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Abstract

Due to large number of entities in biomedical
knowledge bases, only a small fraction of enti-
ties have corresponding labelled training data.
This necessitates entity linking models which
are able to link mentions of unseen entities
using learned representations of entities. Pre-
vious approaches link each mention indepen-
dently, ignoring the relationships within and
across documents between the entity mentions.
These relations can be very useful for linking
mentions in biomedical text where linking de-
cisions are often difficult due mentions having
a generic or a highly specialized form. In this
paper, we introduce a model in which linking
decisions can be made not merely by linking
to a knowledge base entity but also by group-
ing multiple mentions together via clustering
and jointly making linking predictions. In ex-
periments we improve the state-of-the-art en-
tity linking accuracy on two biomedical entity
linking datasets including on the largest pub-
licly available dataset.

1 Introduction

Ambiguity is inherent in the way entities are men-
tioned in natural language text. Grounding such am-
biguous mentions to their corresponding entities,
the task of entity linking, is critical to many applica-
tions: automated knowledge base construction and
completion (Riedel et al., 2013; Surdeanu et al.,
2012), information retrieval (Meij et al., 2014),
smart assistants (Balog and Kenter, 2019), ques-
tion answering (Dhingra et al., 2020), text mining
(Leaman and Lu, 2016; Murty et al., 2018).

Consider the excerpt of text from a biomed-
ical research paper in Figure 1, the three high-
lighted mentions (expression, facial expressions,
and facially expressive) all link to the same entity,
namely C0517243 - Facial Expresson
in the leading biomedical KB, Unified Medical
Language System (UMLS) (Bodenreider, 2004).

The mention expression is highly ambiguous
and easily confused with the more prevalent en-

When emotion and expression diverge : The social costs of Parkinson 's 
disease Patients with Parkinson 's disease are perceived more negatively than 
their healthy peers , yet it remains unclear what factors contribute to this 
negative social perception . Based on a cohort of 17 Parkinson 's disease 
patients and 20 healthy controls , we assessed how naïve raters judge the 
emotion and emotional intensity displayed in dynamic facial expressions as 
adults with and without Parkinson 's disease watched emotionally evocative 
films ( Experiment 1 ) , and how age - matched peers naïve to patients ' 
disease status judge their social desirability along various dimensions from 
audiovisual stimuli ( interview excerpts ) recorded after certain films 
( Experiment 2 ) . In Experiment 1 , participants with Parkinson 's disease 
were rated as significantly more facially expressive than healthy 
controls ...

[C0017262]
  Name: Gene Expression
  Type: Biologic Function 
  Qualifiers: expression gene,

Gene expression, 
Expression, Expressed, gene 
expression

[C0517243]
  Name: Facial Expression
  Type: Finding 
  Qualifiers: Facial, observable

entity, Facial expression, 
face expression

Figure 1: Biomedical Entity Linking. All three high-
lighted mentions refer to the same entity. The men-
tion expression is clearly related to the other two
highlighted mentions which are much less ambiguous.
If considered independently expression is more
closely related to an incorrect entity.

tity, Gene expression. This linking decision
may become easier with sufficient training exam-
ples (or sufficiently rich structured information in
the knowledge-base) . However, in biomedical (Mo-
han and Li, 2019) and other specialized domains
(Logeswaran et al., 2019), it is often the case that
the knowledge-base information is largely incom-
plete. Furthermore, the scarcity of training data
leads to a setting in which most entities have not
been observed at training.

State-of-the-art entity linking methods which are
able to link entities unseen at training time make
predictions for each mention independently (Lo-
geswaran et al., 2019; Wu et al., 2019). In this way,
the methods may have difficulty linking mentions
which, as in the example above, have little lexical
similarity with the entities in the knowledge-base,
as well as mentions for which the context is highly
ambiguous. These mentions cannot directly use
information from one mention (or its linking deci-
sion) to inform the prediction of another mention.
On the other hand, entity linking methods that do
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jointly consider entity linking decisions (Ganea
and Hofmann, 2017; Le and Titov, 2018) are de-
signed for cases in which all of the entities in the
knowledge-base to have example mentions or meta-
data at training time (Logeswaran et al., 2019).

