing. Our work com-
plements GAZP and shows that synthesizing data
indirectly in training databases can also be benefi-
cial for cross-database semantic parsing. Crucially,
we learn the distribution of SQL programs instead
of relying on handcrafted templates as in GAZP.
The induced distribution helps a model explore
unseen programs, leading to better compositional
generalization of a parser.

Generative Models In the history of semantic
parsing, grammar-based generative models (Wong
and Mooney, 2006, 2007; Zettlemoyer and Collins,
2005; Lu et al., 2008) have played an important role.
However, learning and inference of such models are
usually expensive as they typically require gram-
mar induction (from text to logical forms). More-
over, their grammars are designed specifically for
linguistically faithful languages, e.g., logical forms,
thus not suitable for programming languages such
as SQL. In contrast, our generative model is more
flexible and efficient to train due to the two-stage
decomposition.

3 Method

In this section, we explain how our method can be
applied to text-to-SQL parsing.

3.1 Problem Definition
Formally, the labeled data for text-to-SQL parsing
is given as a set of triples (x, d, y), and each triple
represents an utterance x, the corresponding SQL
query y and relational database d. A probabilistic
semantic parser is trained to maximize p(y|x, d).
The goal of this work is to learn a generative model
of q(x, y|d) given databases such that it can synthe-
size more data (i.e., triplets) for training a semantic
parser p(y|x, d). Note that we use different no-
tations q and p to represent the generative model
and the discriminative parser, respectively, where
p(y|x, d) is not a posterior distribution of q. In-
stead, p is a separate model trained with different
parameterization with q. This is primarily due to
the intractability of posterior inference of q(y|x, d).
Specifically, we use a two-stage process to model
the generation of utterance-SQL pairs as follows:

q(x, y|d) = q(y|d)q(x|y, d) (1)

https://github.com/berlino/tensor2struct-public
https://github.com/berlino/tensor2struct-public
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sql = (select select, cond? where)
select = (agg∗ aggs)
agg = (agg_type agg_id, column col_id)
agg_type = NoneAggOp | Max | Min
cond = And(cond left, cond right)

| Or(cond left, cond right)
| Not(cond c)

Figure 2: A simplified ASDL grammar for SQL,
where “sql, select, cond, agg" stands for variable types,
“where, agg_id" for variable names, and “And, Or, Not"
for constructor names.

where q(y|d) models the distribution of SQLs given
a database, and q(x|y, d) models the translation
process from SQL to utterances.

3.2 Database-Specific PCFG: q(y|d)
We use abstract syntax trees (ASTs) to model

the underlying grammar of SQL, following Yin and
Neubig (2018) and Wang et al. (2020b). Specifi-
cally, we use ASDL (Wang et al., 1997) formalism
to define ASTs. To illustrate, Figure 2 shows a sim-
plified ASDL grammar for SQL. The ASDL gram-
mar of SQL can be represented by a set of context-
free grammar (CFG) rules, as elaborated in the
Appendix. By assuming the strong independence
of each production rule, we model the probability
of generating a SQL as the product of the probabil-
ity of each production rule q(y) =

∏N
i= q(Ti). It

is well known that estimating the probability of a
production rule via maximum-likelihood training
is equivalent to simple counting, which is defined
as follows:

q(N → ζ) =
C(N → ζ)∑
γ C(N → γ)

(2)

where C is the function that counts the number of
occurrences of a production rule.

3.3 SQL-to-utterance Translation: q(x|y, d)
With generated SQL queries at hand, we then show
how we map SQLs to utterances to obtain more
paired data. We notice that SQL-to-utterance trans-
lation, which belongs to the general task of condi-
tional text generation, shares the same output space
with summarization and machine translation. For-
tunately, pre-trained models (Devlin et al., 2019;
Radford et al., 2019) using self-supervised methods
have shown great success for conditional text gener-
ation tasks. Hence, we take advantage of a contem-
porary pre-trained model, namely BART (Lewis
et al., 2020), which is an encoder-decoder model
that uses the Transformer architecture(Vaswani
et al., 2017).

To obtain a SQL-to-utterance translation model,
we fine-tune the pre-trained BART model with
our parallel data, with SQL being the input se-
quence and utterance being the output sequence.
Empirically, we found that the desired translation
model can be effectively obtained using the SQL-
utterance pairs at hand, although the original BART
model is designed for text-to-text translation only.

3.4 Semantic Parser: p(y|x, d)
After obtaining a trained generative model
q(x, y|d), we can sample synthetic pairs of (x, y)
for each database d. The synthesized data will
then be used as a complement to the original train-
ing data for a semantic parser. Following Yu et al.
(2020), we use the strategy of first pre-training
a parser with the synthesized data, and then fine-
tuning it with the original training data. In this
manner, the resulting parameters encode the com-
positional inductive bias introduced by our gen-
erative model. Another way to view pre-training
is that a parser p(y|x, d) is essentially trained to
approximate the posterior distribution of q(y|x, d)
via massive samples from q(x, y|d).

