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Abstract

Deep neural networks and huge language mod-
els are becoming omnipresent in natural lan-
guage applications. As they are known for re-
quiring large amounts of training data, there
is a growing body of work to improve the
performance in low-resource settings. Moti-
vated by the recent fundamental changes to-
wards neural models and the popular pre-train
and fine-tune paradigm, we survey promising
approaches for low-resource natural language
processing. After a discussion about the dif-
ferent dimensions of data availability, we give
a structured overview of methods that enable
learning when training data is sparse. This
includes mechanisms to create additional la-
beled data like data augmentation and distant
supervision as well as transfer learning set-
tings that reduce the need for target supervi-
sion. A goal of our survey is to explain how
these methods differ in their requirements as
understanding them is essential for choosing
a technique suited for a specific low-resource
setting. Further key aspects of this work are to
highlight open issues and to outline promising
directions for future research.

1 Introduction

Most of today’s research in natural language pro-
cessing (NLP) is concerned with the processing
of 10 to 20 high-resource languages with a special
focus on English, and thus, ignores thousands of
languages with billions of speakers (Bender, 2019).
The rise of data-hungry deep learning systems in-
creased the performance of NLP for high resource-
languages, but the shortage of large-scale data in
less-resourced languages makes their processing
a challenging problem. Therefore, Ruder (2019)
named NLP for low-resource scenarios one of the
four biggest open problems in NLP nowadays.

The umbrella term low-resource covers a spec-
trum of scenarios with varying resource conditions.

* equal contribution

It includes work on threatened languages, such
as Yongning Na, a Sino-Tibetan language with
40k speakers and only 3k written, unlabeled sen-
tences (Adams et al., 2017). Other languages are
widely spoken but seldom addressed by NLP re-
search. More than 310 languages exist with at
least one million L1-speakers each (Eberhard et al.,
2019). Similarly, Wikipedia exists for 300 lan-
guages.! Supporting technological developments
for low-resource languages can help to increase par-
ticipation of the speakers’ communities in a digital
world. Note, however, that tackling low-resource
settings is even crucial when dealing with popu-
lar NLP languages as low-resource settings do not
only concern languages but also non-standard do-
mains and tasks, for which — even in English — only
little training data is available. Thus, the term “lan-
guage” in this paper also includes domain-specific
language.

This importance of low-resource scenarios and
the significant changes in NLP in the last years have
led to active research on resource-lean settings and
a wide variety of techniques have been proposed.
They all share the motivation of overcoming the
lack of labeled data by leveraging further sources.
However, these works differ greatly on the sources
they rely on, e.g., unlabeled data, manual heuristics
or cross-lingual alignments. Understanding the re-
quirements of these methods is essential for choos-
ing a technique suited for a specific low-resource
setting. Thus, one key goal of this survey is to high-
light the underlying assumptions these techniques
take regarding the low-resource setup.

In this work, we (1) give a broad and structured
overview of current efforts on low-resource NLP,
(2) analyse the different aspects of low-resource
settings, (3) highlight the necessary resources and
data assumptions as guidance for practitioners and
(4) discuss open issues and promising future direc-
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For low-resource

Method Requirements Outcome languages ‘ domains
Data Augmentation (§ 4.1) | labeled data, heuristics* | additional labeled data | v | v
Distant Supervision (§ 4.2) | unlabeled data, heuristics* | additional labeled data | v | v
Cross-lingual projections (§ 4.3) | unlabeled data, high- | additional labeled data v X
resource labeled data,
cross-lingual alignment
Embeddings & Pre-trained LMs | unlabeled data better language representation v v
§5.1)
LM domain adaptation (§ 5.2) existing LM, domain-specific language rep- X v
unlabeled domain data resentation
Multilingual LMs (§ 5.3) multilingual  unlabeled | multilingual feature represen- v X
data tation
Adversarial Discriminator (§ 6) | additional datasets | independent representations | v | v
Meta-Learning (§ 6) | multiple auxiliary tasks | better target task performance | v | v

Table 1: Overview of low-resource methods surveyed in this paper. * Heuristics are typically gathered manually.

tions. Table 1 gives an overview of the surveyed
techniques along with their requirements a practi-
tioner needs to take into consideration.

2 Related Surveys

Recent surveys cover low-resource machine trans-
lation (Liu et al., 2019) and unsupervised domain
adaptation (Ramponi and Plank, 2020). Thus, we
do not investigate these topics further in this pa-
per, but focus instead on general methods for low-
resource, supervised natural language processing
including data augmentation, distant supervision
and transfer learning. This is also in contrast to the
task-specific survey by Magueresse et al. (2020)
who review highly influential work for several ex-
traction tasks, but only provide little overview of re-
cent approaches. In Table 2 in the appendix, we list
past surveys that discuss a specific method or low-
resource language family for those readers who
seek a more specialized follow-up.