In this paper, we propose an entity linking model
in which entity mentions are either (1) linked di-
rectly to an entity in the knowledge-base or (2) join
a cluster of other mentions and link as a cluster to
an entity in the knowledge-base. Some mentions
may be difficult to link directly to their referent
ground truth entity, but may have very clear coref-
erence relationships to other mentions. So long as
one mention among the group of mentions clus-
tered together links to the correct entity the entire
cluster can be correctly classified. This provides
for a joint, tranductive-like, inference procedure
for linking. We describe both the inference proce-
dure as well as training objective for optimizing
the model’s inference procedure, based on recent
work on supervised clustering (Yadav et al., 2019).

It is important to note that our approach does
not aim to do joint coreference and linking, but
rather makes joint linking predictions by clustering
together mentions that are difficult to link directly
to the knowledge-base. For instance, in Figure 1,
the mention expression may be difficult to link to
the ground truth Facial expression entity
in the knowledge-base because the mention can
refer to a large number of entities. However, the
local syntactic and semantic information of the
paragraph give strong signals that expression is
coreferent with facial expression, which is easily
linked to the correct entity.

We perform experiments on two biomedical en-
tity linking datsets: MedMentions (Mohan and Li,
2019), the largest publicly available dataset as well
as the benchmark BC5CDR (Li et al., 2016). We
find that our approach improves over our strongest
baseline by 2.3 points of accuracy on MedMen-
tions and 0.8 points of accuracy on BC5CDR over
the baseline method (Logeswaran et al., 2019). We
further analyze the performance of our approach
and observe that (1) our method better handles am-
biguous mention surface forms (as in the example
shown in Figure 1) and (2) our method can cor-
rectly link mentions even when the candidate gen-
eration step fails to provide the correct entity as a
candidate.

2 Background

Each document D ∈ D, has a set of mentions
M(D) = {m(D)

1 ,m
(D)
2 , . . . ,m

(D)
N }. We denote

the set of all mentions across all documents as
plainlyM. The task of entity linking is to classify
each mention mi as referent to a single entity ei
from a KB of entities. We use E(mi) to refer to the
ground truth entity of mention mi and êi to refer
to the predicted entity.

Knowledge-bases. We assume that we are given a
knowledge-base corresponding to a closed world
of entities. These KBs are typically massive:
English Wikipedia contains just over 6M entities1

and the 2020 release of the UMLS contains 4.28M
entities2. We describe in Sections 5.1 & 5.2 the
details of the KBs used in each of the experiments.

Candidate Generation. Given the massive num-
ber of entities to which a mention may refer, previ-
ous work (Logeswaran et al., 2019, inter alia) uses
a candidate generation step to reduce the restrict
the number of entities considered for a given men-
tion, m, to a candidate set Γ(m). The recall of this
step is critical to the overall performance of entity
linking models.

3 Model

In this section, we describe our clustering-based
approach for jointly making entity linking predic-
tions for a set of mentions. Our proposed inference
method builds a graph where the nodes are the
union of all of the mentions and entities and the
edges have weights denoting the affinities between
the endpoints. To make linking decisions, we clus-
ter the nodes of the graph such that each cluster
contains exactly one entity, following which each
mention is assigned to the entity in its cluster.

3.1 Clustering-based Entity Linking

Let ϕ : M×M → R and ψ : M× E → R be
parameterized functions which compute symmet-
ric mention-mention and mention-entity affinities,
respectively. The exact parameterizations of these
functions are detailed in Section 3.2.

Define the undirected, weighted graph G =
(V,E,w) where V = M ∪ E and E = M ×

1number of content pages as of May 20, 2020, https://
en.wikipedia.org/wiki/Special:Statistics

2https://www.nlm.nih.gov/research/
umls/knowledge_sources/metathesaurus/
release/notes.html

https://en.wikipedia.org/wiki/Special:Statistics
https://en.wikipedia.org/wiki/Special:Statistics
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/notes.html
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/notes.html
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/notes.html
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Figure 2: Clustering-based Inference for Entity Linking. Mentions are shown in circles and entities in squares.
Color families indicate ground-truth cluster assignments. The left figure shows the graph G that is the basis of the
clustering task, the center figure show predictions under independent linking model, and the right figure shows our
proposed inference linking mentions to entities by running our proposed constrained clustering inference procedure
over G that assigns at most one entity per cluster.

