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Abstract
First-order meta-learning algorithms have
been widely used in practice to learn initial
model parameters that can be quickly adapted
to new tasks due to their efficiency and effec-
tiveness. However, existing studies find that
meta-learner can overfit to some specific adap-
tation when we have heterogeneous tasks, lead-
ing to significantly degraded performance. In
Natural Language Processing (NLP) applica-
tions, datasets are often diverse and each task
has its unique characteristics. Therefore, to ad-
dress the overfitting issue when applying first-
order meta-learning to NLP applications, we
propose to reduce the variance of the gradi-
ent estimator used in task adaptation. To this
end, we develop a variance-reduced first-order
meta-learning algorithm. The core of our al-
gorithm is to introduce a novel variance reduc-
tion term to the gradient estimation when per-
forming the task adaptation. Experiments on
two NLP applications: few-shot text classifi-
cation and multi-domain dialog state tracking
demonstrate the superior performance of our
proposed method.

1 Introduction

Meta-learning has recently emerged as a promis-
ing approach in solving many natural language
processing tasks, such as few-shot text classifica-
tion (Obamuyide and Vlachos, 2019; Bao et al.,
2019), low resource language understanding (Gu
et al., 2018; Dou et al., 2019; Yu et al., 2020a),
and multi-domain dialogue systems (Qian and Yu,
2019; Huang et al., 2020). In particular, model-
agnostic meta-learning (MAML) (Finn et al., 2017),
a widely-used meta-learning approach, trains an
initial model that can be adapted to a new task
with a small number of optimization steps and
training data. However, MAML requires the com-
putation of second-order derivatives, which can
be costly for reinforcement learning and NLP ap-
plications. Therefore, numerous computationally-
efficient MAML variants (Finn et al., 2017; Li

et al., 2017; Nichol et al., 2018; Antoniou et al.,
2018; Zintgraf et al., 2019; Song et al., 2020) have
been proposed in recent years. First-order meta-
learning (Finn et al., 2017; Nichol et al., 2018) is a
widely-used method in practice because it is easy to
implement, eliminates computationally-intensive
second-order derivatives in MAML, and achieves
state-of-the-art performance.

Although meta-learning including first-order
meta-learning has shown promising performances
in many applications (Triantafillou et al., 2019), it
still somewhat struggles to learn on diverse task dis-
tributions (Triantafillou et al., 2020; Rebuffi et al.,
2017; Yu et al., 2020c). For first-order meta-
learning, it consists of task adaptation and meta
updates. Task adaptation aims to obtain a task-
specific model for each task by performing several
optimization steps based on the current meta model.
Then, the meta update aggregates the gradient in-
formation of task-specific models to obtain a new
meta model. It has been observed in many previ-
ous works (Zhao et al., 2018; Karimireddy et al.,
2019; Charles and Konečnỳ, 2020) that local up-
date methods, including first-order meta-learning,
performing multiple optimization steps on local
data can lead to overfitting to atypical local data. In
the context of first-order meta-learning, due to the
large variance of the gradient estimator, task adap-
tation will drive task-specific models to move away
from each other, resulting in that the gradients used
in meta update have diverse directions. Further-
more, since the difference in gradient magnitudes
will also be large, the task with a much larger gradi-
ent in magnitude will dominate the task adaptation.
As a result, the meta update will overfit to this
dominating task. Similar issues have been studied
in multi-task learning: Yu et al. (2020b) showed
that conflicting gradients, i.e., two gradients that
have a negative cosine similarity, can lead to signif-
icantly degraded performance when the difference
in gradient magnitudes is large.
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The above gradient variance issue, i.e., the large
variance from the gradient estimator, is significant
in NLP applications since many NLP datasets have
diverse properties, and the tasks for meta-learning
in NLP applications also have their unique char-
acteristics. For example, the MultiWOZ dataset
(Budzianowski et al., 2018) for dialog systems and
the Spider dataset (Yu et al., 2018) for semantic
parsing, both consist of complex and cross domain
examples. To address the aforementioned gradient
variance issue in NLP applications when applying
first-order meta-learning approaches, we propose a
variance-reduced first-order meta-learning (VFML)
algorithm. The key idea of our algorithm is that we
leverage a novel variance reduction term in the task
adaptation steps to reduce the variance of the gra-
dient estimator. We evaluate our proposed method
on two NLP applications: few-shot text classifica-
tion and domain adaptation in multi-domain dialog
state tracking. We experiment on several bench-
mark datasets, finding that our method produces
models that can achieve better performances than
the baseline Reptile (Nichol et al., 2018).

