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Abstract

Computational linguistic research on language
change through distributional semantic (DS)
models has inspired researchers from fields
such as philosophy and literary studies, who
use these methods for the exploration and com-
parison of comparatively small datasets tradi-
tionally analyzed by close reading. Research
on methods for small data is still in early stages
and it is not clear which methods achieve the
best results. We investigate the possibilities
and limitations of using distributional seman-
tic models for analyzing philosophical data
by means of a realistic use-case. We provide
a ground truth for evaluation created by phi-
losophy experts and a blueprint for using DS
models in a sound methodological setup. We
compare three methods for creating special-
ized models from small datasets. Though the
models do not perform well enough to directly
support philosophers yet, we find that models
designed for small data yield promising direc-
tions for future work.

1 Introduction

Philosophers apply text analysis to understand and
delineate the precise meaning of concepts and the
relations between them in a given text. This in-
cludes comparative research that investigates dif-
ferences in how concepts are viewed in differ-
ent philosophical schools or by individual philoso-
phers. Betti and van den Berg (2014) point out that
comparative research on concepts should follow a
conceptual model approach. This approach states
that we should not look at shifts of individual con-
cepts in isolation, but rather address changes of a
conceptual model as a whole. In such a system,
relations between concepts are made explicit and
comparative studies should identify how such re-
lations change. Previous studies have shown that
distributional methods can be used to support philo-
sophical research by retrieving passages relevant
to concepts in an author’s work (e.g., the concept
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of grounding within the work of Bernard Bolzano,
van Wierst et al., 2016; Ginammi et al., 2020), but
can we also generate distributional semantic (DS)
models that are precise enough to identify differ-
ences in concepts?

This paper takes a first stab at addressing this
question. In particular, we address the challenges
involved in dealing with highly technical domain-
specific terms that are defined in small corpora.
As such, our use case has properties difficult for
DS modeling, but typical for disciplines work-
ing with comparatively limited data. We com-
pare domain-specific embeddings created using
Word2Vec (Mikolov et al., 2013a,b) and a count-
based SVD model (Levy et al., 2015) to those cre-
ated by Nonce2Vec (Herbelot and Baroni, 2017),
specifically designed for dealing with tiny data.
Taking into account previous work criticizing the
use of DS models for detecting sense-shift, we con-
struct a data-specific ground truth, apply multiple
evaluation metrics and verify whether results are
stable across various random initializations. Our
results confirm that SVD representations are su-
perior to Word2Vec for small data and show that
Nonce2Vec outperforms Word2Vec and, in most
cases, SVD. However, results are currently not ac-
curate enough for providing evidence or new in-
sights to philosophers. Nevertheless, we are hope-
ful that better results can be obtained in the future
by optimizing Nonce2 Vec to deal with small rather
than tiny data and by creating a bigger, more bal-
anced ground truth.

The main contributions of this paper are (1) a
new ground truth of philosophical concepts linked
to a clean philosophical corpus that is particularly
challenging to model; (2) a blueprint for investigat-
ing DS models for domain specific research; (3) a
comparative study of different approaches of creat-
ing embeddings for highly domain-specific terms. '

!"The ground truth, details of results and code can be found
on GitHub: https://github.com/YOortwijn/
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After presenting related work, we describe the
philosophical context: requirements, corpus and
our ground truth. In Section 4, we outline how the
DS models we use are created. We then present
our evaluation and results in Section 5 which is
followed by our conclusions and discussion.

2 Related Work

In this section we cover (1) other work related
to distributional semantics (DS) for specific con-
cepts and conceptual change (2) critical reflection
on evaluation and the methodology involved and
(3) work on small datasets and identification of do-
main specific meaning.

2.1 DS for Concepts and Conceptual Change

A well-known application of DS is the use of di-
achronic word embeddings to track and analyze
changes in the meaning of words over periods of
time (Kim et al., 2014; Kulkarni et al., 2015; Mitra
et al., 2015; Hamilton et al., 2016b,a; Kenter et al.,
2015; Tahmasebi and Risse, 2017; Montariol and
Allauzen, 2019; Giulianelli et al., 2020, e.g.). Most
of these approaches study what is called sense-
shift, which is the change in (dominant) sense of
a specific word by comparing the word’s meaning
representations in different time periods (Kutuzov
et al., 2018). DS methods have also been used to
study concepts related to gender and intersectional-
ity (Herbelot et al., 2012), studying cultural stereo-
types (Lewis and Lupyan, 2019) or harm-related
concepts in psychological research papers (Vylo-
mova et al., 2019).

