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Abstract

In this work we explore Unsupervised Do-
main Adaptation (UDA) of pretrained lan-
guage models for downstream tasks. We intro-
duce UDALM, a fine-tuning procedure, using
a mixed classification and Masked Language
Model loss, that can adapt to the target do-
main distribution in a robust and sample effi-
cient manner. Our experiments show that per-
formance of models trained with the mixed
loss scales with the amount of available tar-
get data and the mixed loss can be effectively
used as a stopping criterion during UDA train-
ing. Furthermore, we discuss the relationship
between A-distance and the target error and ex-
plore some limitations of the Domain Adver-
sarial Training approach. Our method is eval-
uated on twelve domain pairs of the Amazon
Reviews Sentiment dataset, yielding 91.74%
accuracy, which is an 1.11% absolute improve-
ment over the state-of-the-art.

1 Introduction

Deep architectures have achieved state-of-the-art
results in a variety of machine learning tasks. How-
ever, real world deployments of machine learning
systems often operate under domain shift, which
leads to performance degradation. This introduces
the need for adaptation techniques, where a model
is trained with data from a specific domain, and
then can be optimized for use in new settings. Effi-
cient techniques for model re-usability can lead to
faster and cheaper development of machine learn-
ing applications and facilitate their wider adoption.
Especially techniques for Unsupervised Domain
Adaptation (UDA) can have high real world im-
pact, because they do not rely on expensive and
time-consuming annotation processes to collect la-
beled data for domain-specific supervised training,
further streamlining the process.

UDA approaches in the literature can be grouped
in three major categories, namely pseudo-labeling
techniques (e.g. Yarowsky, 1995; Zhou and Li,

2005), domain adversarial training (e.g. Ganin
et al.,, 2016) and pivot-based approaches (e.g.
Blitzer et al., 2006; Pan et al., 2010). Pseudo-
labeling approaches use a model trained on the
source labeled data to produce pseudo-labels for
unlabeled target data and then train a model for
the target domain in a supervised manner. Do-
main adversarial training aims to learn a domain-
independent mapping for input samples by adding
an adversarial cost during model training, that min-
imizes the distance between the source and target
domain distributions. Pivot-based approaches aim
to select domain-invariant features (pivots) and use
them as a basis for cross-domain mapping. This
work does not fall under any of these categories,
rather we aim to optimize the fine-tuning procedure
of pretrained language models (LMs) for learning
under domain-shift.

Transfer learning from language models pre-
trained in massive corpora (Howard and Ruder,
2018; Devlin et al., 2019; Yang et al., 2019; Liu
et al., 2019; Brown et al., 2020) has yielded signif-
icant improvements across a wide variety of NLP
tasks, even when small amounts of data are used
for fine-tuning. Fine-tuning a pretrained model is
a straightforward framework for adaptation to tar-
get tasks and new domains, when labeled data are
available. However, optimizing the fine-tuning pro-
cess in UDA scenarios, where only labeled out-of-
domain and unlabeled in-domain data are available
is challenging.

In this work, we propose UDALM, a fine-tuning
method for BERT (Devlin et al., 2019) in order to
address the UDA problem. Our method is based
on simultaneously learning the task from labeled
data in the source distribution, while adapting to
the language in the target distribution using multi-
task learning. The key idea of our method is that
by simultaneously minimizing a task-specific loss
on the source data and a language modeling loss
on the target data during fine-tuning, the model
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will be able to adapt to the language of the target
domain, while learning the supervised task from
the available labeled data.

Our key contributions are: (a) We introduce
UDALM, a novel, simple and robust unsuper-
vised domain adaptation procedure for downstream
BERT models based on multitask learning, (b) we
achieve state-of-the-art results for the Amazon re-
views benchmark dataset, surpassing more com-
plicated approaches and (c) we explore how A-
distance and the target error are related and con-
clude with some remarks on domain adversarial
training, based on theoretical concepts and our em-
pirical observations. Our code and models are pub-
licly available!.

2 Related Work

Traditionally, UDA has been performed using
pseudo-labeling approaches. Pseudo-labeling tech-
niques are semi-supervised algorithms that either
use the same model (self-training) (Yarowsky,
1995; McClosky et al., 2006; Abney, 2007) or
multiple ensembles of models (tri-training) (Zhou
and Li, 2005; Sggaard, 2010) in order to produce
pseudo-labels for the target unlabeled data. Saito
et al. (2017) proposed an asymmetric tri-training
approach. Ruder and Plank (2018) introduced a
multi-task tri-training method. Rotman and Re-
ichart (2019) and Lim et al. (2020) study pseudo-
labeling with contextualized word representations.
Ye et al. (2020) combine self-training with XLM-
R (Conneau et al., 2020) to reduce the produced
label noise and propose CFd, class aware feature
self-distillation.