3 Aspects of “Low-Resource”

To visualize the variety of resource-lean scenarios,
Figure 1 shows exemplarily which NLP tasks were
addressed in six different languages from basic to
higher-level tasks. While it is possible to build
English NLP systems for many higher-level appli-
cations, low-resource languages lack the data foun-
dation for this. Additionally, even if it is possible
to create basic systems for tasks, such as tokeniza-
tion and named entity recognition, for all tested
low-resource languages, the training data is typical
of lower quality compared to the English datasets,
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Figure 1: Supported NLP tasks in different languages.
Note that the figure does not incorporate data quality
or system performance. More details on the selection
of tasks and languages are given in the appendix Sec-
tion B.

or very limited in size. It also shows that the four
American and African languages with between 1.5
and 60 million speakers have been addressed less
than the Estonian language, with 1 million speak-
ers. This indicates the unused potential to reach
millions of speakers who currently have no access
to higher-level NLP applications. Joshi et al. (2020)
study further the availability of resources for lan-
guages around the world.

3.1 Dimensions of Resource Availability

Many techniques presented in the literature depend
on certain assumptions about the low-resource sce-
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nario. These have to be adequately defined to eval-
uate their applicability for a specific setting and
to avoid confusion when comparing different ap-
proaches. We propose to categorize low-resource
settings along the following three dimensions:

(i) The availability of task-specific labels in
the target language (or target domain) is the most
prominent dimension in the context of supervised
learning. Labels are usually created through man-
ual annotation, which can be both time- and cost-
intensive. Not having access to adequate experts
to perform the annotation can also be an issue for
some languages and domains.

(ii) The availability of unlabeled language- or
domain-specific text is another factor, especially
as most modern NLP approaches are based on some
form of input embeddings trained on unlabeled
texts.

(ii1) Most of the ideas surveyed in the next sec-
tions assume the availability of auxiliary data
which can have many forms. Transfer learning
might leverage task-specific labels in a different
language or domain. Distant supervision utilizes
external sources of information, such as knowledge
bases or gazetteers. Some approaches require other
NLP tools in the target language like machine trans-
lation to generate training data. It is essential to
consider this as results from one low-resource sce-
nario might not be transferable to another one if
the assumptions on the auxiliary data are broken.

3.2 How Low is Low-Resource?

On the dimension of task-specific labels, differ-
ent thresholds are used to define low-resource.
For part-of-speech (POS) tagging, Garrette and
Baldridge (2013) limit the time of the annotators to
2 hours resulting in up to 1-2k tokens. Kann et al.
(2020) study languages that have less than 10k la-
beled tokens in the Universal Dependency project
(Nivre et al., 2020) and Loubser and Puttkammer
(2020) report that most available datasets for South
African languages have 40-60k labeled tokens.

The threshold is also task-dependent and more
complex tasks might also increase the resource re-
quirements. For text generation, Yang et al. (2019)
frame their work as low-resource with 350k la-
beled training instances. Similar to the task, the
resource requirements can also depend on the lan-
guage. Plank et al. (2016) find that task perfor-
mance varies between language families given the
same amount of limited training data.

Given the lack of a hard threshold for low-
resource settings, we see it as a spectrum of re-
source availability. We, therefore, also argue
that more work should evaluate low-resource tech-
niques across different levels of data availabil-
ity for better comparison between approaches.
For instance, Plank et al. (2016) and Melamud
et al. (2019) show that for very small datasets
non-neural methods outperform more modern ap-
proaches while the latter obtain better performance
in resource-lean scenarios once a few hundred la-
beled instances are available.

4 Generating Additional Labeled Data

Faced with the lack of task-specific labels, a variety
of approaches have been developed to find alterna-
tive forms of labeled data as substitutes for gold-
standard supervision. This is usually done through
some form of expert insights in combination with
automation. We group the ideas into two main cate-
gories: data augmentation which uses task-specific
instances to create more of them (§ 4.1) and dis-
tant supervision which labels unlabeled data (§ 4.2)
including cross-lingual projections (§ 4.3). Ad-
ditional sections cover learning with noisy labels
(§ 4.4) and involving non-experts (§ 4.5).

4.1 Data Augmentation

New instances can be obtained based on existing
ones by modifying the features with transforma-
tions that do not change the label. In the com-
puter vision community, this is a popular approach
where, e.g., rotating an image is invariant to the
classification of an image’s content. For text, on
the token level, this can be done by replacing words
with equivalents, such as synonyms (Wei and Zou,
2019), entities of the same type (Raiman and Miller,
2017; Dai and Adel, 2020) or words that share the
same morphology (Gulordava et al., 2018; Vania
et al., 2019). Such replacements can also be guided
by a language model that takes context into consid-
eration (Fadaee et al., 2017; Kobayashi, 2018).