Wevers and Koolen (2020) survey three ways
in which distributional semantic representations
can help trace concept change. However, none of
these methods requires historians of ideas to fix
initial and testable hypotheses on the meaning of
concepts as Sommerauer and Fokkens (2019) rec-
ommend on the basis of Betti and van den Berg
(2014). Betti and van den Berg argue that con-
cepts are not isolated, but part of conceptual mod-
els. Sommerauer and Fokkens (2019) show that
translating conceptual models to words represent-
ing them is one of the challenges involved in using
DS models for studying conceptual change. They
ground their conceptual model of ‘Racism’ in lit-
erature by sociologists, anthropologists and histo-
rians, but argue that domain experts would ideally
be involved directly, as is done in the current pa-

Challenging_DMs.

per. Betti et al. (2020) introduce a concept-focused
ground truth designed by domain experts, QuiNE-
GT, where paragraphs of philosophical text are an-
notated in terms of their relation to a conceptual
model of the concept of naturalized epistemology
in Quine’s works. We also make use of concep-
tual modeling methodology to build a ground truth,
but our task is to extract knowledge on target term
relations rather than to perform an information re-
trieval task searching for paragraphs relevant to a
research question. While QuiNE-GT contains ex-
haustive lists of words pertaining to a particular
research question, we aim for broader coverage of
different terms used by Quine and their relations.

2.2 Methodological Challenges

An interdisciplinary collaboration with domain ex-
perts can lead to hypotheses about shifts or nearest
neighbors of specific terms, which can be tested by
methods also used for detecting sense shift. These
methods are not without challenges. The meaning
representations are affected by random factors such
as initialization and order of example (Hellrich and
Hahn, 2016a) and frequency effects (Dubossarsky
etal., 2017). A major obstacle in addressing these
critical points is the lack of high quality evaluation
sets (Tahmasebi et al., 2018; Kutuzov et al., 2018)
and a tendency to use a single evaluation metric
(Gladkova and Drozd, 2016) while each metric has
downsides (Bakarov, 2018) .

Evaluations on small sets of hand-picked exam-
ples that exhibit strong sense-shift (e.g. Hamilton
et al. (2016a)) leave it unclear whether they are also
suitable for making new discoveries or exploring
data. van Aggelen et al. (2019) introduce a large-
scale evaluation set derived from a thesaurus and
show that performance of distributional methods is
much lower on this more challenging set.

These critical findings stress the need for
methodologies that allow us to establish the qual-
ity of embeddings and to tell the difference be-
tween a stable, reliable finding and an artefact of
the method. Dubossarsky et al. (2017) propose the
use of shuffled and synchronic corpora for verifica-
tion. Rosenfeld and Erk (2018) use synthetic words
that consist of two real words merged together that
result in a shift of these words’ senses for evalua-
tion. Sommerauer and Fokkens (2019) recommend
stress-testing through control words (that should
not change) and by comparing results on multi-
ple models. We supplement these proposals for
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diachronic models by providing methods that can
be used as a strict test of synchronic model qual-
ity, independently of measuring change (so that
frequency effects are not a risk). To ground these
methods, we introduce a novel, high quality ground
truth containing fine-grained meaning distinctions
in the philosophical domain. We stress-test our
findings by applying multiple evaluation metrics
and control for random factors by initializing our
models multiple times.

2.3 Dealing with Small Datasets

In addition to the challenges outlined above, we are
faced with the issue that domain-specific corpora
are typically small, i.e. up to a few million tokens
rather than web scale. Learning embeddings from
small corpora is not an easy task, where SVD mod-
els outperform Word2Vec (W2V) (Sahlgren and
Lenci, 2016, on 1M words, Asr et al., 2016, on 8M
words), and learning them for rare words presents
further difficulty (Luong et al., 2013). Nonce2Vec
(N2V) (Herbelot and Baroni, 2017) addresses this
issue through ‘high-risk’ incremental learning with
an initially high but decaying learning rate, allow-
ing them to learn embeddings from single sen-
tences (called tiny data). Faruqui et al. (2015)
incorporate ontological information from lexical-
semantic databases as a postprocessing step, which
can be done when training data is sparse. However,
when working in a specific domain, such as the
texts of a particular philosopher, words may have
different and specific uses, and general-purpose
evaluation resources or training data do not always
reflect these meanings (Betti et al., 2020). Bloem
et al. (2019) confirm the domain-specific charac-
ter of philosophical writings showing that two vec-
tors for the same word, one trained on Wikipedia
and one trained on the works of a specific philoso-
pher, can have low similarity, especially for high-
frequency terms. Shoemark et al. (2019) find that
the top ranked words are domain-specific to the
Twitter data they used. Wohlgenannt et al. (2019)
evaluate DS models trained on two fantasy book
series by having domain experts manually compile
evaluation datasets addressing the relevant word
senses, incorporating domain knowledge in both
training and evaluation. Roy et al. (2019) propose
incorporating text annotation of in-domain vocab-
ulary and semantic relations into the word embed-
dings to improve the quality of domain-specific
word embeddings learned from relatively small