Another line of UDA research includes pivot-
based methods, focusing on extracting cross-
domain features. Structural Correspondence Learn-
ing (SCL) (Blitzer et al., 2006) and Spectral Feature
Alignment (Pan et al., 2010) aim to find domain-
invariant features (pivots) to learn a mapping be-
tween two domain distributions. Ziser and Reichart
(2017, 2018, 2019) combine SCL with neural net-
work architectures and language modeling. Miller
(2019) propose to jointly learn the task and pivots.
Li et al. (2018b) learn pivots with hierarchical at-
tention networks. Pivot-based methods have also
been used in conjunction with BERT (Ben-David
et al., 2020).

Domain adversarial training is a dominant ap-
proach for UDA (Ramponi and Plank, 2020), in-

"https://github.com/ckarouzos/slp_daptmlm

spired by the theory for learning from different do-
mains introduced in Ben-David et al. (2007, 2010).
Ganin et al. (2016); Ganin and Lempitsky (2015)
propose to learn a task while not being able to dis-
tinguish if samples come from the source or the
target distribution, through use of an adversarial
cost. This approach has been adopted for a diverse
set of problems, e.g. sentiment analysis, tweet
classification and universal dependency parsing (Li
et al., 2018a; Alam et al., 2018; Sato et al., 2017).
Du et al. (2020) pose domain adversarial training
in the context of BERT models. Zhao et al. (2018)
propose multi-source domain adversarial networks.
Guo et al. (2018) propose a mixture-of-experts ap-
proach for multi-source UDA. Guo et al. (2020)
explore distance measures as additional losses and
use them to construct dynamic multi-armed ban-
dit controller for the source domains. Shen et al.
(2018) learn domain invariant features via Wasser-
stein distance. Bousmalis et al. (2016) introduce do-
main seperation networks with private and shared
encoders.

Unsupervised pretraining on domain-specific
corpora can be an effective adaptation process. For
example BioBERT (Lee et al., 2020) and SciB-
ERT (Beltagy et al., 2019) are specialized BERT
variants, where pretraining is extended on large
amounts of biomedical and scientific corpora re-
spectively. Sun et al. (2019) propose continuing the
pretraining of BERT with target domain data and
multitask learning using relevant tasks for BERT
fine-tuning. Xu et al. (2019) introduce a review
reading comprehension task and a post-training
approach for BERT with an auxiliary loss on a
question-answering task. Continuing pretraining
on multiple phases, from general to domain spe-
cific (DAPT) and task specific data (TAPT), further
improves performance of pretrained language mod-
els, as shown by Gururangan et al. (2020). Han and
Eisenstein (2019) propose AdaptaBERT, which in-
cludes a second phase of unsupervised pretraining,
in order to use BERT in a unsupervised domain
adaptation context.

Recent works have highlighted the merits of us-
ing Language Modeling as an auxiliary task during
fine-tuning. Chronopoulou et al. (2019) use an aux-
iliary LM loss to avoid catastrophic forgetting in
transfer learning and Jia et al. (2019) adopt this
approach for cross-domain named-entity recogni-
tion. We draw inspiration from these approaches
and utilize auxiliary Language Modeling for UDA.
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Figure 1: (a) BERT (Devlin et al., 2019) is pretrained on English Wikipedia and BookCorpus with the Masked
Language Modeling (MLM) and the Next Sentence Prediction (NSP) tasks. (b) We continue the pretraining of
BERT on unlabeled target domain data using the MLM task. (c) We train a task classifier with source domain
labeled data, while we keep the MLM objective on unlabeled target domain data.

3 Problem Definition

Let X be the input space and Y the set of labels.
For binary classification tasks Y = {0, 1}. In do-
main adaptation there are two different distribu-
tions over X x Y, called the source domain Dg
and the target domain Dr. In the unsupervised
setting labels are provided for samples drawn from
Dg, while samples drawn from D7 are unlabeled.
The goal is to train a model that performs well
on samples drawn from the target distribution Dr.
This is summarized in Eq. 1.