4 Experiments

We show that our generative model can be used to
synthesize data in two settings of semantic parsing.
We also present an ablation study for our approach.

In-Domain Setting We first evaluate our method
in the conventional in-domain setting where train-
ing and test data are from the same database.
Specifically, we synthesize new data for the GEO-
QUERY dataset (Zelle and Mooney, 1996) which
contains 880 utterance-SQL pairs on the database
of U.S. geography. We evaluate in both question
and query split, following Finegan-Dollak et al.
(2018). The traditional question split ensures that
no utterance is repeated between the train and
test sets. This only tests limited generalization
as many utterances correspond to the same SQL
query; query split is introduced to ensure that nei-
ther utterances nor SQL queries repeat. The query
split tests compositional generalization of a seman-
tic parser as only fragments of test SQL queries
occur in the training set.

Out-of-Domain Setting Then we evaluate our
method in a challenging out-of-domain setting
where the training and test databases do not over-
lap. That is, a parser is trained on some source
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Model Question Split Query Split

seq2tree (Dong and Lapata, 2016) 62 † 31 †

GECA (Andreas, 2020) 68 † 49 †

template-based (2018) 55.2 -
seq2seq (Iyer et al., 2017) 72.5 -
Base Parser♣ 70.9 49.5
Base Parser♣ + Syn Pre-Train 74.6 62.1
w.o. trained PCFG 72.4 54.8
w.o. pre-trained BART 71.5 53.9

Table 1: Execution accuracies on GEOQUERY. Meth-
ods with † measure exact match accuracy. w.o. stands
for ablating a certain component.

databases but evaluated in unseen target databases.
Concretely, we apply our method to the SPI-
DER (Yu et al., 2018b) dataset where the train-
ing contains utterance-SQL pairs from 146 source
databases and the test set contains data from a dis-
joint set of target databases. In this out-of-domain
setting, we synthesize data in the source databases
in the hope that it can promote its domain general-
ization to unseen target databases.

Training As mentioned in Section 3.4, we use
pre-training to augment a semantic parser with syn-
thesized data. Specifically, we use the following
four-step training procedure: 1) train a two-stage
generative model, namely q(x, y|d), 2) sample new
data from it, 3) pre-train a semantic parser p(y|x, d)
using the synthesized data, 4) fine-tune the parser
with the target training data. In the in-domain set-
ting, one PCFG and translation model is trained.
In the out-of-domain setting, a separate PCFG is
trained on each source database assuming that each
database has a different distribution of SQL queries.
In contrast, a single translation model is trained
and shared across source databases. We use RAT-
SQL (Wang et al., 2020b) as our base parser.

The size of the synthesized data is always pro-
portional to the size of the original data. We tune
the ratio in {1, 3, 6, 12}, and find that 3, 6 works
best for GEOQUERY and SPIDER respectively. We
use the RAT-SQL implementation from Wang et al.
(2020a) which supports value prediction and eval-
uation by execution. We train it with the default
hyper-parameters. For the SQL-to-utterance trans-
lation model, we reuse all the default hyperparame-
ters from BART (Lewis et al., 2020). Both models
are trained using NVIDIA V100.

4.1 Main Results

For GEOQUERY, we report execution accuracy on
the test sets of the question and query split; for SPI-

Model SET MATCH EXECUTION

RAT-SQL♠ (Wang et al., 2020b) 69.7 -
RYANSQL♠ (Choi et al., 2020) 70.6 -
IRNet♦ (Guo et al., 2019) 61.9 -
GAZP (Zhong et al., 2020) 59.1 59.2
BRIDGE♠ (Lin et al., 2020) 70.0 68.0
Base Parser♣ 70.4 69.4
Base Parser♣ + Syn Pre-Train 71.8 72.5

w.o. trained PCFG 71.4 72.3
w.o. pre-trained BART 70.6 70.8

Table 2: Set match and execution accuracies on SPI-
DER. ♠ stands for models with BERT-large, ♦ for
BERT-base, ♣ for Electra-base.

DER, we report exact set match (Yu et al., 2018b)
along with execution accuracy on the dev set. The
main results are shown in Table 1 and 2. First, we
can see that compared with previous work, our base
parser achieves the best performance, confirming
that we are using a strong base parser to test our
synthesized data.