data sets.

In this paper, we investigate how different ap-
proaches for learning embeddings deal with the do-
main specific concepts we are dealing with. We
compare Herbelot and Baroni’s N2V to continuing
training with W2V and to directly creating SVD
models on our corpus.

3 Philosophical Background and Data

The goal of this section is to provide some insights
into the process of interpreting philosophical texts
and the use case for our experiments. We briefly de-
scribe the process and challenges of close-reading
and how it could be supported by DS models. Then
we present a corpus of philosophical texts and a
ground truth for philosophy.

3.1 Philosophical Questions

Many philosophical research questions focus on
the interpretation and comparison of philosophi-
cal views expressed in writing. These questions
revolve around specific concepts and how they are
defined and viewed by different philosophers. Of-
ten, different philosophers use the same terms to de-
scribe different concepts. For example, Quine sees
reference as a relation between a singular term and
a physical object, where a physical object is not
part of reality, but of our ontology (Quine, 1960).
This is opposed to many other philosophers, who
take what we refer to and what we receive stimula-
tion from as the same thing, i.e., physical objects
in reality.

To make solid comparisons between views, it is
necessary to determine which concepts are closely
related to each other, or which concept pairs stand
in similar relations to others. To do this, philosoph-
ical experts practice close-reading. The interpreta-
tion of only a single passage requires close-reading
and expertise of not only the work the passage is
in, but often also other works by the same author or
even other authors. Conclusions are often drawn on
a small subset of the relevant available data. It al-
most always requires making a selection of sources
to consider and thus allows for cherrypicking data.
The use of computational linguistic methods, in-
stead, could make it possible to consider all avail-
able data as a basis for evidence, and thereby pre-
vent biased source selection.

Differences in the interpretation of a term in dif-
ferent authors’ work can be understood as a differ-
ence in its relations to other terms. A difference
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in how terms can be clustered together would then
show a difference in the conceptual relations these
terms have to each other. Computational methods
that can capture this aspect of meaning can be ap-
plied in various stages of philosophical research.

Exploration. In the first stages of research, a
philosopher might have a single or a few passages
or terms that should be interpreted. At this point,
they may want a rough overview of other passages
or terms relevant to the one(s) under consideration.
DS models may help the researcher to find rele-
vant passages without any of the search terms they
may use in key term search. These passages can
provide input for more directed searches and be
a start for a traditional research path with close-
reading of the identified passages. The recall of
the method for this application need not be very
high: as long as the researcher identifies some new
relevant passages without being overloaded with
irrelevant ones and the selection is not biased to-
wards a specific interpretation, DS models enrich
the philosopher’s research.

Testing Hypotheses about the Text. When a re-
searcher already has some competing hypotheses
for interpretation based on close-reading of some
works or passages, or based on secondary literature,
DS models can help to compile evidence for both
hypotheses and compare the results. If there are
multiple possible interpretations of a term, a DS
model could provide insight into which terms are
most closely related to this term, giving evidence
for the correct interpretation. If the outcome of
such a comparison is to be used as direct evidence,
it is essential that the DS model is highly accurate
and a methodology is applied to distinguish veri-
table observations from noise. A researcher may
however also use these results in a more surveying
manner. In this case, more accuracy is needed than
in the case of identifying passages, but a certain
amount of error is acceptable. In this paper, we aim
to investigate the level of accuracy we can obtain
on philosophical text with either of these applica-
tions in mind (surveying hypotheses or providing
evidence for a hypothesis).