S = (w4,yi)j—y ~ (Ds)"
n+m X\m (1)
T = (xl)z n+1 (DT)

where D:,)f is the marginal distribution of Dt over
X, n is the number of samples from the source
domain and m is the number of samples from the
target domain.

4 Proposed Method

Fig. 1 gives an overview of the proposed Unsu-
pervised Domain Adaptation through Language
Modeling (UDALM). Starting from a model that is
pretrained in general corpora (Fig. 1a), we keep pre-
training it on target domain data using the masked
language modeling task (Fig. 1b). On the final
fine-tuning step (Fig. 1c) we update the model
weights using both a classification loss on the la-
beled source data and Masked Language Modeling
loss on the unlabeled target data.

In Fig. 1a we see the BERT general pretrain-
ing phase. BERT (Devlin et al., 2019) is based
on the Transformer architecture (Vaswani et al.,
2017). During BERT pretraining, input tokens are
randomly selected to be masked. BERT is trained
using the Masked Language Modeling (MLM) ob-
jective, which consists of predicting the most proba-
ble tokens for the masked positions. Additionally it
uses a Next Sentence Prediction (NSP) loss, which
classifies whether the pair of input sentences are
continuous or not. If a labeled dataset is available,
a pretrained BERT model can be fine-tuned for the
downstream task in a supervised manner with the
addition of an output layer.

In Fig. 1b we initialize a model using the weights
of a generally pretrained BERT and continue pre-
training on an unsupervised set of in-domain data,
in order to adapt to the target domain. This step
does not require use of supervised data, since we
use the MLM objective.

For the final fine-tuning step, shown in Fig. 1c
we perform supervised fine-tuning on the source
data, while we keep the MLM objective on the
target data as an auxiliary task. Following standard
practice, we use the [CLS] token representation
for classification. The classifier consists of a single
feed-forward layer.

During this procedure the model learns the task
through the classification objective using the la-
beled source domain samples, and simultaneously
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it adapts to the target domain data through the
MLM objective. The model is trained on the source
domain labeled data for the classification task and
target domain unlabeled data for the masked lan-
guage modeling task. We mask only the target
domain data. During training we interleave source
and target data and feed them to the BERT encoder.
Features extracted from the source data are then
used for classification, while target features are
used for Masked Language Modeling.

The mixed loss used for the fine-tuning step, is
the sum of the classification loss L, and the aux-
iliary MLM loss Lysrar. Lorr is a cross-entropy
loss, calculated on labeled examples from source
domain, while L ;s is used to predict masked
tokens for unlabeled examples from target domain.
‘We train the model over mixed batches, that include
both source and target data, used for the respective
tasks. The mixed loss is presented in Eq. 2:

L(s,t) = ALcrr(s) + (1 = AN)Lyrm(t)  (2)

We process n labeled source samples s ~ Dg and
m unlabeled target samples t ~ D7 on a batch.
The weighting factor ) is selected as the ratio of
labeled source data over the sum of labeled source
and unlabeled target data, as stated in Eq. 3:

n

A=

3)

n+m
S Experiments

5.1 Dataset

We evaluate UDALM on the Amazon reviews
multi-domain sentiment dataset (Blitzer et al.,
2007), a standard benchmark dataset for domain
adaptation. Reviews with one or two stars are la-
beled as negative, while reviews with four or five
stars are labeled as positive. The dataset contains
reviews on four product domains: Books (B), DVDs
(D), Electronics (E) and Kitchen appliances (K),
yielding 12 adaptation scenarios of source-target
domain pairs. Balanced sets of 2000 labeled re-
views are available for each domain. We use 20000
(randomly selected) unlabeled reviews for (B), (D)
and (E). For (K) 17805 unlabeled reviews are avail-
able. For each of the 12 adaptation scenarios we
use 20% of both labeled source and unlabeled tar-
get data for validation, while labeled target data are
used for testing exclusively and are not seen during
training or validation.

5.2 Implementation Details

We use BERTpAsE (uncased) as the Language
Model on which we apply domain pretraining.
The BERT ssE original English model is a 12-
layer, 768-hidden, 12-heads, 110M parameter trans-
former architecture, trained on the BookCorpus
with 800M words and a version of the English
Wikipedia with 2500M words. We convert source
and target sentences to WordPieces (Wu et al.,
2016). For target sentences we randomly mask
15% of WordPiece tokens, as in (Devlin et al.,
2019). If a token in a specific position is selected
to be masked 80% of the time is replaced with a
[MASK] token, 10% of the time with a random
token and 10% of the time remains unchanged.