2 Problem Setup and Preliminaries

Let T = {Ti}i∈I be the set of all tasks and I be
the task index set. Suppose Ti is drawn from T
with probability pi, and we use p to denote the
probability distribution over T . Our goal is to find
an initial model θ such that it will have a small
loss on a new task Ti after a few steps of updates.
Therefore, we want to solve the following problem

minθ∈RdEi∼p[Li(f
K
i (θ))], (2.1)

where fKi (θ) is the function that updates the initial
model parameter θ for K steps on task Ti.

2.1 First-order meta learning

To solve the problem in equation 2.1, MAML uses
task adaptation, i.e., fKi (θ), and the following meta
update based on sampled tasks

θ = θ − τ
∑

i∈Ib∇Li(f
K
i (θ))/|Ib|,

where τ is the step size, Ib is the index set of the
sampled tasks, and fKi (θ) is usually K steps of
gradient descent. A more efficient and effective
MAML variant is the first-order method (Finn et al.,
2017; Nichol et al., 2018). For instance, Finn et al.
(2017) proposed to replace the Hessian matrix in
meta update with an identity matrix, which leads

to First-order MAML (FOMAML). Nichol et al.
(2018) proposed Reptile to further simplify FO-
MAML by using the the following meta update

θ = θ − τ
∑

i∈Ib(θ
′
i − θ)/|Ib|,

where θ′i = fKi (θ). In this work, we propose
a new method based on Reptile to improve the
performance of first-order meta-learning methods.

3 Method

Our proposed algorithm for meta-learning is illus-
trated in Algorithm 1. In the following discussion,
we use ∇Li,Bit to denote the mini-batch stochas-
tic gradient for task i and Bit is the sample index
set. The main idea of our method is to construct

Algorithm 1 Variance-reduced First-order Meta-
learning (VFML) Algorithm

input initialization θ0, initial variance reduction
term v0, step size: η, τ , iteration numbers: T ,
K, parameters: β, γ

1: for t = 0, 1, . . . , T − 1 do
2: Sample Tasks It ⊆ I with |It| = m
3: for i ∈ It do
4: wi = Task Adaptation(θt,vt, η,K, γ, i)
5: end for
6: Update θt+1 = θt + τ 1

m

∑
i∈It

(
wi − θt

)
7: Update vt+1 = 1

m

∑
i∈It ∇Li,Bit(θt+1) +

(1− β)
(
vt − 1

m

∑
i∈It ∇Li,Bit(θt)

)
8: end for

output θT

a variance reduction term v, which is motivated
by the stochastic recursive momentum technique
proposed in (Cutkosky and Orabona, 2019). v will
be used in the task adaptation step (line 4 in Al-
gorithm 1) to reduce the variance of the gradient
estimator. More specifically, we use the gradient
estimator gi

k = γ∇Li,Bik
(wi

k) + (1 − γ)v (line 3
in Algorithm 2) to update the task-specific model
for task Ti. gi

k is a weighted sum of the mini-batch
stochastic gradient ∇Li,Bik

(wi
k) and the variance

reduction term v, and (1− γ) is the weight for v.
When γ = 1, it reduces to Reptile. We initialize
the variance reduction term v0 by averaging the
gradients from a set of tasks which are randomly
sampled and computed using the initialization θ0.