3.2 Quine in Context Corpus

We make use of a large corpus that comprises the
virtually complete oeuvre in English of Willard V.
O. Quine, the QUINE corpus (Version 0.5, Betti
etal., 2020),2 for creating our DS models. The cor-

>The corpus was derived from copyrighted works by
Betti et al. (2020). The corpus is available to researchers

pus includes texts on various topics, from formula-
heavy logic works to philosophy of language. Ver-
sion 0.5 of this corpus consisting of 228 books
and articles by Quine, containing 2,150,356 word
tokens and 38,791 word types. It is a high qual-
ity corpus where scanned page images were OCR-
processed and corrected manually.

3.3 A Ground Truth in Philosophy

Establishing a ground truth for philosophical con-
cepts is not trivial (see e.g. van den Berg et al.
(2018), Betti et al. (2020)). We address this by
building on the methods described by Betti and
van den Berg (2014) for building conceptual mod-
els. Instead of trying to understand the meaning of
a term in isolation, we focus on the interrelations
of terms.

We base our ground truth on Quine’s Word and
Object (Quine, 1960), which encompasses many
of the terms and themes that Quine discusses
throughout the rest of his work.>. We obtain this
book’s most important terminology from its in-
dex. The philosophical expert on our team estab-
lished a conceptual network representing the term-
clusters and relations. The expert categorized each
word as either belonging to one of five clusters
(LANGUAGE, ONTOLOGY, REALITY, MIND,
META-LINGUISTIC) or as a relational term (i.e.
part of either the reference or regimentation rela-
tion that connects (parts) of clusters to each other).
Any two terms in the same cluster can be seen
as conceptually related (e.g. noun and verb are
conceptually related since they are both linguistic
items and are therefore both in the LANGUAGE
cluster). The reference relation connects terms
from the language and ontology cluster, i.e. el-
ements of language refer to elements of the on-
tology. Regimentation connects parts of the lan-
guage and meta-linguistic cluster. So the terms
that are clustered together are semantically simi-
lar to each other, while the relational terms are re-
lated terms that are not necessarily semantically
similar. Our conceptual network contains 74 clus-
tered terms and 43 relational terms (overlapping
the 74). The conceptual network was checked inde-
pendently by two other philosophers specialized in
Wshowthey own the original works. Replication
instructions are available here: https://github.com/
YOortwijn/QuiNE-ground-truth

3A more detailed and accessible explanation of the con-
ceptual network, including further motivation for the catego-

rization of terms can be found at https://github.com/
YOortwijn/Challenging_ DMs
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Quine. There was a 100% consensus among the ex-
perts on the clustering of the 74 terms and relations
of the 43 terms. Since these terms are core terms
in the work of Quine for which most experts agree
on their coarse interpretation, high consensus was
expected. However, differences in interpretations
and disagreement between experts is more likely
upon more fine-grained analysis and even though
consensus was expected, a fourth consulted expert
may still disagree with the interpretation.

Even high-quality DS models have certain limi-
tations when it comes to representing words accu-
rately due to their architecture (e.g. expressing very
fine-grained differences and polysemy). We identi-
fied the following potential challenges prior to ex-
amining vector representations from our DS mod-
els: First, terms that are related by the reference
relation might be closer to each other than to other
terms in their respective clusters. For instance,
a singular term (cluster LANGUAGE) refers to
a physical object (cluster ONTOLOGY). There-
fore, they might be closer to each other than to
other terms in their clusters (relative clause and
class, respectively). Second, the LANGUAGE and
METALINGUISTIC clusters are relatively simi-
lar. While they can be distinguished in Word and
Object by their relation to ontology and regimen-
tation but this is not necessarily the case for all of
Quine’s works. Examples of terms that could be
misplaced due to this are article and noun. Third,
there are terms that are comparatively distinct from
the other terms in their cluster (but nevertheless
clear members of the cluster), such as phoneme
in the REALITY cluster. Fourth, the clusters con-
tain some polysemous terms and terms that can
be used in both a technical and a non-technical
way within Quine’s works, e.g., name, particular,
context, form. Finally, some terms, such as prelin-
guistic quality space, might have an extremely low
number of occurrences.

Based on these observations, we divide our
ground truth in the following subsets: (1) terms
that should be assigned to the correct cluster and
(2) terms that could be assigned to a wrong but also
plausible cluster given the corpus and the first two
potential challenges by way of the reference or reg-
imentation relation. The focus will be on (1), but
(2) will be used in the first task.