To go beyond the token level and add more diver-
sity to the augmented sentences, data augmentation
can also be performed on sentence parts. Opera-
tions that (depending on the task) do not change the
label include manipulation of parts of the depen-
dency tree (Sahin and Steedman, 2018; Vania et al.,
2019; Dehouck and Gémez-Rodriguez, 2020), sim-
plification of sentences by removal of sentence
parts (Sahin and Steedman, 2018) and inversion
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of the subject-object relation (Min et al., 2020).
For whole sentences, paraphrasing through back-
translation can be used. This is a popular approach
in machine translation where target sentences are
back-translated into source sentences (Bojar and
Tamchyna, 2011; Hoang et al., 2018). An important
aspect here is that errors in the source side/features
do not seem to have a large negative effect on the
generated target text the model needs to predict. It
is therefore also used in other text generation tasks
like abstract summarization (Parida and Motlicek,
2019) and table-to-text generation (Ma et al., 2019).
Back-translation has also been leveraged for text
classification (Xie et al., 2020; Hegde and Patil,
2020). This setting assumes, however, the avail-
ability of a translation system. Instead, a language
model can also be used for augmenting text classi-
fication datasets (Kumar et al., 2020; Anaby-Tavor
et al., 2020). It is trained conditioned on a label,
i.e., on the subset of the task-specific data with this
label. It then generates additional sentences that fit
this label. Ding et al. (2020) extend this idea for
token level tasks.

Adversarial methods are often used to find weak-
nesses in machine learning models (Jin et al., 2020;
Garg and Ramakrishnan, 2020). They can, how-
ever, also be utilized to augment NLP datasets (Ya-
sunaga et al., 2018; Morris et al., 2020). Instead of
manually crafted transformation rules, these meth-
ods learn how to apply small perturbations to the
input data that do not change the meaning of the
text (according to a specific score). This approach
is often applied on the level of vector represen-
tations. For instance, Grundkiewicz et al. (2019)
reverse the augmentation setting by applying trans-
formations that flip the (binary) label. In their case,
they introduce errors in correct sentences to obtain
new training data for a grammar correction task.

Open Issues: While data augmentation is ubig-
uitous in the computer vision community and while
most of the above-presented approaches are task-
independent, it has not found such widespread use
in natural language processing. A reason might
be that several of the approaches require an in-
depth understanding of the language. There is
not yet a unified framework that allows applying
data augmentation across tasks and languages. Re-
cently, Longpre et al. (2020) hypothesised that data
augmentation provides the same benefits as pre-
training in transformer models. However, we argue
that data augmentation might be better suited to

leverage the insights of linguistic or domain ex-
perts in low-resource settings when unlabeled data
or hardware resources are limited.

4.2 Distant & Weak Supervision

In contrast to data augmentation, distant or weak
supervision uses unlabeled text and keeps it un-
modified. The corresponding labels are obtained
through a (semi-)automatic process from an ex-
ternal source of information. For named entity
recognition (NER), a list of location names might
be obtained from a dictionary and matches of to-
kens in the text with entities in the list are auto-
matically labeled as locations. Distant supervision
was introduced by Mintz et al. (2009) for relation
extraction (RE) with extensions on multi-instance
(Riedel et al., 2010) and multi-label learning (Sur-
deanu et al., 2012). It is still a popular approach
for information extraction tasks like NER and RE
where the external information can be obtained
from knowledge bases, gazetteers, dictionaries and
other forms of structured knowledge sources (Luo
et al., 2017; Hedderich and Klakow, 2018; Deng
and Sun, 2019; Alt et al., 2019; Ye et al., 2019;
Lange et al., 2019a; Nooralahzadeh et al., 2019;
Le and Titov, 2019; Cao et al., 2019; Lison et al.,
2020; Hedderich et al., 2021a). The automatic an-
notation ranges from simple string matching (Yang
et al., 2018) to complex pipelines including classi-
fiers and manual steps (Norman et al., 2019). This
distant supervision using information from external
knowledge sources can be seen as a subset of the
more general approach of labeling rules. These
encompass also other ideas like reg-ex rules or sim-
ple programming functions (Ratner et al., 2017;
Zheng et al., 2019; Adelani et al., 2020; Hedderich
et al., 2020; Lison et al., 2020; Ren et al., 2020;
Karamanolakis et al., 2021).

While distant supervision is popular for infor-
mation extraction tasks like NER and RE, it is
less prevalent in other areas of NLP. Nevertheless,
distant supervision has also been successfully em-
ployed for other tasks by proposing new ways for
automatic annotation. Li et al. (2012) leverage a
dictionary of POS tags for classifying unseen text
with POS. For aspect classification, Karamanolakis
et al. (2019) create a simple bag-of-words classi-
fier on a list of seed words and train a deep neu-
ral network on its weak supervision. Wang et al.
(2019) use context by transferring a document-
level sentiment label to all its sentence-level in-
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stances. Mekala et al. (2020) leverage meta-data for
text classification and Huber and Carenini (2020)
build a discourse-structure dataset using guidance
from sentiment annotations. For topic classifica-
tion, heuristics can be used in combination with
inputs from other classifiers like NER (Bach et al.,
2019) or from entity lists (Hedderich et al., 2020).
For some classification tasks, the labels can be
rephrased with simple rules into sentences. A pre-
trained language model then judges the label sen-
tence that most likely follows the unlabeled input
(Opitz, 2019; Schick and Schiitze, 2020; Schick
et al., 2020). An unlabeled review, for instance,
might be continued with "It was great/bad" for ob-
taining binary sentiment labels.