The maximum sequence length is set to 512 by
truncation of inputs. During domain pretraining
we train with batch size of 8 for 3 epochs (2 hours
on two GTX-1080Ti cards). During the final fine-
tuning step of UDALM we train with batch size 36,
consisting of n = 1 source sub-batch of 4 samples
and m = 8 target sub-batches of 4 samples each.
We update parameters after every 5 accumulated
sub-batches. We train for 10 epochs with early
stopping on the mixed loss in Eq. 2. For all ex-
periments we use AdamW optimizer (Loshchilov
and Hutter, 2018) with learning rate 10~°. Each
adaptation scenario requires one hour on one GTX-
1080Ti. For the domain adversarial experiments
we set A\ = 0.01 in Eq. 4 2 and train for 10 epochs.
Models are developed with PyTorch (Paszke et al.,
2019) and HuggingFace Transformers (Wolf et al.,
2019).

5.3 Baselines - Compared methods

We select three state-of-the-art methods for compar-
ison. Each of the selected methods represents a dif-
ferent line of UDA research, namely domain adver-
sarial training BERT-DAAT (Du et al., 2020), self-
training XLM-R based p+CFd (Ye et al., 2020)
and pivot-based R-PERL (Ben-David et al., 2020).
We report results for the following settings with
BERT models:

Source only (SO): We fine-tune BERT on source
domain labeled data, without using target data.
Domain Pretraining (DPT): We use the target do-
main unlabeled data in order to continue pretraining
of BERT with MLM loss (as in Fig. 1b) and then

*We also manually experimented with Ay = 1 and
lambdaq = 0.1, and a sigmoid schedule for A\q. We report
best results.
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R-PERL DAAT p+CFd SO BERT DAT BERT DPT BERT UDALM
B—D 87.8 90.9 87.7 89.561 £0.76 87.31+2.14 90.49£0.38 90.97+0.22
B—FE 87.2 88.9 91.3 90.51 £0.51 86.91+2.71 90.38+1.59 91.69+0.31
B—+ K 90.2 88.0 92.5 91.75+0.28 90.59+1.17 92.66 £0.43 93.21 +0.22
D— B 85.6 89.7 91.5 90.26 £ 0.64 86.30+3.10 91.02+0.75 91.00 £ 0.42
D—FE 89.3 90.1 91.6 88.71£1.48 87.85+1.24 91.03£0.82 92.30+£0.47
D—-K 90.4 88.8 92.5 91.224+0.69 89.95+1.53 92.30£0.42 93.66£0.37
E— B 90.2 89.6 88.7 87.96 £0.89 85.65+1.91 88.52£0.55 90.61+0.30
E—D 84.8 89.3 88.2 87.37+£0.64 83.99+1.31 87.85+0.47 88.83+0.61
EF—=K 91.2 91.7 93.6 93.30 £0.50 92.45+1.35 94.39£0.72 94.43+0.24
K —+B 83.0 90.8 89.8 88.15+0.64 85.07+1.03 88.83+0.81 90.29+0.51
K —=D 85.6 90.5 87.8 87.23+£0.49 84.11+0.62 88.52£0.69 89.54£0.59
K—FE 91.2 932 92.6 93.23+0.34 92.07+0.24 93424040 94.34+0.26
Average 87.50 90.12  90.63 | 89.93£0.656 87.68+1.53 90.78+0.67 91.7440.38

Table 1: Accuracy of unsupervised domain adaptation on twelve domain pairs of Amazon Reviews Multi Domain

Sentiment Dataset.

fine-tune the resulting model on source domain
labeled data.

Domain Adversarial (DAT): Domain Adversarial
Training with BERT. Starting from the domain pre-
trained BERT (as in Fig. 1b), we then fine-tune the
model with domain adversarial training as in Ganin
et al. (2016). For a BERT model with parameters
0, with Lo being a cross-entropy loss for super-
vised task prediction, L 4 py being a cross-entropy
loss for domain prediction and A4 being a weight-
ing factor, domain adversarial training consists of
the minimization criterion described in Eq. 4.

mein Lorr(0; Ds) — AL apv(0; Ds, D) (4)

UDALM: The proposed method, where we fine-
tune the model created in the domain pretraining
step using the mixed loss in Eq. 2.