4 Training DS Models

Bloem et al. (2019) noted that reasonable embed-

dings for some philosophical terms can be learned
from Wikipedia-data. As a baseline, we include
a model trained exclusively on a 2019 Wikipedia
dump using default Word2Vec (W2V), wikipedia-
W2V. Multi-word target terms were linked by un-
derscores to have a single vector per target term
and 85 of the 99 target terms are in the vocabulary
of this model. We test an SVD count-based model,
using the PPMI-SVD approach from Levy et al.
(2015) and two predictive approaches for creating
our DS models: W2V (Mikolov et al., 2013a,b)
in its Gensim implementation (Rehiifek and So-
jka, 2010), as well as Nonce2Vec (Herbelot and
Baroni, 2017, N2V) adapted for small, in-domain
data situations (Bloem et al., 2019). To learn an
embedding for a specific term, N2V uses the sen-
tences in which this term occurs to map it into a
previously learned general-domain semantic back-
ground space trained on Wikipedia data.* This is
done by initializing the vector for the target term to
the sum of the background space vectors of words
in the in-domain context sentence from the Quine
corpus, following Lazaridou et al. (2017). Training
then takes place with an initial high learning rate
and parameter decay, while the background space
is frozen and only the target term is learned. Using
W2V, we learn embeddings for specific terms by
training only on the in-domain context sentences of
our target terms. We test two initialization methods:
random initialization, and using the additive model
of N2V. We also modify N2V to have a random
initialization condition for comparison, giving us
four conditions: W2V-random, N2V-random, W2V-
additive and N2V-additive (the N2V default).

4.1 Preprocessing

We carry out various preprocessing steps to ensure
that we (1) find the maximum of target term men-
tions and (2) regularize the contexts so we can ex-
ploit the full potential of the small corpus. In part,
we make use of the preprocessing steps already
performed on the QUINE corpus (v0.5), which
was sentence-split and tokenized using UCTO? and
lemmatized using Spacy® using its core model for
English.” The QUINE corpus features a rather high
number of mathematical expressions. Rather than
treating them as unique expressions, they were nor-

*We used the same Wikipedia dump for wikipedia-W2V.

5https ://languagemachines.github.io/
ucto/

*https://spacy.io/

"Spacy English core model: en_core_web_sm
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malized by replacing them by the symbol XfZ for
formulas, and XsZ for symbols. We assume that the
specific expressions do not add to the distributional
information.

For (1), we need to ensure that all instances of
the terms in the evaluation set are identified in the
corpus. We search for all morphological variants of
the target terms and replace them by the unmarked
singular form, by means of a manually created list.
Furthermore, many of the target terms consist of
two or more words, which should receive a single
representation. As with the Wikipedia baseline, we
search for all mentions of the target terms in the
corpus and join all target terms from the ground
truth that consist of multiple words (MWEs) by
underscores to turn them into a single token. We
did not handle MWEs that were not target terms,
so no automatic MWE identification took place.

4.2 Hyperparameter Tuning

We propose a framework for fine-tuning models
specifically designed for domain-specific experi-
ments with small data. As the size of our ground
truth is comparatively limited (for computational
purposes), we do not want to ‘waste’ portions of it
for fine-tuning. Instead, we use ‘proxy’ terms and
a ‘proxy’ corpus to evaluate and compare models
on an artificial task. We aim to select data represen-
tative of the target data (inspired by fine-tuning for
low-resource languages, Sggaard, 2011).

Terms and Corpus. As target terms we select
20 technical terms from the legal domain. Similar
to the philosophical target terms, many technical
legal terms have distinct or more specific mean-
ings in legal scholarship as opposed to generic cor-
pora. To select a proxy corpus, we compare the
contexts of the target terms to the contexts of the
legal terms in four candidate corpora: the British
Law Corpus (BLC), the Open Access Journal cor-
pus, Wikipedia, and the British National Corpus
(BNC). We compare the contexts in terms of eas-
ily computable metrics which characterize proper-
ties we expect to have an impact on training a DS
model: average relative frequency of all the context
words, their average polysemy (in terms of Word-
Net synsets (Fellbaum, 2010; Miller, 1995)), their
entropy (based on unigram frequency), type count,
token count, and type/token ratio. We rank each
corpus by similarity to the Quine corpus on each
metric. Out of the four corpora, Wikipedia and the
BNC had an average rank of 1.8, while the BLC

was the least similar with 4. Out of the two equal
choices in terms of means, the Wikipedia corpus
was more similar to the Quine corpus in terms of
variance, so we chose this corpus for extracting
contexts of the legal proxy terms.