M ∪ {(m, e) : e ∈ Γ(m)}. The weight of
each edge, w(vi, vj) for vi, vj ∈ V , is deter-
mined by ϕ or ψ depending on the vertices of the
edge: w(mi,mj) = ϕ(mi,mj) and w(mi, el) =
ψ(mi, el). Linking decisions for each mention are
determined by clustering the vertices of G under
the constraint that every entity must appear in ex-
actly one cluster.

Given the graph G, we start with every node
in their own individual cluster. We define affinity
between a pair of clusters as the strongest cross-
cluster edge between nodes in the two clusters. It-
eratively, we greedily merge clusters by choosing a
pair of clusters with largest affinity between them
under the constraint that we cannot merge two clus-
ters which both contain an entity. When every clus-
ter contains exactly one entity, this process can no
longer merge any clusters, and thus terminates3.
Each mention is linked to the entity present in its
cluster at the end of inference. Algorithm 1 de-
scribes this process of constructing the graph and
clustering nodes to make linking decisions more
formally.

Figure 2 shows the proposed inference in action

3This process is equivalent to single-linkage hierarchical
agglomerative clustering with the constraint that two entities
cannot be in the same cluster.

on five entities and six mentions. Initially, every
mention and entity start in a singleton cluster. In the
first round, clusters {m1} and {m2} are merged,
followed by merger of {e3} and {m6} in the sec-
ond round, and so on. Note that in fifth round,
clusters c1 = {m4, e2} has higher affinity with
c2 = {m1,m2,m3, e1} than with c3 = {m5}, yet
c1 and c3 are merged instead of c1 and c2 due to the
constraint that we cannot merge two clusters which
both contain an entity. At the end, every mention is
clustered together with exactly one entity, and there
could be entities present as singleton clusters such
as {e4} and {e5}. Note that m3 correctly links to
its gold entity e1 as a result of being clustered with
mentions m1,m2 even though it has higher affinity
with entity e3 : w(m3, e3) > w(m3, e1).

3.2 Affinity Models

We parameterize ψ(·, ·) and φ(·, ·) using two sep-
arate deep transformer encoders (Vaswani et al.,
2017) for our mention-mention affinity model and
mention-entity affinity model — specifically we
use the BERT architecture (Devlin et al., 2019)
initialized using the weights from BioBERT (Lee
et al., 2019).
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3.2.1 Mention-Mention Model
The mention-mention model is also a cross-
encoder, taking as input a pair of mention in context
and producing a single scalar affinity for every pair.
The input tokens take the form:

[CLS] < mi > [SEP] < mj > [SEP]

where < mi > := cl[START]mi[END]cr

where mi is the mention tokens and cl and cr are
the left and right context of the mention in the text,
respectively. The [START] and [END] tokens are
special tokens fine-tuned to signify the start and
end of the mention in context, respectively. We
restrict the length of each input sequence to have
a maximum of 256 tokens. A representations of
each mention is computed using the average of
the encoder’s output representations corresponding
to the mention’s input tokens. The affinity for a
mention pair is computed by concatenating their
mention representations and passing it through a
linear layer with a sigmoid activation. We make this
affinity symmetric by averaging the two possible
orderings of a pair of mentions in the cross-encoder
input sequence.

3.2.2 Mention-Entity Model
The mention-entity affinity model is a cross-
encoder model (Vig and Ramea, 2019; Wolf et al.,
2019; Humeau et al., 2019, inter alia) and takes as
input the concatenation of the mention in context
with the entity description. The input tokens take
the form:

[CLS]cl[START]m[END]cr[SEP]e[SEP]

where the mention in context is the same as in the
mention-mention model and e is the description
of the entity. We restrict the length of this input
sequence to 256 tokens. After passing the input
sequence through BERT, we transform the output
representation corresponding to the [CLS] token
with a linear layer with one output unit. This value
is finally passed through the sigmoid function to
output affinity between the mention and the entity.