With the pre-training using synthesized data, the
performance of the base parsers is boosted in both
GEOQUERY and SPIDER. In GEOQUERY, the pre-
training results in the margin of 12.6% in the query
split. This is somewhat expected as our generative
model, especially q(y|d) directly models the com-
position underlying SQL queries, which helps a
parser generalize better to unseen queries. More-
over, our sampled SQL queries cover around 15%
test SQL queries of the query split, partially ex-
plaining why it is so beneficial for the query split.
In SPIDER, the pre-training boosts the performance
by 3.1% in terms of execution accuracy. Although
our model does not synthesize data directly for tar-
get databases (which are unseen), it still helps a
parser achieve better domain generalization. This
contradicts the observation by Zhong et al. (2020)
that synthesizing data in source databases is useless,
even harmful without careful consistency calibra-
tion. We attribute this to the pre-training strategy
we use, as in our preliminary experiments we found
that directly mixing the synthesized data with the
original training data is indeed harmful.

4.2 Ablation Study

We try to answer two questions: a) whether it is
necessary to learn a PCFG; b) whether pre-trained
translation model, namely BART, is required for
success. To answer the first question, we use a ran-
domized version of q(y|d) where the probability of
production rules are uniformly distributed, instead
of being estimated from data in Equation (2). As
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Sampled SQLs (y) Generated Utterances (x)

SELECT length FROM river WHERE traverse = "new york" What is the length of the river whose traverse is in New York city?

SELECT Sum(length) FROM river WHERE traverse = "colorado" What is the total length of the rivers that traverse the state of Colorado?

SELECT state_name FROM border_info WHERE border = "wyoming" What are the names of the states that have a border with Wyoming?

SELECT state_name FROM city WHERE population = "mississippi" What are the names of all cities in the state of Mississippi?

SELECT Min(state_name) FROM state WHERE state_name = "mississippi" What is the minimum state name of the state with the name Mississippi?

SELECT capital FROM state WHERE population = 15000 What are the capitals of states with population of 150000 or more?

Table 3: Positive (top) and negative (bottom) examples of synthesized paired data for GEOQUERY.

shown in Table 1 and 2, this variant (w.o. trained
PCFG) still improves the base parsers, but with a
smaller margin. This shows that a trained PCFG
model is better at synthesizing useful SQL queries.
To answer the second question, we use a randomly
initialized SQL-to-utterance translation model in-
stead of BART. As shown in Table 1 and 2, this
variant (w.o. pre-trained BART) results in a drop
in performance as well, indicating that pre-trained
BART is crucial for synthesizing useful utterances.

4.3 Qualitative Analysis

Table 3 shows examples of synthesized paired
data for GEOQUERY. In the positive examples,
the sampled SQLs can be viewed as recombina-
tions of SQLs fragments observed in the train-
ing data. For example, SELECT Sum(length)
and traverse = “colorado” are SQL frag-
ments from separate training examples. Our PCFG
combines them together to form a new SQL, and
the SQL-to-utterance model successfully maps it
to a reasonable translation. The negative examples
consist of two kinds of errors. First, the PCFG gen-
erated semantically invalid SQLs which cannot be
mapped to reasonable utterances. This error is due
to the independence assumption made by the PCFG.
For instance, when a column and its corresponding
entity is separately sampled, there is no guaran-
tee that they form a meaningful clause, as shown
in population = “mississippi”. To ad-
dress this, future work might consider more pow-
erful generative models to model the dependen-
cies within and across clauses in a SQL. Second,
the SQL-to-utterances model failed to translate the
sampled SQLs, as shown in the last example.

5 Conclusion

In this work, we propose to efficiently learn a gen-
erative model that can synthesize parallel data for
semantic parsing. The synthesized data is used to
pre-train a semantic parser and provide a strong

inductive bias of compositionality. Empirical re-
sults on GEOQUERY and SPIDER show that the
pre-training can help a parser achieve better com-
positional and domain generalization.
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A CFG Rules

Following Yin and Neubig (2018), we represent
ASDL grammar of SQLs using a set of production
rules, as illustrated in Figure 3.

Formally, a production rule T is denoted as
N → ζ, where N represents a non-terminal vari-
able type, ζ represents a sequence of terminal or
non-terminals. We can derive a set of production
rules from our pre-defined ASDL grammar by in-
stantiating original ASDL statements. For exam-
ple, “sql = (select select, cond? where)" is instan-
tiated into two rules: “sql → select" and “sql →

sql → select; sql → select, cond;
select → agg; select → agg, agg;
agg → agg_type, column;
agg_type → NoneAggOp;
agg_type → Min; agg_type → Max;
cond → And; cond → Or; cond → Not;

Figure 3: Context-free grammars that represent the
ASDL grammar in Figure 2 of the main paper. Only
variable types are used in the production rules.

select, cond". With pre-defined production rules,
a SQL can be transformed into a sequence of pro-
duction rules. For example, the SQL query “select
max(age)” can be represented by the sequence:

(1) sql→ select
(2) select→ agg
(3) agg→ agg_type, column
(4) agg_type→Max
(5) column→ age
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