Open Issues: The popularity of distant supervi-
sion for NER and RE might be due to these tasks
being particularly suited. There, auxiliary data like
entity lists is readily available and distant supervi-
sion often achieves reasonable results with simple
surface form rules. It is an open question whether
a task needs to have specific properties to be suit-
able for this approach. The existing work on other
tasks and the popularity in other fields like image
classification (Xiao et al., 2015; Li et al., 2017; Lee
et al., 2018; Mahajan et al., 2018; Li et al., 2020)
suggests, however, that distant supervision could
be leveraged for more NLP tasks in the future.

Distant supervision methods heavily rely on aux-
iliary data. In a low-resource setting, it might be
difficult to obtain not only labeled data but also
such auxiliary data. Kann et al. (2020) find a large
gap between the performance on high-resource and
low-resource languages for POS tagging pointing
to the lack of high-coverage and error-free dictio-
naries for the weak supervision in low-resource
languages. This emphasizes the need for evaluat-
ing such methods in a realistic setting and avoiding
to just simulate restricted access to labeled data in
a high-resource language.

While distant supervision allows obtaining la-
beled data more quickly than manually annotat-
ing every instance of a dataset, it still requires
human interaction to create automatic annotation
techniques or to provide labeling rules. This time
and effort could also be spent on annotating more
gold label data, either naively or through an active
learning scheme. Unfortunately, distant supervi-
sion papers rarely provide information on how long
the creation took, making it difficult to compare
these approaches. Taking the human expert into the

focus connects this research direction with human-
computer-interaction and human-in-the-loop setups
(Klie et al., 2018; Qian et al., 2020).

4.3 Cross-Lingual Annotation Projections

For cross-lingual projections, a task-specific clas-
sifier is trained in a high-resource language. Us-
ing parallel corpora, the unlabeled low-resource
data is then aligned to its equivalent in the high-
resource language where labels can be obtained
using the aforementioned classifier. These labels
(on the high-resource text) can then be projected
back to the text in the low-resource language based
on the alignment between tokens in the parallel
texts (Yarowsky et al., 2001). This approach can,
therefore, be seen as a form of distant supervi-
sion specific for obtaining labeled data for low-
resource languages. Cross-lingual projections have
been applied in low-resource settings for tasks,
such as POS tagging and parsing (T4ckstrom et al.,
2013; Wisniewski et al., 2014; Plank and Agié,
2018; Eskander et al., 2020). Sources for par-
allel text can be the OPUS project (Tiedemann,
2012), Bible corpora (Mayer and Cysouw, 2014;
Christodoulopoulos and Steedman, 2015) or the re-
cent JW300 corpus (Agi¢ and Vuli¢, 2019). Instead
of using parallel corpora, existing high-resource
labeled datasets can also be machine-translated
into the low-resource language (Khalil et al., 2019;
Zhang et al., 2019a; Fei et al., 2020; Amjad et al.,
2020). Cross-lingual projections have even been
used with English as a target language for detecting
linguistic phenomena like modal sense and telicity
that are easier to identify in a different language
(Zhou et al., 2015; Marasovic et al., 2016; Friedrich
and Gateva, 2017).

Open issues: Cross-lingual projections set high
requirements on the auxiliary data needing both
labels in a high-resource language and means to
project them into a low-resource language. Espe-
cially the latter can be an issue as machine trans-
lation by itself might be problematic for a specific
low-resource language. A limitation of the parallel
corpora is their domains like political proceedings
or religious texts. Mayhew et al. (2017), Fang and
Cohn (2017) and Karamanolakis et al. (2020) pro-
pose systems with fewer requirements based on
word translations, bilingual dictionaries and task-
specific seed words, respectively.

2549



4.4 Learning with Noisy Labels

The above-presented methods allow obtaining la-
beled data quicker and cheaper than manual an-
notations. These labels tend, however, to contain
more errors. Even though more training data is
available, training directly on this noisily-labeled
data can actually hurt the performance. Therefore,
many recent approaches for distant supervision use
a noise handling method to diminish the negative
effects of distant supervision. We categorize these
into two ideas: noise filtering and noise modeling.

Noise filtering methods remove instances from
the training data that have a high probability of
being incorrectly labeled. This often includes train-
ing a classifier to make the filtering decision. The
filtering can remove the instances completely from
the training data, e.g., through a probability thresh-
old (Jia et al., 2019), a binary classifier (Adel and
Schiitze, 2015; Onoe and Durrett, 2019; Huang and
Du, 2019), or the use of a reinforcement-based
agent (Yang et al., 2018; Nooralahzadeh et al.,
2019). Alternatively, a soft filtering might be ap-
plied that re-weights instances according to their
probability of being correctly labeled (Le and Titov,
2019) or an attention measure (Hu et al., 2019).