Next, we briefly discuss the intuition of why
our proposed method can reduce the variance of
the gradient estimator. Suppose E

∥∥∇Li,Bik
(θ) −
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Algorithm 2 Task Adaptation (TA)

input meta model θ, variance reduction term v,
step size η, iteration number K, task index i, γ

1: wi
0 = θ

2: for k = 0, 1, . . . ,K − 1 do
3: gi

k = γ∇Li,Bik
(wi

k) + (1− γ)v
4: wi

k+1 = wi
k − ηgi

k

5: end for
output wi

K

∇Li(θ)
∥∥2
2
≤ σ21 and E

∥∥∇Li(θ)−∇L(θ)
∥∥2
2
≤ σ22 ,

where L(θ) = E[Li(θ)]. σ21 is the variance of
using ∇Li,Bik

to estimate the gradient ∇Li for
task Ti. σ22 is the variance introduced by the
dissimilarity between tasks. Intuitively, the vari-
ance of the gradient estimator in Reptile, i.e.,
E
∥∥∇Li,Bik

(wi
k)−∇L(wi

k)
∥∥2
2
, will be determined

by the following quantity

O(σ21 + σ22).

In addition, the variance of the gradient estimator
in VFML, i.e., E

∥∥gi
k −∇L(wi

k)
∥∥2
2
, will be deter-

mined by

O
(
σ21 + γ2σ22 + (1− γ)2(β2σ′22 + (1− β)2∆2

t+1)
)
,

where ∆2
t+1 = E‖θt+1 − θt‖22, σ′22 =

E
∥∥∑

i∈It ∇Li(θt)/m−∇L(θt)
∥∥2
2
.

If we have a large number of examples for each
task, then σ21 will be small, and the variance of the
gradient estimator in Reptile will be determined
by O(σ22). When we have very diverse task dis-
tributions, σ22 will be large, which can lead to
a significant degradation in performance. How-
ever, for VFML, the variance will be dominated by
O
(
γ2σ22+(1−γ)2(β2σ′22 +(1−β)2∆2

t+1)
)
. Since

σ′22 can be much smaller than σ22 and ∆2
t+1 goes to

zero as our algorithm convergences, the variance
of gi

k can be much smaller than σ22 by choosing
appropriate parameters β, γ. Therefore, the role
of the variance reduction term v is to alleviate the
variance introduced by the task dissimilarity.

4 Experiments

We evaluate our proposed method on one simula-
tion experiment and two NLP applications: text
classification and dialog state tracking.

4.1 Simulation
To validate the effectiveness of our proposed
method, we consider the one-dimensional sine

wave regression (Finn et al., 2017; Nichol et al.,
2018). Our goal is to learn a neural network that
can quickly adapt to a given sine wave function af-
ter a few adaptation steps. We follow the same ex-
perimental setup in the previous work (Nichol et al.,
2018), and we compare our proposed method with
Reptile (Nichol et al., 2018) in terms of the mean
square error between the output of the adapted neu-
ral network and the sine wave function.
Parameters: For both methods, we sample 10
tasks at each outer loop iteration and use 10
examples, i.e., b = 10, to compute the mini-
batch stochastic gradients. We choose K =
3, η = 0.01 for the task adaptation step, and
choose τ = 1 for the meta update. For
our proposed method, we choose γ by search-
ing the grid {0.1, 0.3, 0.5, 0.7, 0.9} and β by
{0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}.
Results: Figures 1(a) and 1(b) shows the training
and test accuracy versus the number of iterations
for our method and Reptile. Figures 1(c) and 1(d)
illustrate the adaptation results for both methods.
Figures 1(a) and 1(b) show that VFML can reduce
the iteration numbers and achieve better perfor-
mance in terms of training and test accuracy than
Reptile. Figures 1(c) and 1(d) illustrates that our
proposed method can quickly converge to a given
sine wave function. These results validate the supe-
riority of VFML.

4.2 Few-shot Text Classification

We consider two text classification datasets: Ama-
zon (He and McAuley, 2016) and FewRel (Han
et al., 2018). For Amazon dataset, it consists of
customer reviews from 24 product categories, and
we follow the previous work (Bao et al., 2019) to
sample 1000 reviews for each category. For this
dataset, our goal is to classify a given review into
its corresponding product category. FewRel is a
relation classification dataset, and each example is
a sentence annotated with a head entity, a tail entity,
and their relation. For FewRel, we aim to predict
the relation between the head and tail in a given
sentence.