6 Experimental Results

6.1 Comparison to state-of-the-art

We present results for all 12 domain adaptation set-
tings in Table 1. Results for SO BERT, DAT BERT,
DPT BERT and UDALM are averaged over five
runs and we include standard deviations The last
line of Table 1 contains the macro-averaged accu-
racy and deviations over all domain pairs. UDALM
surpasses all other techniques, yielding an absolute
improvement of 1.81% over the SO BERT baseline.
For fair comparison, we compare only with meth-
ods based on pretrained models, mostly BERT. We
observe that BERT fine-tuned only with the source
domain labeled data, without any knowledge of
the target domain, is a competitive baseline. This
source-only model even surpasses state-of-the-art
methods developed for UDA, e.g. R-PERL (Ben-
David et al., 2020).

We reproduce the domain adversarial training
procedure and present results in the DAT BERT
column of Table 1. Adversarial training proved to
be unstable in our experiments, even after careful
tuning of the adversarial loss weighting factor \y.
This is evidenced by the high standard deviations
in the DAT BERT experiments. We observe that
adversarial training does not manage to outperform
the source-only baseline.’

Domain pretraining increases the average accu-
racy with an absolute improvement of 0.85% over
the source-only baseline. Continuing MLM pre-
training on the target domain data leads to better
model adaptation, and therefore improved perfor-
mance, on the target domain. This is consistent
with previous works on supervised (Gururangan
et al., 2020; Xu et al., 2019; Sun et al., 2019) and
unsupervised settings (Han and Eisenstein, 2019;
Du et al., 2020).

UDALM yields an additional 0.96% absolute
improvement of average accuracy over domain pre-
training. Keeping the MLLM loss during fine-tuning
therefore, leads to better adaptation and acts as a
regularizer that prevents the model from overfitting
on the source domain. We also observe smaller
standard deviations when using UDALM, which
indicates that including the MLM loss during fine-
tuning can result to more robust training.

6.2 Sample efficiency

UDALM surpasses in terms of macro-average ac-
curacy all other approaches for unsupervised do-
main adaptation on the Amazon reviews multi-
domain sentiment dataset. Specifically, our method
improves on the state-of-the-art pseudo-labeling

3Note that we did not have to perform extensive tuning for
the other methods, including UDALM.
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Figure 2: Average accuracy for different amount of target domain unlabeled samples of: (1) DPT BERT (2) DAT

BERT and (3) UDALM.

(p+CFd Ye et al., 2020), domain adversarial (DAAT
Du et al., 2020) and pivot-based (R-PERL Ben-
David et al., 2020) approaches by 1.11%, 1.62%
and 4.24% respectively.

We further investigate the impact of using dif-
ferent amount of target domain unlabeled data on
model performance, to study the sample efficiency
of UDALM. We experiment with settings of 500,
2000, 6000, 10000 and 14000 samples, by ran-
domly limiting the number of unlabeled target do-
main data. For each setting we conduct three exper-
iments with BERT models: (1) DPT, (2) DAT and
(3) UDALM. When no target data are available, all
methods are equivalent to a source only fine-tuned
BERT. Again, we do not tune the hyper-parameters
for DPT or UDALM. Fig. 2 shows the average ac-
curacy on the twelve adaptation scenarios of the
studied dataset. We see that UDALM produces ro-
bust performance improvement when we limit the
amount of target data, indicating that it can be used
in low-resource settings. However, training BERT
in a domain adversarial manner shows instabilities.
This is further discussed in Section 7.

6.3 On the stopping criteria for UDA training

A common problem when performing UDA is the
lack of target labeled data that can be used for
hyperparameter validation. For example, Ruder
and Plank (2018) use a small set of labeled target
data for validation, putting the problem in a semi-
supervised setting. When training under a domain
shift, optimization of model performance on the
source data may not result to optimal performance
for the target data.