4 Training

In this section, we explain the training procedure
for the affinity models ϕ(·, ·) and ψ(·, ·) used by
the clustering inference procedure. We train the
mention-mention and mention-entity models inde-
pendently in a way that allows the affinities to be
comparable when performing inference.

Algorithm 1 Clustering Inference for Linking

1: Input: (M, E ,Γ, ϕ, ψ)

2: Output: {(mi, êi)}|M|i=1

3: � Construct the graph G
4: E = {}
5: for mi ∈M do
6: Let Di be the document containing mi

7: for mj ∈M(Di) \ {mi} do
8: E = E ∪ {(mi,mj , ϕ(mi,mj))}
9: for el ∈ Γ(mi) do

10: E = E ∪ {(mi, el, ψ(mi, el))}
11: Construct G = (V,E) from edge set E
12: Let S be the edges sorted in descending order
13: � Cluster nodes of G under linking constraint
14: Ĉ = {{v}|v ∈ V }
15: for (s, t) ∈ S do
16: if Ĉ(s) ∩ E = ∅ or Ĉ(t) ∩ E = ∅ then
17: Ĉ = Ĉ \ {Ĉ(s), Ĉ(t)}
18: Ĉ = Ĉ ∪ {Ĉ(s) ∪ Ĉ(t)}
19: � Make linking decisions based on clustering
20: L = {}
21: for C ∈ Ĉ do
22: M = C ∩M
23: {ê} = C ∩ E
24: for m ∈M do
25: L = L ∪ {(m, ê)}
26: return L

We use triplet max-margin based training ob-
jectives to train both models. The most important
aspect of our procedure is how we pick negatives
during training. For the mention-entity model, we
restrict our negatives to be from the candidate set.
For the mention-mention model, we restrict our
negatives to come from mentions within the same
document. From these sets of possible negatives
we choose the top-k most offending ones accord-
ing the instantaneous state of the model – i.e. the
negatives with highest predicted affinities accord-
ing to the model at that point during training. The
following sections detail the training procedures
for both models.

4.1 Mention-Mention Affinity Training

To train the mention-mention affinity model we
use a variant of the maximum spanning tree (MST)
supervised single linkage clustering algorithm pre-
sented in Yadav et al. (2019). LetM(D)

el = {m ∈
M(D) | E(m) = el} be the set of mentions re-
ferring to entity el in any one document and the
set of ground truth clusters be represented by
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C∗ = {M(D)
el | el ∈ E}. Let P be the set of pos-

itive training edges: the edges of the MST of the
complete graph on the clusterC ∈ C∗. LetNϕ(m∗)
be the k-nearest within document negatives to the
anchor point m∗ ∈ C according to the current state
of the model during training. The objective of this
training procedure is to minimize the following
triplet max-margin loss4 with margin µ for each
cluster C ∈ C∗:

Lϕ(θ;C)=
∑

m∗,m+∈P

∑
m−∈Nϕ(m∗)

`ϕ,µ(m∗,m+,m−),

where `ϕ,µ(a, p, n) = [ϕ(a, n)− ϕ(a, p) + µ]+.

4.2 Mention-Entity Affinity Training

For the mention-entity model, we use a triplet max-
margin based objective with margin µ where the
anchor is a mention m in the training set, the posi-
tive is the ground truth entity e+ = E(m), and the
negatives are chosen from the candidate set Γ(m).
Denote the k most offending negatives according
to the current state of the model during training as
Nψ(m) ⊆ Γ(m) \ {E(m)}. Formally, the loss is

Lψ(θ;M)=
∑
m, e+

∑
e−∈Nψ(m)

`ψ,µ(m, e+, e−),

where `ψ,µ(a, p, n) = [ψ(a, n)− ψ(a, p) + µ]+.

5 Experiments

We evaluate on biomedical entity linking using the
MedMentions (Mohan and Li, 2019) and BC5CDR
(Li et al., 2016) datasets. We compare to state-of-
the-art methods. We then analyze the performance
of our method in more detail and provide qualita-
tive examples demonstrating our approaches’ abil-
ity to use mention-mention relationships to improve
candidate generation and linking.