The noise in the labels can also be modeled. A
common model is a confusion matrix estimating
the relationship between clean and noisy labels
(Fang and Cohn, 2016; Luo et al., 2017; Hedderich
and Klakow, 2018; Paul et al., 2019; Lange et al.,
2019a,c; Chen et al., 2019; Wang et al., 2019; Hed-
derich et al., 2021b). The classifier is no longer
trained directly on the noisily-labeled data. Instead,
a noise model is appended which shifts the noisy to
the (unseen) clean label distribution. This can be in-
terpreted as the original classifier being trained on
a “cleaned” version of the noisy labels. In Ye et al.
(2019), the prediction is shifted from the noisy to
the clean distribution during testing. In Chen et al.
(2020a), a group of reinforcement agents relabels
noisy instances. Rehbein and Ruppenhofer (2017),
Lison et al. (2020) and Ren et al. (2020) leverage
several sources of distant supervision and learn how
to combine them.

In NER, the noise in distantly supervised la-
bels tends to be false negatives, i.e., mentions of
entities that have been missed by the automatic
method. Partial annotation learning (Yang et al.,
2018; Nooralahzadeh et al., 2019; Cao et al., 2019)
takes this into account explicitly. Related ap-
proaches learn latent variables (Jie et al., 2019), use

constrained binary learning (Mayhew et al., 2019)
or construct a loss assuming that only unlabeled
positive instances exist (Peng et al., 2019).

4.5 Non-Expert Support

As an alternative to an automatic annotation pro-
cess, annotations might also be provided by non-
experts. Similar to distant supervision, this results
in a trade-off between label quality and availability.
For instance, Garrette and Baldridge (2013) obtain
labeled data from non-native-speakers and without
a quality control on the manual annotations. This
can be taken even further by employing annota-
tors who do not speak the low-resource language
(Mayhew and Roth, 2018; Mayhew et al., 2019;
Tsygankova et al., 2020).

Nekoto et al. (2020) take the opposite direction,
integrating speakers of low-resource languages
without formal training into the model development
process in an approach of participatory research.
This is part of recent work on how to strengthen
low-resource language communities and grassroot
approaches (Alnajjar et al., 2020; Adelani et al.,
2021).

5 Transfer Learning

While distant supervision and data augmentation
generate and extend task-specific training data,
transfer learning reduces the need for labeled tar-
get data by transferring learned representations and
models. A strong focus in recent works on transfer
learning in NLP lies in the use of pre-trained lan-
guage representations that are trained on unlabeled
data like BERT (Devlin et al., 2019). Thus, this
section starts with an overview of these methods
(§ 5.1) and then discusses how they can be utilized
in low-resource scenarios, in particular, regarding
the usage in domain-specific (§ 5.2) or multilingual
low-resource settings (§ 5.3).

5.1 Pre-Trained Language Representations

Feature vectors are the core input component of
many neural network-based models for NLP tasks.
They are numerical representations of words or sen-
tences, as neural architectures do not allow the pro-
cessing of strings and characters as such. Collobert
et al. (2011) showed that training these models for
the task of language-modeling on a large-scale cor-
pus results in high-quality word representations,
which can be reused for other downstream tasks as
well. Subword-based embeddings such as fastText
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n-gram embeddings (Bojanowski et al., 2017) and
byte-pair-encoding embeddings (Heinzerling and
Strube, 2018) addressed out-of-vocabulary issues
by splitting words into multiple subwords, which
in combination represent the original word. Zhu
et al. (2019) showed that these embeddings lever-
aging subword information are beneficial for low-
resource sequence labeling tasks, such as named
entity recognition and typing, and outperform word-
level embeddings. Jungmaier et al. (2020) added
smoothing to word2vec models to correct its bias
towards rare words and achieved improvements
in particular for low-resource settings. In addi-
tion, pre-trained embeddings were published for
more than 270 languages for both embedding meth-
ods. This enabled the processing of texts in many
languages, including multiple low-resource lan-
guages found in Wikipedia. More recently, a trend
emerged of pre-training large embedding models
using a language model objective to create context-
aware word representations by predicting the next
word or sentence. This includes pre-trained trans-
former models (Vaswani et al., 2017), such as
BERT (Devlin et al., 2019) or RoBERTa (Liu et al.,
2019b). These methods are particularly helpful for
low-resource languages for which large amounts
of unlabeled data are available, but task-specific
labeled data is scarce (Cruz and Cheng, 2019).

Open Issues: While pre-trained language mod-
els achieve significant performance increases com-
pared to standard word embeddings, it is still ques-
tionable if these methods are suited for real-world
low-resource scenarios. For example, all of these
models require large hardware requirements, in
particular, considering that the transformer model
size keeps increasing to boost performance (Raffel
et al., 2020). Therefore, these large-scale meth-
ods might not be suited for low-resource scenarios
where hardware is also low-resource.