Task. As we do not have a conceptual ground
truth for the legal terms, we rely on an artificial
task. We approximate embedding quality in terms
of consistency. Bloem et al. (2019) define a model
as consistent if “its output does not vary when its
input should not trigger variation (i.e. because it
is sampled from the same text or domain)”. We
test whether a model creates consistent representa-
tions of a term when trained on only a subset of
its contexts using artificial examples in the follow-
ing way: Our artificial examples consist of contexts
of two terms, which are merged to become one
pseudo-term. Since the pseudo-term’s contexts are
split evenly between contexts of terml and term?2,
its embedding is expected to be somewhere half-
way between the embeddings of the two terms.®
We train separate vectors t_l' and t_é for terml and
term?2 on the basis of 100 occurrences of each, as
well as t; for the pseudo-term termi_term2, based
on 50 occurrences of each component term. We
then compute the vector half-way between ¢; and
t}. In a consistent model, the cosine similarity be-
tween this vector and t; should be high. In tuning,
we perform a grid search and take the average of
this metric computed over 10 random pairs of legal
terms for each hyperparameter combination.’

The results show that our models can learn vec-
tors for artificial combined terms that are consis-
tent with the middle point between the vectors of
the two component terms in vectorial space. There
is great variation for different hyperparameter sets.
Average cosine similarities varied from 0.08 to
0.87 (N2V-additive) or 0.96 (W2V-random). We
found that with the additive initialization, lower
learning rates performed better, while with the
random initialization, higher number of negative
samples had the greatest impact on the consis-
tency scores. For N2V, the lowest parameter decay

80ur assumption on the expected position of the pseudo-
term embedding oversimplifies the nature of DS models. The
structure of semantic spaces and the distances between em-
beddings are still poorly understood, and it is not guaranteed
that the embedding of a merged term should ideally be posi-
tioned in between its two constituent terms. However, we only
assume that such a middle position is a good approximation
when evaluating the consistency of a distributional semantic
model using artificial data in tuning, not in testing our models.

°The full parameter space can be found in our code repos-
itory.
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rates performed best, probably because our artifi-
cial terms have more occurrences (50 and 100) than
N2V was designed for (1-4). The initial high learn-
ing rate is a core feature of N2V, so we also include
the best setting with a learning rate of 1 as an addi-
tional condition (N2V-additive-al).

5 Results

The tuned models were evaluated against the
ground truth. This section presents multiple evalu-
ation tasks and results to (1) explore different as-
pects of model quality and (2) stress-test our find-
ings. In these tasks, we use the 74 terms from the
conceptual network that were clustered by the ex-
perts.

Cluster similarity Our similarity task is defined
as follows: Given a target term ¢;, a term from the
same cluster ¢4, and a term from a different cluster
t4c, we test whether the target term ¢, is closer to
tsc than to tg4.. If the cosine similarity between t;
and ¢4 is higher than the cosine similarity between
t; and t 4., it is counted as correct, else as incorrect.
We carry out this comparison for all possible term
combinations and report the percentage of correct
outcomes. We report the proportion of target-terms
that are classified in the correct cluster. We also
show the proportion of target terms that are clus-
tered incorrectly but plausibly given their relation
(via reference or regimentation) to other clusters.
We exclude all three terms that are out of vocabu-
lary in any of the models, as a difference in target
terms distorts the comparison. This way, we ensure
that all models are evaluated on the same terms.

Table 1 shows that N2V outperforms the W2V
models in most cases. The best performance is by
N2V with additive initialization (standard N2V),
pairing 65.0% correct according to the clusters,
and 72.6% when additional relations between
terms are also considered correct. The count-based
SVD model performs similarly well. These are the
only two models that beat the Wikipedia baseline.
The best W2V model (W2V-random), pairs 56.4%
correct according to the clusters, and 64.3% with
additional relations. To evaluate the stability of our
best result, we train 25 identically parameterized
models as in Hellrich and Hahn’s (2016b) reliabil-
ity metric and obtain similarity scores in a range
of 64.04%-65.22% (mean 64.65%, cf. 64.95% in
testing) indicating high stability.