5.1 MedMentions

MedMentions is a publicly available5 dataset con-
sisting of the titles and abstracts of 4,392 PubMed
articles. The dataset is hand-labeled by annotators
and contains labeled mention spans and entities
linked to the 2017AA full version of UMLS. Fol-
lowing the suggestion of Mohan and Li (2019), we
use the ST21PV subset, which restricts the enti-
ties linked in documents to a set of 21 entity types

4Define [x]+ = max(x, 0)
5https://github.com/chanzuckerberg/

MedMentions

MedMentions BC5CDR
Train Dev Test Train Dev Test

|M| 120K 40K 40K 18K 934 10K
|E(M)| 19K 9K 8K 2K 281 1K
% seen 100 57.7 57.5 100 80.1 64.8

Table 1: Linking Datasets. Statistics of each dataset,
including the percent of ground truth entities seen dur-
ing training (% seen).

that were deemed most important for building sci-
entific knowledge-bases. We refer the readers to
Mohan and Li (2019) for a complete analysis of
the dataset and provide a few important summary
statistics here. The train/dev/test split partitions the
PubMed articles into three non-overlapping groups.
This means that some entities seen at training time
will appear in dev/test and other entities will ap-
pear in dev/test but not at training time. In fact, a
large number of entities that appear in dev/test time
are unseen at training, about 42% of entities. See
Table 1 for split details and statistics.

Previous work has evaluated on MedMentions
using unfairly optimistic candidate generation set-
tings such as using only 10 candidates including
the ground truth (Zhu et al., 2019) or restricting
candidates to entities appearing somewhere in the
MedMentions corpus (Murty et al., 2018). We in-
stead work in a much more general setting where
all entities in UMLS are considered at candidate
generation time and the generated candidates might
not include the ground truth entity.

5.2 BC5CDR
BC5CDR (Li et al., 2016) is another entity link-
ing benchmark in the biomedical domain. The
dataset consists of 1,500 PubMed articles anno-
tated with labeled disease and chemical entities.
Unlike MedMentions, which contains 21 types of
entities, this dataset contains just two types. These
chemical and disease mentions are labeled with
entities from MeSH6, a much smaller biomedical
KB than UMLS. See Table 1 for split details and
statistics.

5.3 Preprocessing
The MedMentions ST21PV corpus is processed
as follows: (i) Abbreviations defined in the text of
each paper are identified using AB3P (Sohn et al.,
2008). Each definition and abbreviation instance
is then replaced with the expanded form. (ii) The
text of each paper in the corpus is tokenized and

6https://www.nlm.nih.gov/mesh

https://github.com/chanzuckerberg/MedMentions
https://github.com/chanzuckerberg/MedMentions
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Impact of alcohol use on EEG dynamics of 
response inhibition : a cotwin control analysis 
Research indicates that alcohol misuse is 
associated with behavioral disinhibition , but 
the neurophysiological mechanisms governing 
this relationship remain largely unknown . 
Recent work suggests that successful 
inhibition and cognitive control involve 
electrophysiological theta - band dynamics ….

C1510574
Response Inhibition

Impact of cofactor - binding loop mutations 
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specific activity .
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Neural Inhibition
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Figure 3: Example predictions on Ambiguous Mentions. Here we show two example outputs for highly am-
bigous mention surface forms (inhibition and activity). The independent model incorrectly makes predic-
tions on these surface forms. The clustering-based model is able to have each ambiguous mention link to a less
ambiguous mention in the same abstract and thereby make correct predictions.

split into sentences using CoreNLP (Manning et al.,
2014). (iii) Overlapping mentions are resolved by
preferring longer mentions that begin earlier in
each sentence, and mentions are truncated at sen-
tence boundaries. This results in 379 mentions to
be dropped from the total of 203,282. (iv) Finally,
the corpus is saved into the IOB2 tag format. The
same preprocessing steps are used for BC5CDR,
except overlapping mentions are not dropped.

5.4 Candidate Generation

For both datasets, we use a character n-gram TF-
IDF model to produce candidates for all of the
mentions in all splits. The candidate generator uti-
lizes the 200k most frequent character n-grams,
n ∈ {2 . . . 5} and the 200k most frequent words
in the names in E to produce sparse vectors for all
of the mentions and entity descriptions (which in
our case is the canonical name, the type, and a list
of known aliases and synonyms). Table 5 provides
candidate generation results for each dataset. The
results report the average recall@K at different
numbers of candidates (K), i.e., whether or not the
gold entity is top K candidates for a given mention.