Biljon et al. (2020) showed that low- to medium-
depth transformer sizes perform better than larger
models for low-resource languages and Schick
and Schiitze (2020) managed to train models with
three orders of magnitude fewer parameters that
perform on-par with large-scale models like GPT-
3 on few-shot task by reformulating the training
task and using ensembling. Melamud et al. (2019)
showed that simple bag-of-words approaches are
better when there are only a few dozen training
instances or less for text classification, while more
complex transformer models require more training

data. Bhattacharjee et al. (2020) found that cross-
view training (Clark et al., 2018) leverages large
amounts of unlabeled data better for task-specific
applications in contrast to the general represen-
tations learned by BERT. Moreover, data quality
for low-resource, even for unlabeled data, might
not be comparable to data from high-resource lan-
guages. Alabi et al. (2020) found that word embed-
dings trained on larger amounts of unlabeled data
from low-resource languages are not competitive
to embeddings trained on smaller, but curated data
sources.

5.2 Domain-Specific Pre-Training

The language of a specialized domain can differ
tremendously from what is considered the standard
language, thus, many text domains are often less-
resourced as well. For example, scientific articles
can contain formulas and technical terms, which
are not observed in news articles. However, the
majority of recent language models are pre-trained
on general-domain data, such as texts from the
news or web-domain, which can lead to a so-called
“domain-gap” when applied to a different domain.

One solution to overcome this gap is the adap-
tation to the target domain by finetuning the lan-
guage model. Gururangan et al. (2020) showed
that continuing the training of a model with ad-
ditional domain-adaptive and task-adaptive pre-
training with unlabeled data leads to performance
gains for both high- and low-resource settings for
numerous English domains and tasks. This is also
displayed in the number of domain-adapted lan-
guage models (Alsentzer et al., 2019; Huang et al.,
2019; Adhikari et al., 2019; Lee and Hsiang, 2020;
Jain and Ganesamoorty, 2020, (i.a.)), most notably
BioBERT (Lee et al., 2020) that was pre-trained on
biomedical PubMED articles and SciBERT (Belt-
agy et al., 2019) for scientific texts. For exam-
ple, Friedrich et al. (2020) showed that a general-
domain BERT model performs well in the materials
science domain, but the domain-adapted SciBERT
performs best. Xu et al. (2020) used in- and out-of-
domain data to pre-train a domain-specific model
and adapt it to low-resource domains. Aharoni
and Goldberg (2020) found domain-specific clus-
ters in pre-trained language models and showed
how these could be exploited for data selection in
domain-sensitive training.

Powerful representations can be achieved by
combining high-resource embeddings from the gen-
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eral domain with low-resource embeddings from
the target domain (Akbik et al., 2018; Lange et al.,
2019b). Kiela et al. (2018) showed that embed-
dings from different domains can be combined us-
ing attention-based meta-embeddings, which cre-
ate a weighted sum of all embeddings. Lange et al.
(2020b) further improved on this by aligning em-
beddings trained on diverse domains using an ad-
versarial discriminator that distinguishes between
the embedding spaces to generate domain-invariant
representations.

5.3 Multilingual Language Models

Analogously to low-resource domains, low-
resource languages can also benefit from labeled re-
sources available in other high-resource languages.
This usually requires the training of multilingual
language representations by combining monolin-
gual representations (Lange et al., 2020a) or train-
ing a single model for many languages, such as
multilingual BERT (Devlin et al., 2019) or XLM-
RoBERTa (Conneau et al., 2020) . These models
are trained using unlabeled, monolingual corpora
from different languages and can be used in cross-
and multilingual settings, due to many languages
seen during pre-training.

In cross-lingual zero-shot learning, no task-
specific labeled data is available in the low-resource
target language. Instead, labeled data from a
high-resource language is leveraged. A multilin-
gual model can be trained on the target task in a
high-resource language and afterwards, applied to
the unseen target languages, such as for named
entity recognition (Lin et al., 2019; Hvingelby
et al., 2020), reading comprehension (Hsu et al.,
2019), temporal expression extraction (Lange et al.,
2020c), or POS tagging and dependency parsing
(Miiller et al., 2020). Hu et al. (2020) showed, how-
ever, that there is still a large gap between low and
high-resource setting. Lauscher et al. (2020) and
Hedderich et al. (2020) proposed adding a mini-
mal amount of target-task and -language data (in
the range of 10 to 100 labeled sentences) which
resulted in a significant boost in performance for
classification in low-resource languages.

The transfer between two languages can be im-
proved by creating a common multilingual embed-
ding space of multiple languages. This is useful for
standard word embeddings (Ruder et al., 2019) as
well as pre-trained language models. For example,
by aligning the languages inside a single multilin-
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Figure 2: Language families with more than 1 million
speakers covered by multilingual transformer models.

gual model, i.a., in cross-lingual (Schuster et al.,
2019; Liu et al., 2019a) or multilingual settings
(Cao et al., 2020).