Model Sim. Oth. Rel Dunn
N2V-additive 64.95% 7.68%  0.56
N2V-additive-al 56.09% 838% 0.24
N2V-random 55.18% 8.39% 0.19
W2V-additive 52.00% 6.44% 0.12
W2V-random 56.44% 7.88%  0.08
SVD 65.19% 7.18%  0.35
wikipedia-W2V  59.58% 6.17%  0.17

Table 1: Outcome Cluster Similarity & Dunn Index

Dunn index The Dunn Index (DI) is a general
metric of cluster quality and can be used to mea-
sure how well embeddings from the same cluster
are clustered in semantic space (Huang et al., 2016).
It is the ratio of the minimum inter-cluster distance
to the maximum cluster size, and higher values in-
dicate tighter clusters and better separation.

The DI results in table 1 confirm that N2V mod-
els outperform W2V models. N2V with additive
initialization achieved the highest DI value 0.56,
followed by the SVD model (0.35). We can com-
pare this to Huang et al. (2016), who used DI
to evaluate word embeddings in the medical do-
main, using six semantic clusters taken from an
expert-defined controlled vocabulary of medical
terms using far larger data sources (e.g. PubMed
and Wikipedia). In their experiment with 800 terms
(we have 99) and six clusters (comparable to our
five), their DI scores were 0.16-0.20 for a bag-of-
words baseline model, and 0.43 (PubMed) to 0.25
(Wikipedia) for W2V. This is comparable to our
wikipedia-W2V condition which scored 0.17 on
our clusters and data, indicating that our task is
more difficult. In light of this, the 0.56 DI of our
N2V-additive model seems quite good, while the
0.08 of W2V-random indicates poor cluster quality.
But why did N2V cluster better than SVD while
the two did not differ much in the cluster similarity
task? DI is determined by both inter and intra dis-
tances. We found SVD has greater intra-cluster dis-
tances (0.51 inter, 1.47 intra) than N2V (0.55, 0.99)
after normalization to unit vectors. This means
clusters are more compact in the N2V model, po-
tentially making the cluster similarity task easier.

K-means clustering and Centroids We clus-
tered terms from each model into five clusters us-
ing the K-means clustering algorithm from scikit-
learn (Pedregosa et al., 2011) and evaluated using
three of its performance evaluation metrics: (i) ad-
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Figure 1: Similarity scores from Table 1 split by term
frequency. Low < 49 tokens, mid = 50 - 750, high >
750.

justed Rand index, (ii) adjusted mutual information
and (iii) Fowlkes-Mallows index. Results for (i)
and (ii) show scores close to zero for all models
within the bounded range [-1,1], indicating results
close to random. The best model is the SVD model
((1) 0.12, (i1) 0.17). On (iii), with scores in range
[0,1], the best N2V model (0.48) outperforms the
best SVD and W2V. Manual inspection of the clus-
ters shows that in many cases the majority of terms
is put into a single cluster and the other clusters
have only a few terms in them.

We also applied a centroid-based approach to
evaluate clustering. We calculated the mean of the
normalized vectors for each cluster to determine its
centroid. We then calculated the F-score by check-
ing for each term whether its cosine distance was
closer to its cluster centroid than to another. The
best performing model is W2V-random (F-score:
0.10), followed by N2V-random (0.08). All other
models perform approximately equally bad (0.04).

K-nearest neighbors In our final evaluation, we
classify terms into clusters using K-nearest neigh-
bors (KNNs). We compute the macro-averaged F1
score for each term using leave-one-out cross val-
idation. For both k=3 and k=1, the SVD model
performs best with an F-score of respectively 0.45
and 0.42. For k=3, the best N2V outperforms W2V,
while for k=1 the best W2V outperforms N2V,
scoring almost the same as the SVD model. Man-
ual inspection shows that for all models most of
the terms from any cluster are either classified as
part of the language or the meta-linguistic cluster,
which are the two largest clusters.

Frequency effects To further explore our find-
ings, we performed the cluster similarity evalua-

tion task again, but with the target terms split by
frequency. This allows us to see how the quan-
tity of training data affects the cluster similarity.
We distinguish between low-frequency terms (1-49
occurrences, n=22), medium-frequency terms (50-
750 occurrences, n=55) and high-frequency terms
(750-6730 occurrences, n=19, cutoffs were set to
have a reasonable number of terms in the low and
high frequency class). For reference, N2V was de-
signed to train on 1-4 occurrences of a term, while
for W2V, more is better. We expect additive initial-
ization to outperform random initialization for low
frequencies where an informed initialization can
make up for a lack of training data.