5.5 Training and Inference Details

Our model contains 220M parameters, the major-
ity of which are contained within the two separate
BERT-based models. We optimize both the models
with mini-batch stochastic gradient descent using
the Adam optimizer (Kingma and Ba, 2014) with
recommended learning rate of 5e-5 (Devlin et al.,

2019) with no warm-up steps. We accumulate gra-
dients over all of the triples for a batch size of 16
within document clusters. We compute the top-k
most offending negatives on-the-fly for each batch
by running the model in inference mode proceed-
ing each training step. Training and inference are
done on a single machine with 8 NVIDIA 1080
Ti GPUs. We train our model on MedMentions for
two epochs and BC5CDR for four epochs. Training
takes approximately three days for MedMentions
and one day for BC5CDR. Clustering-based infer-
ence takes about three hours for MedMentions and
one hour for BC5CDR. Code and data to reproduce
experiments will be made available.

5.6 Results

We compare our clustering-based inference pro-
cedure, which we refer to our approach as
CLUSTERING-BASED, to a state-of-the-art indepen-
dent inference procedure, INDEPENDENT, which is
the zero-shot architecture proposed by Logeswaran
et al.. This same model is used as the mention-
entity affinity model used in our approach. We also
compare to to an n-gram tf-idf model (our can-
didate generation model), TAGGERONE (Leaman
and Lu, 2016), BIOSYN (Sung et al., 2020), and
SAPBERT (Liu et al., 2020) on both MedMentions
and BC5CDR.

Table 2 shows performance of the baseline mod-
els, INDEPENDENT, and CLUSTERING-BASED in-
ference procedure on MedMentions and BC5CDR.
We report results using the gold mention segmen-
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MedMentions BC5CDR
Overall Acc. on Overall Acc. on

Acc. Seen Unseen Acc. Seen Unseen

N-GRAM TF-IDF 50.9 50.9 51.0 86.9 89.2 74.6
BIOSYN (Sung et al., 2020) 72.5† 76.5† 58.7† 87.8† 89.0† 81.1†

SAPBERT (Liu et al., 2020) 69.8† 72.9† 58.9† 85.2† 85.8† 82.0†
INDEPENDENT (Logeswaran et al., 2019) 72.8 75.9 61.9 90.5 94.0 73.6
CLUSTERING-BASED (ours) 74.1 77.3 62.9 91.3 94.9 73.8

w/ Gold Types
N-GRAM TF-IDF 67.9 69.0 64.0 87.8 90.2 76.1
TAGGERONE (Leaman and Lu, 2016) 73.8 78.2 58.8 89.8 91.8 79.9
BIOSYN (Sung et al., 2020) 77.0† 80.7† 64.1† 87.9† 89.1† 81.3†

SAPBERT (Liu et al., 2020) 74.1† 77.0† 63.8† 86.0† 86.8† 82.0†
INDEPENDENT (Logeswaran et al., 2019) 76.8 79.2 68.4 90.6 94.1 73.6
CLUSTERING-BASED (ours) 79.1 81.5 70.5 91.4 94.9 74.0

Table 2: Entity Linking Results. We report linking accuracy on MedMentions and BC5CDR datasets with gold
mentions spans and gold mention spans and types. We observe that CLUSTERING-BASED inference provides im-
proved accuracy in each setting with additional improvements seen when gold entity types are provided. (†Hits at
one synonym — multiple entities could be predicted)

tation (rather than end-to-end) to focus on the per-
formance of each model in terms of linking rather
than confounding the performance by including
segmentation. Due to TAGGERONE’s joint entity
recognition, typing, and linking architecture, we
cannot make predictions for gold mention bound-
aries without also using their gold types. And so
to have a fair comparison to TaggerOne, we pro-
vide the gold mention boundaries and types to each
system and report these results as well.

We use seen and unseen to refer to the sets of
mentions whose ground truth entities are seen and
unseen at training, respectively. Note that even if
a mention is in the subset of mentions referred to
as seen, it does not mean that we have seen the
particular surface form before in the training set,
merely that we have seen other mentions of that
particular entity.