This alignment is typically done by computing a
mapping between two different embedding spaces,
such that the words in both embeddings share simi-
lar feature vectors after the mapping (Mikolov et al.,
2013; Joulin et al., 2018). This allows to use differ-
ent embeddings inside the same model and helps
when two languages do not share the same space in-
side a single model (Cao et al., 2020). For example,
Zhang et al. (2019b) used bilingual representations
by creating cross-lingual word embeddings using
a small set of parallel sentences between the high-
resource language English and three low-resource
African languages, Swahili, Tagalog, and Somali,
to improve document retrieval performance for the
African languages.

Open Issues: While these multilingual models
are a tremendous step towards enabling NLP in
many languages, possible claims that these are uni-
versal language models do not hold. For example,
mBERT covers 104 and XLM-R 100 languages,
which is a third of all languages in Wikipedia as
outlined earlier. Further, Wu and Dredze (2020)
showed that, in particular, low-resource languages
are not well-represented in mBERT. Figure 2
shows which language families with at least 1 mil-
lion speakers are covered by mBERT and XLM-
RoBERTa?. In particular, African and American
languages are not well-represented within the trans-
former models, even though millions of people
speak these languages. This can be problematic, as
languages from more distant language families are
less suited for transfer learning, as Lauscher et al.
(2020) showed.

%A language family is covered if at least one associated
language is covered. Language families can belong to multiple
regions, e.g., Indo-European belongs to Europe and Asia.
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6 Ideas From Low-Resource Machine
Learning in Non-NLP Communities

Training on a limited amount of data is not unique
to natural language processing. Other areas, like
general machine learning and computer vision,
can be a useful source for insights and new ideas.
We already presented data augmentation and pre-
training. Another example is Meta-Learning (Finn
et al., 2017), which is based on multi-task learning.
Given a set of auxiliary high-resource tasks and
a low-resource target task, meta-learning trains a
model to decide how to use the auxiliary tasks in
the most beneficial way for the target task. For NLP,
this approach has been evaluated on tasks such as
sentiment analysis (Yu et al., 2018), user intent
classification (Yu et al., 2018; Chen et al., 2020b),
natural language understanding (Dou et al., 2019),
text classification (Bansal et al., 2020) and dialogue
generation (Huang et al., 2020). Instead of having a
set of tasks, Rahimi et al. (2019) built an ensemble
of language-specific NER models which are then
weighted depending on the zero- or few-shot target
language.

Differences in the features between the pre-
training and the target domain can be an issue in
transfer learning, especially in neural approaches
where it can be difficult to control which informa-
tion the model takes into account. Adversarial dis-
criminators (Goodfellow et al., 2014) can prevent
the model from learning a feature-representation
that is specific to a data source. Gui et al. (2017),
Liu et al. (2017), Kasai et al. (2019), GrieBBhaber
etal. (2020) and Zhou et al. (2019) learned domain-
independent representations using adversarial train-
ing. Kim et al. (2017), Chen et al. (2018) and Lange
et al. (2020c) worked with language-independent
representations for cross-lingual transfer. These
examples show the beneficial exchange of ideas be-
tween NLP and the machine learning community.

7 Discussion and Conclusion

In this survey, we gave a structured overview of
recent work in the field of low-resource natural
language processing. Beyond the method-specific
open issues presented in the previous sections, we
see the comparison between approaches as an im-
portant point of future work. Guidelines are neces-
sary to support practitioners in choosing the right
tool for their task. In this work, we highlighted that
it is essential to analyze resource-lean scenarios
across the different dimensions of data-availability.

This can reveal which techniques are expected to be
applicable in a specific low-resource setting. More
theoretic and experimental work is necessary to
understand how approaches compare to each other
and on which factors their effectiveness depends.
Longpre et al. (2020), for instance, hypothesized
that data augmentation and pre-trained language
models yield similar kind of benefits. Often, how-
ever, new techniques are just compared to similar
methods and not across the range of low-resource
approaches. While a fair comparison is non-trivial
given the different requirements on auxiliary data,
we see this endeavour as essential to improve the
field of low-resource learning in the future. This
could also help to understand where the different
approaches complement each other and how they
can be combined effectively.
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models for modal sense classification. In Proceed-
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tional Models of Lexical, Sentential and Discourse-
level Semantics, pages 44-53, Lisbon, Portugal. As-
sociation for Computational Linguistics.
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the importance of subword information for morpho-
logical tasks in truly low-resource languages. In Pro-
ceedings of the 23rd Conference on Computational
Natural Language Learning (CoNLL), pages 216—
226, Hong Kong, China. Association for Computa-
tional Linguistics.

A Existing Surveys on Low-Resource
Topics and Languages

There is a growing body of task- and language-
specific surveys concerning low-resource topics.
We list these surveys in Table 2 as a starting point
for a more in-depth reading regarding specific top-
ics.

B Complexity of Tasks

While a large number of labeled resources for En-
glish are available for many popular NLP tasks,
this is not the case for the majority of low-resource
languages. To measure (and visualize as done in
Figure 1 in the main paper) which applications are
accessible to speakers of low-resource languages
we examined resources for six different languages,
ranging from high- to low-resource languages for
a fixed set of tasks of varying complexity, ranging
from basic tasks, such as tokenization, to higher-
level tasks, such as question answering. For this
short study, we have chosen the following lan-
guages. The number of speakers are the combined
L1 and L2 speakers according to Eberhard et al.
(2019).