Figure 1 shows that most models benefit from
more data, but N2V clearly outperforms W2V in
the low frequency condition, even with random ini-
tialization. Secondarily, models with additive ini-
tialization outperform their randomly initialized
variants, possibly due to the transfer of domain-
specific information for low-frequency terms noted
by Bloem et al. (2019). N2V-add-al forms an ex-
ception, where the high learning rate may cause
massive changes to the initial vector position after
only a few training occurrences, performing worse
than random. SVD does not pattern with N2V here,
performing very poorly on the low frequency terms.
This model performs best in the 50-750 occurrence
range. The SVD models cannot benefit from ad-
ditive initialization and should therefore be com-
pared to the randomly initialized models.

In the high-frequency range, N2V again per-
forms best, probably due to the low rates of param-
eter decay selected in the hyperparameter tuning.
As expected, W2V performs quite well with more
data in its standard random initialization condition.
Unexpectedly, it performs quite poorly with the ad-
ditive initialization. This might be an issue with
our tuning process: as all our artificial terms had
a relatively low frequency of 100, the tuning task
may have selected a model that relies too much
on the initialization, and learns poorly for the w2v-
additive condition. This shows the importance of
the tuning data resembling the target data closely.

6 Conclusion and Discussion

The results show that, in general, N2V and SVD
represent the ground truth clusters better than W2V
on this type of data. Furthermore, we see that us-
ing N2V or SVD for smaller, domain-specific data
outperforms a larger domain-general W2V model
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trained on a large corpus. N2V is able to learn
higher-quality embeddings than W2V from small
texts, as it was designed to, and we confirm previ-
ous work showing that the same holds for count-
based models to a limited extent.

Clustering methods (centroid and k-means) do
not detect anything close to the clusters defined in
the ground truth, whereas more fine-grained meth-
ods (cluster similarity and KNN) do yield results
that are clearly above chance. The evaluation in
terms of the Dunn index is also promising. Despite
the overall low performance, we take this as an in-
dication that the models group the terms with some
systematicity. Furthermore, the rankings of the dif-
ferent models remain consistent across evaluations.
Arriving at the same results through various meth-
ods can be seen as a fulfillment of Sommerauer and
Fokkens’s (2019) stress-test requirement.

Manual inspection of the clusters indicates that
the imbalance in the (already very small) dataset
is problematic for a K-nearest neighbors classifier,
which assigned almost all words to the two biggest
clusters. We expect that the same may hold for cen-
troids and k-means. In hindsight, we could have
controlled for this by extending the dataset beyond
the terms in the Index of Word and Object. While
this might have provided more accurate insights,
we expect that most use-cases that work with small
(or even tiny) data are most likely also working
with similarly unbalanced data. Standard machine-
learning techniques aiming to abstract over exam-
ples are most likely not able to pick up (potentially
weak) signals based on just a few examples. We
therefore consider fine-grained and example-based
methods a more promising direction.

Overall, research on small data is still in an
early phase. We see that models designed to work
with tiny data outperform others on low-frequency
terms, but yield only slightly better or comparative
results when compared on mid- or high-frequency
terms. It has to be considered that these models
are overall very similar to the standardly used mod-
els. Future research should explore more balanced
approaches which combine the strengths of both
versions. For instance, by adjusting the settings of
N2V based on the frequency of a target term.

From the perspective of a philosopher who may
want to make use of DS models to support their
work, the results we obtained in this study are not
good enough yet. The minimum for exploratory
work would be that the vast majority of the terms

is correctly clustered and all categories are exem-
plified. Currently most terms are placed in the two
largest categories, which might even give high ac-
curacy but still does not represent the data well.
Thereby, exploration of the data with these mod-
els could give a wrong impression about how the
terms relate to each other. For hypothesis testing,
the required accuracy depends on the hypothesis
being tested, but in principle it is possible when
the model no longer makes clear mistakes (but it
may not be able to always distinguish between con-
ceptual and relational connections and still make er-
rors on clear borderline cases). Unfortunately, this
level of accuracy was not yet reached either. More
broadly, as studying language change through di-
achronic word embeddings adds a layer of com-
plexity beyond the synchronic word embeddings
we investigated, we expect that diachronic word
embeddings trained on small data sets will not be
able to reflect actual conceptual change and thus di-
rectly support philosophical research at this stage.

We do, however, think that our results have
laid the groundwork for using DS models for ex-
ploratory purposes. We should keep in mind that
the conceptual network based on Word and Object
calls for very fine-grained distinctions. While this
may still be too challenging, we expect that explor-
ing differences in terms used by different authors
could be more realistic.
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