We follow the experimental setup in previous
work (Bao et al., 2019). We consider the N -way
K-shot setting, where N is the number of classes
in each task, and K is the number of examples in
the class.
Baseline models: For this problem, we consider
the convolutional neural network (CNN) based
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Figure 1: Results on one-dimensional sine wave regression. Figures 1(a) and 1(b) show the training error and test
error versus the number of iterations. Figures 1(c) and 1(d) demonstrate the adaptation results of different methods.

Method Amazon FewRel Amazon FewRel Amazon FewRel
5-shot 5-shot 10-shot 10-shot 50-shot 50-shot

Reptile 66.6± 1.92 67.6± 0.78 72.5± 2.65 72.9± 1.50 61.88± 3.91 72.2± 1.61
Ours 67.6 ± 1.40 68.4 ± 0.61 74.8 ± 1.33 74.00 ± 0.68 63.90 ± 4.72 74.7 ± 0.89

Table 1: Results of text classification on Amazon and FewRel datasets. We consider 5-way N -shot settings with
N = 5, 10, 50. We report the classification accuracy with the standard deviation over 10 trials.

5-shot MAML FO-MAML Reptile Ours
Amazon 63.3± 1.87 65.8± 1.63 66.6± 1.92 67.6 ± 1.40
FewRel 67.7± 0.73 66.9± 2.16 67.6± 0.78 68.4 ± 0.61

Table 2: Results of different meta-learning methods on Amazon and FewRel datasets in 5-way 5-shot settings. We
report the classification accuracy with the standard deviation over 10 trials.

Method Taxi (1%) Attrac (1%) Taxi (5%) Attrac (5%) Taxi (10%) Attrac (10%)
Joint Slot Joint Slot Joint Slot Joint Slot Joint Slot Joint Slot

Train from scratch 60.52 72.90 27.88 63.43 60.52 72.90 43.15 73.27 60.52 72.90 50.16 78.09
Reptile 60.91 76.10 40.71 73.01 61.67 82.40 51.38 78.54 63.94 84.94 53.12 80.13
Ours 62.00 77.45 43.15 74.02 65.66 84.32 52.35 79.59 67.16 86.03 56.14 81.13

Table 3: Results on DST. We report the joint and slot accuracy for different methods under different number of
finetune examples. 1% means that we use 1% of the new domain data for training from scratch and finetune.

model proposed in (Bao et al., 2019). More specif-
ically, we use a CNN as the embedding model to
generate the input representation and a one-hidden-
layer neural network with 300 units and ReLU
activation as the classifier.
Parameters: For both Reptile and our method,
we choose K by searching the grid {1, 3, 5, 10},
η by {0.01, 0.05, 0.1, 0.3, 0.5} for the task adap-
tation step, and choose τ = 1 for the meta up-
date. For our proposed method, we choose γ by
searching the grid {0.1, 0.3, 0.5, 0.7, 0.9} and β by
{0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}.
Results: Table 1 summarizes the comparisons of
different methods on Amazon and FewRel datasets
for text classification. The results are averaged over
10 runs. In the 5-way 5-shot setting, our proposed
method can achieve 1% and 0.8% improvements
in terms of classification accuracy on Amazon and
FewRel datasets, respectively.
Analysis: We also consider the 5-way 10-shot and

5-way 50-shot settings. These two settings are used
to evaluate our proposed method’s performance
when the variance of the gradient estimator is dom-
inated by the variance introduced by the task dis-
similarity. The results show that, when we have
50 shots, our proposed method can achieve 2.02%
and 2.5% gains on classification accuracy on Ama-
zon and FewRel datasets, respectively. The results
in 10-shot and 50-shot settings validate the effec-
tiveness of the variance reduction term, i.e., it is
used to alleviate the variance of the gradient esti-
mator introduced by the task dissimilarity. We also
compare our proposed method with the MAML
and FO-MAML methods proposed in (Finn et al.,
2017) on Amazon and FewRel datasets in 5-way
5-shot settings. Table 2 shows that our method
outperforms these two baselines.
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4.3 Dialog State Tracking