(1) English: The most high-resource language
according to the common view and literature
in the NLP community.

(2) Yoruba: An African language, which is spo-
ken by about 40 million speakers and con-
tained in the EXTREME benchmark (Hu et al.,
2020). Even with that many speakers, this lan-
guage is often considered as a low-resource

language and it is still discussed whether
this language is also endangered (Fabuni and
Salawu, 2005).

(3) Hausa: An African language with over 60 mil-
lion speakers. It is not covered in EXTREME
or the universal dependencies project (Nivre
et al., 2020).

(4) Quechua: A language family encompassing
about 8 million speakers, mostly in Peru.

(5) Nahuatl and (6) Estonian: Both have between
1 and 2 million speakers, but are spoken in
very different regions (North America & Eu-
rope).

All speaker numbers according to Eberhard et al.
(2019) reflecting the total number of users (L1 +
L2). The tasks were chosen from a list of popular
NLP tasks®. We selected two tasks for the lower-
lever groups and three tasks for the higher-level
groups, which reflects the application diversity with
increasing complexity. Table 3 shows which tasks
were addressed for each language.

Word segmentation, lemmatization, part-of-
speech tagging, sentence breaking and (semantic)
parsing are covered for Yoruba and Estonian by
treebanks from the universal dependencies project
(Nivre et al., 2020). Cusco Quechua is listed as an
upcoming language in the UD project, but no tree-
bank is accessible at this moment. The WikiAnn
corpus for named entity recognition (Pan et al.,
2017) has resources and tools for NER and sen-
tence breaking for all six languages. Lemmati-
zation resources for Nahuatl were developed by
Martinez-Gil et al. (2012) and Lozano et al. (2013)
developed resources for part-of-speech tagging, to-
kenization and parsing of Quechuan. The CoNLL
conference and SIGMORPHON organized two
shared tasks for morphological reinflection which
provided lemmatization resources for many lan-
guages, including Quechuan (Cotterell et al., 2018).

Basic resources for simple semantic role label-
ing and entity linking were developed during the
LORELEI program for many low-resource lan-
guages (Strassel and Tracey, 2016; Tracey and
Strassel, 2020), including resources for Yoruba and
Hausa (even though the latter "fell short" accord-
ing to the authors). Estonian coreference resolu-
tion is targeted by Kiibler and Zhekova (2016), but

*https://en.wikipedia.org/wiki/

Natural_language_processing#Common_NLP__
Tasks
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Low-resource surveys Cieri et al. (2016) , Magueresse et al. (2020)

Active learning Olsson (2009), Settles (2009), Aggarwal et al. (2014)
. Distant supervision Roth et al. (2013), Smirnova and Cudré-Mauroux (2018), Shi et al. (2019).
% Unsupervised domain adaptation ~ Wilson and Cook (2020), Ramponi and Plank (2020)
2. Meta-Learning Hospedales et al. (2020)
~:ﬁ Multilingual transfer Steinberger (2012), Ruder et al. (2019)
§ LM pre-training Rogers et al. (2021), Qiu et al. (2020)
§ Machine translation Liu et al. (2019)
Label noise handling Frénay and Verleysen (2013), Algan and Ulusoy (2021)
Transfer learning Pan and Yang (2009), Weiss et al. (2016), Tan et al. (2018)
4 African languages Grover et al. (2010), De Pauw et al. (2011)
%  Arabic languages Al-Ayyoub et al. (2018), Guellil et al. (2019), Younes et al. (2020)
5% American languages Mager et al. (2018)
§  South-Asian languages Daud et al. (2017), Banik et al. (2019), Harish and Rangan (2020)
~  East-Asian languages Yude (2011)

Table 2: Overview of existing surveys on low-resource topics.

the available resources are very limited. Estonian
sentiment is done by Pajupuu et al. (2016). All
languages are covered by the multilingual fasttext
embeddings (Bojanowski et al., 2017) and byte-
pair-encoding embeddings (Heinzerling and Strube,
2018). Yoruba, Hausa and Estonian are covered by
mBERT or XLM-RoBERTa as well.

Text summarization is done for Estonian by
Miiiirisep and Mutso (2005) and for Hausa by
Bashir et al. (2017). The EXTREME benchmark
(Hu et al., 2020) covers question answering and
natural language inference tasks for Yoruba and Es-
tonian (besides NER, POS tagging and more). Pub-
licly available systems for optical character recog-
nition support all six languages (Hakro et al., 2016).
All these tasks are supported for the English lan-
guage as well, and most often, the English datasets
are many times larger and of much higher quality.
Some of the previously mentioned datasets were au-
tomatically translated, as in the EXTREME bench-
mark for several languages. As outlined in the
main paper, we do not claim that all tasks marked
in the Table yield high-performance model, but we
instead indicate if any resources or models can be
found for a language.
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