On MedMentions, when the models are provided
with only the gold mention span, CLUSTERING-
BASED inference procedure outperforms INDEPEN-
DENT by 1.3 points of accuracy, and we see im-
provements in accuracy for both seen and unseen
entities. When the models are additionally provided
with the gold type, we see substantial improve-
ments in accuracy for both INDEPENDENT and
CLUSTERING-BASED over TAGGERONE, namely
3.0 and 5.3 points of improvement, respectively.

On BC5CDR, when the models are provided
with only the gold mention span, CLUSTERING-

BASED inference procedure outperforms INDEPEN-
DENT by 0.4 points of accuracy, and we see im-
provements in accuracy for both seen and unseen
entities. When the models are additionally provided
with the gold type, we see improvements in accu-
racy for both INDEPENDENT and CLUSTERING-
BASED over TAGGERONE, namely 0.8 and 1.6
points of improvement, respectively.

Observe that the candidate generation results are
drastically different for the two datasets (Table 5).
We posit that the ability to generate correct candi-
dates correlates with the relative difficultly of the
linking task on each dataset, respectively.

5.7 Analysis: Recovering from Poor
Candidate Generation

We hypothesize that our clustering-based inference
procedure would allow for better performance on
mentions for which candidate generation is diffi-
cult. Observe that while the performance of the in-
dependent model is upper bounded by the recall of
candidate generation, this is not an upper bound for
the clustering-based model. The clustering-based
model can allow mentions that have no suitable
candidates to link to other mentions in the same
document. We report the accuracy of both systems
with respect to whether or not the ground truth
entity is in each mentions’ list of candidates.

The accuracy for each system and each partition
of mentions is shown in Table 3. Observe that our
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approach offers a large number of mentions a cor-
rect resolution, when the independent model could
not link them correctly due to the ground truth
entity being missing from the candidate list. Addi-
tionally, it can be seen that CLUSTERING-BASED

does sacrifice some performance in comparison to
INDEPENDENT, but more than makes up for it in
the case where the ground truth entity is not in the
candidate set.

5.8 Analysis: Handling Ambiguous Mentions
We also hypothesize that for mentions which are
highly ambiguous and could refer to many differ-
ent entities, such as common nouns like virus, dis-
ease, etc, the clustering-based inference should
offer improvements. Table 4 shows that our ap-
proach is able to correctly link more ambiguous
mentions compared to independent model7. Fig-
ure 3 shows two examples from this subset where
CLUSTERING-BASED inference is able to make the
correct linking decision and INDEPENDENT is not.

6 Related Work

Entity linking is widely studied and often focused
on linking mentions to Wikipedia entities (also
known as Wikification) (Mihalcea and Csomai,
2007; Cucerzan, 2007; Milne and Witten, 2008;
Hoffart et al., 2011; Ratinov et al., 2011; Cheng
and Roth, 2013). Entity linking is often done inde-
pendently for each mention in the document (Rati-
nov et al., 2011; Raiman and Raiman, 2018) or by
modeling dependencies between predictions of en-
tities in a document (Cheng and Roth, 2013; Ganea
and Hofmann, 2017; Le and Titov, 2018).

In the biomedical domain, Unified Medical
Language System (UMLS) is often used as a
knowledge-base for entities (Mohan and Li, 2019;
Leaman and Lu, 2016). While UMLS is a rich on-
tology of concepts and relationships between them,
this domain is low resource compared to Wikipedia
with respect to number of labeled training data for
each entity mention. This leads to a zero-shot set-
ting in datasets such as MedMentions (Mohan and
Li, 2019) where new entities are seen at test time.
Previous work has addressed this zero-shot setting
using models of the type hierarchy (Murty et al.,
2018; Zhu et al., 2019). This previous work (Murty
et al., 2018; Zhu et al., 2019) uses an unrealistic

7These are: activation, activity, a, b, cardiac, cells, clin-
ical, compounds, cr, development, disease, function, fusion,
inhibition, injuries, injury, liver, management, methods, mice,
model, pa, production, protein, regulation, report, responses,
response, r, screening, stress, studies, study, treatment

candidate generation setting where the true positive
candidate is within the candidate set and/or entities
are limited to those in the dataset rather than those
in the knowledge-base.