To illustrate this, we examine if the minimiza-
tion of the mixed loss can be used as a stopping
criterion for UDA training. We compare five stop-
ping criteria: (1) fixed training for 1 epoch, (2)
fixed training for 3 epochs, (3) fixed training for 10
epochs, (4) stop when the minimum classification
loss is reached for the source data and (5) stop when
the minimum mixed loss ( Eq. 2) is reached. For
(4) and (5) we train for 10 epochs with patience
3. We report average accuracy of the five stop-
ping criteria over the twelve adaptation scenarios
of Amazon Reviews dataset on Table 2. Training
for a fixed number of 10 epochs and stopping when
the minimum mixed loss perform best, yielding
comparable accuracies of 91.75% and 91.73% re-
spectively. Note that stopping when the minimum
source loss stops the fine-tuning process too soon
and does not allow the model to learn the target
domain effectively. Overall, we observe that the
mixed loss can be effectively used for early stop-
ping, regularizing the model and alleviating the
need for extensive search for the optimal number
of training steps. This is an indication that the
mixed loss could be used for model validation.

Stopping Criterion Epochs Av. Acc.
Fixed 1 90.98
Fixed 3 91.65
Fixed 10 91.75
Min source loss 10, patience 3 91.30
Min mixed loss 10, patience 3 91.74

Table 2: Comparison of average accuracy for various
validation settings.
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7 Discussion

7.1 Background Theory

Ben-David et al. (2007, 2010) provide a theory of
learning from different domains. A key outcome
of this work is the following theorem:

Theorem (Ben-David et al., 2007, 2010) Let H
be the hypothesis space and let Dg, Dt be the
two domains and €g, er be the corresponding error
functions. Then for any h € H:

1
ET(h) < Es(h) + idHAH(D& DT) +C (5

where dyap(Dg, Dr) is the HAH-divergence
(Kifer et al., 2004) between two domains, that is a
measure of distance between domains that can be
estimated from finite samples.

Eq. 5 defines an upper bound for the expected
error e7(h) of a hypothesis / on the target domain
as the sum of three terms, namely the expected
error on the source domain eg(h), the divergence
between the source and target domain distributions
2dpan(Ds, Dr) and the error of the ideal joint
hypothesis C. When such an hypothesis exists, the
term is considered relatively small and in practice
ignored. The first term, bounds the expected error
on the target domain by the expected error in the
source domain and is expected to be small, due
to supervised learning on the source domain. The
second term, gives a notion of distance between the
source and target domain extracted features. Intu-
itively this equation states: “if there exists a hypoth-
esis h that has small error on the source data and
the source feature space is close to the target fea-
ture space, then this hypothesis will have low error

on the target data”. Domain Adversarial Training
aims to learn features that simultaneously result to
low source error and low distance between target
and source feature spaces based on the combined
loss in Eq. 4.

7.2 A-distance only provides an upper bound
for target error

According to Ben-David et al. (2007) the HAH -
divergence can be approximated by proxy A-
distance, that is defined by Eq. 6 given the domain
classification error €p.

da=2(1—2ep) (6)

We calculate an approximation of the distance
between domains. Following prior work (Ganin
et al., 2016; Saito et al., 2017) we create an SVM
domain classifier. We feed the SVM with BERT’s
[C'LS] token representations, measure the domain
classification error, and compute A-distance as in
Eq. 6. We train the domain classifier on 2000 sam-
ples from each source and target domains. Fig. 3
shows the A-distance along with the source and
the target error, averaged over the twelve available
domain pairs using representations obtained from
four methods, namely BERT SO, DAT BERT, DPT
BERT and UDALM. DAT BERT minimizes the dis-
tance between domains. DPT BERT also reduces
the A-distance, to similar levels with DAT, without
using an explicit loss to minimize A-distance. To
our surprise we found that, although it achieves the
lowest error rate, UDALM does not significantly re-
duce the proxy A-distance compared to the source-
only baseline. Additionally, we observe that the
source error is correlated to model performance on
the target task, i.e. models with lower source error
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have also lower target error. UDALM specifically,
achieves high accuracy on the source task and is
able to transfer the task knowledge across domains,
while DAT is able to bring domain representations
closer, but at the cost of achieving weaker perfor-
mance on the task at hand.

Overall, we do not observe a correlation between
the resulting A-distance and model performance
on target domain. Therefore, lower distance be-
tween domains, achieved intentionally or not, is
not a necessary condition for good performance on
the target domain®, and our efforts could be better
spent towards synergistic learning of the supervised
source task and the target domain distribution.

7.3 Limitations of Domain Adversarial
Training

Domain adversarial training (Ganin et al., 2016)

faces some critical limitations that make the

method difficult to be reproduced due to high hyper-

parameter sensitivity and instability during train-

ing.