We also test our VRML method on the task of
multi-domain dialog state tracking (DST). We ex-
periment on the MultiWOZ (Budzianowski et al.,
2018), a large scale, multi-domain human-human
dialog state tracking dataset. It had been intro-
duced to help facilitate research to solve the DST
problem. This corpus contains 8438 multi-turn dia-
logues with on average of 13.7 turns per dialogue.
Multi-domain dialog state tracking in MultiWOZ
is a challenging task for meta-learning, due to the
differences in dialogues between each domain. For
example, the dialog states, and user utterances for
hotel and train are quite different. We use the most
frequent five domains: (restaurant, hotel, attrac-
tion, taxi, train). We follow the same setup in
(Huang et al., 2020) by training on three source
domains: hotel, restaurant and train, and testing
on 1% of the target domains: (taxi, attraction).

We compare our method with Reptile and the
train-from-scratch, i.e., we train a randomly initial-
ized model using data from the target domain. We
use joint and slot accuracy (Wu et al., 2019) to eval-
uate different methods. Joint accuracy measures
the accuracy of dialogue states, where a dialogue
state is correctly predicted only if all the values for
(domain, slot) pairs are correctly predicted. Slot
accuracy measures the accuracy of each (domain,
slot, value) tuples for the dialog state.
Baseline models: We quantify the benefits of dif-
ferent meta-learning algorithms by comparing the
results on top of the TRADE model architecture
(Wu et al., 2019). TRADE is an encoder-decoder
model utilizing two BiGRUs to encode sequences
of dialogue turns, and then generating correspond-
ing (domain, slot, value) tuples. We set the hidden
size of the encoder and decoder to be 400 and use
Glove embedding (Pennington et al., 2014).
Parameters: For both Reptile and our method,
we choose K by searching the grid {1, 3, 5}, η
by {0.01, 0.05, 0.1} for the task adaptation step,
and choose τ = 1 for the meta update. For
our proposed method, we choose γ by search-
ing the grid {0.1, 0.3, 0.5, 0.7, 0.9} and β by
{0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. Following the
previous work (Wu et al., 2019; Huang et al., 2020),
we set batch size to 32, dropout rate to 0.2. For the
finetune step, we search the batch size by the grid
{4, 8, 16, 32} and setp size by {0.01, 0.05, 0.1}.
We early stop the training of both methods when
the validation accuracy converges.

Results: Table 3 reports the joint and slot accu-
racy for different methods. The results show that,
when we have 1% of the target domain data for fine-
tuning, our proposed method can achieve 2.44%
and 1.01% improvements in slot and joint accuracy
compared with Reptile for Attraction. Compared
with train-from-scratch, we can obtain 15.27% and
10.59% gains in slot and joint accuracy. Similar
improvements can be obtained for Taxi.
Analysis: We also consider the case when we have
more target domain data for finetuning. Table 3
shows that the more target domain data we have,
the more gains our method can obtain. For example,
when we have 10% data for Taxi, our method can
achieve 6.64%/13.13% improvements in slot/joint
accuracy compared with train-from-scratch. Com-
pared with Reptile, we can obtain 3.32%/1.09%
gains in slot/joint accuracy. Note that there is no
change of performance for the train-from-scratch
method on 1%/5%/10% Taxi data, due to the small
size of the Taxi dataset. If we train on the en-
tire Taxi data, the joint/slot accuracy would be
75.61%/89.61%. These results show that meta-
learning indeed helps when the target data is small,
and VRML is very effective on using the small
amount of target data compared to Reptile.

5 Conclusion

We propose a novel first-order meta-learning
method to reduce the variance of the gradient esti-
mator used in task adaptation for NLP tasks. We
show in both few-shot text classification and DST
that our method can achieve better performance
than existing methods. It is interesting to further
study domain adaptation methods built upon our
new algorithm.
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