Mention-mention relationships are also explored
in (Le and Titov, 2018) which extends the pairwise
CRF model (Ganea and Hofmann, 2017) to use
mention-level relationships in addition to entity
relationships. These works use attention in a way
to build the context representation of the mentions.
However, as mentioned by Logeswaran et al. (2019)
is not well suited for zero-shot linking.

Coreference (both within and across documents)
has also been explored by past work (Dutta and
Weikum, 2015). This work uses an iterative proce-
dure that performs hard clustering for the sake of
aggregating the contexts of entity mentions. Durrett
and Klein (2014) presents a CRF-based model for
joint NER, within-document coreference, and link-
ing. They show that jointly modeling these three
tasks improves performance over the independent
baselines. This differs from our work since we
do not require coreference decisions to be correct
in order to make correct linking decisions. Other
work performs joint entity and event coreference
(Barhom et al., 2019) without linking.

7 Conclusion

In this work, we presented a novel clustering-based
inference procedure which enables joint entity link-
ing predictions. We evaluate the effectiveness of
our approach on the two biomedical entity link-
ing datasets, including the largest publicly avail-
able dataset. We show through analysis that our
approach is better suited to link mentions with am-
biguous surface forms and link mentions where the
ground truth entity is not in the candidate set.

8 Ethical Considerations

Entity linking is a task with the intention of provid-
ing useful information when building a semantic
index of documents. This semantic index is a core
component of systems which allow users to search,
retrieve, and analyze text documents. In our spe-
cific case, we are interested in building semantic
indexes of scientific documents where the end user
would be scientists and researchers. The goal is to
help them navigate the vast amount of literature
and accelerate science. This being said, users need
to take the outputs of such a system as sugges-
tions and with the potential that the information is
incorrect. Researchers must be aware that the sys-
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MedMentions BC5CDR
E(m) ∈ Γ(m) E(m) 6∈ Γ(m) E(m) ∈ Γ(m) E(m) 6∈ Γ(m)

INDEPENDENT 85.3 0.0 95.5 0.0
CLUSTERING-BASED 84.5 13.9 95.3 14.9

w/ Gold Types
INDEPENDENT 90.0 0.0 95.7 0.0
CLUSTERING-BASED 89.3 19.3 95.4 15.9

Table 3: Performance when Candidate Generation Fails. We report the accuracy of each method on mentions
for which the ground truth entity is in the candidate list (E(m) ∈ Γ(m)) and is not in the list (E(m) 6∈ Γ(m)). We
observe that our proposed approach is able to perform reasonably well even when candidate generation fails.

Accuracy

INDEPENDENT (Logeswaran et al., 2019) 71.91
CLUSTERING-BASED (ours) 73.03

Table 4: Performance on Ambiguous Mentions We
select mentions for which the surface form is labeled 10
or more different entities in MedMentions and measure
performance on instances of these surface forms on the
test data. We observe that CLUSTERING-BASED is able
to more accurately link these mentions. Figure 3 shows
examples of these mentions.

Recall@ BC5CDR MedMentions

1 86.9 50.8
2 89.4 63.8
4 91.1 73.4
8 92.1 79.2
16 93.1 82.3
32 94.3 84.6
64 94.9 85.3

Table 5: Candidate Generation Recall. Recall is mea-
sured by whether or not the ground truth entity is in
the top K candidate entities for the given mention. We
report the micro average recall over all mentions.

tem is not perfect and they should not jump to any
conclusions especially about important decisions.
Additionally, the researcher can always verify the
decisions being made by the system.

While this paper focuses on biomedical entity
linking, this technique could be extended to other
domains. In such other domains, users might not
have as much expertise, but the user is still respon-
sible for making decisions on their own, since the
system is not perfect. In addition, the system de-
velopers and designers need to be aware of their
particular application to ensure to mitigate harm
which could come from such a system. For exam-

ple, in any application that deals with personalized
data, we need to be wary of the potential outcomes
which could come from an entity linking based
system or semantic index, such as privacy or other
potential malicious behaviour or unforeseen con-
sequences due to the decisions being made by the
system.
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