Such limitations have been highlighted by other
authors in the UDA literature. For example, ac-
cording to Shen et al. (2018) when a domain clas-
sifier can perfectly distinguish target from source
representations, there will be a gradient vanishing
problem. Shah et al. (2018) state that domain adver-
sarial training is unstable and needs careful hyper-
parameter tuning for their experiments. Wang et al.
(2020) report results over three multi-domain NLP
datasets, where domain adversarial training in con-
junction with BERT under-performs. Ruder and
Plank (2018) found that the domain adversarial loss
did not help for their experiments on the Amazon
reviews dataset.

In our experiments we note that domain-
adversarial training results to worse performance
than naive source only training. Furthermore, we
experienced the need for extensive tuning of the \4
parameter from Eq. 4 every time the experimental
setting changed (e.g. when testing for different
amounts of available target data as in Section 6.2).
This motivated us to further investigate the behav-
ior of BERT fine-tuned with the adversarial cost.
For visual inspection, we perform T-SNE (Maaten
and Hinton, 2008) on representations extracted

4Shu et al. (2018) state that feature distribution matching
is a weak constraint when high-capacity feature extractors
are used. Intuitively, a high-capacity feature extractor can
perform arbitrary transformations to the input features in order
to match the distributions.

from BERT, under four UDA setings in Fig. 4. In
Fig. 4a we observe features extracted using BERT
with Domain Adversarial Training and we com-
pare it with features from SO BERT (Fig. 4b), DPT
BERT (Fig. 4c) and UDALM (Fig. 4d). We ob-
serve that domain adversarial training manages to
group tightly target and source samples, especially
in the case of positive samples. Nevertheless, in
the process, DAT introduces significant distortion
in the semantic space, which is reflected in model
performance”.

We can attribute this behavior to two factors.
First, The formulation of the adversarial loss in
Eq. (4) can lead to trivial solutions. In order to
maximize the L 4py term of Eq. (4), the model
can just flip all domain labels, namely just pre-
dict that source samples belong to the target do-
main and vice-versa. In this case the model can
still discriminate between domains and domain-
independent representations are not encouraged.
We empirically observed this behavior in our ex-
periments with DAT, and only extensive hyper-
parameter tuning could alleviate this issue. Addi-
tionally, Eq. (4) aims to minimize the upper bound
of the target error er(h) in Eq. (5). While this
is desirable, reduction of the upper bound does
not necessarily result in reduction of the bounded
term in all scenarios. Furthermore, optimizing
the Lapy(0; Ds, D) term can lead to increas-
ing Lcpr(0; Dg), and therefore one must find a
balance between the two adversarial terms, again
through careful hyper-parameter tuning. These is-
sues could potentially be alleviated by including
regularization terms that discourage trivial solu-
tions and improve robustness. Therefore, given
the lack of guarantees for good performance and
the practical considerations, further investigation
should be conducted regarding the robustness and
reproducibility of DAT for UDA.

8 Conclusions and Future Work

Unsupervised domain adaptation of pretrained lan-
guage models is a challenging problem with direct
real world applications. In this work we propose
UDALM, a robust, plug and play training strategy,
which is able to improve performance in the target
domain, achieving state-of-the-art results across
12 adaptation settings in the multi-domain Ama-

SNote, we include this visualization for a single source-
domain pair as an example. We performed multiple runs
of T-SNE over all 12 source-domain pairs and this behavior
appeared consistently.
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Figure 4: 2D representations of BERT [C'L\S] features using t-SNE for the D — K task. The goal is to maximize
separation between target positive (blue) and target negative (yellow) samples.

zon reviews dataset. Our method produces robust
results with little hyper-parameter tuning and the
proposed mixed-loss can be used for model valida-
tion, allowing for fast model development. Further-
more, UDALM scales with the amount of available
unsupervised data from the target domain, allow-
ing for adaptation in low-resource settings. In our
analysis, we discuss the relationship between the
A-distance and the target error. We observe that
low A-distance may not suggest low target error
for high capacity models. Additionally, we exam-
ine limitations of Domain Adversarial Training and
highlight that the adversarial cost may lead to dis-
tortion of the feature space and negatively impact
performance.

In the future we plan to apply UDALM to other
tasks under domain-shift, such as sequence classifi-
cation, question answering and part-of-speech tag-
ging. Furthermore, we plan to extend our method
for temporal and style adaptation, by adding more
relevant auxiliary tasks that model language shift
over time and over different platforms. Finally, we
want to investigate the effectiveness of the proposed
fine-tuning approach in supervised scenarios.
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