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Abstract

This paper studies zero-shot cross-lingual
transfer of vision-language models. Specif-
ically, we focus on multilingual text-to-
video search and propose a Transformer-based
model that learns contextual multilingual mul-
timodal embeddings. Under a zero-shot set-
ting, we empirically demonstrate that perfor-
mance degrades significantly when we query
the multilingual text-video model with non-
English sentences. To address this prob-
lem, we introduce a multilingual multimodal
pre-training strategy, and collect a new mul-
tilingual instructional video dataset (Multi-
HowTo100M) for pre-training. Experiments
on VTT show that our method significantly im-
proves video search in non-English languages
without additional annotations. Furthermore,
when multilingual annotations are available,
our method outperforms recent baselines by
a large margin in multilingual text-to-video
search on VTT and VATEX; as well as in mul-
tilingual text-to-image search on Multi30K.
Our model and Multi-HowTo100M is avail-
able at http://github.com/berniebear/
Multi-HT100M

1 Introduction

One of the key challenges at the intersection of
computer vision (CV) and natural language pro-
cessing (NLP) is building versatile vision-language
models that not only work in English, but in all of
the world’s approximately 7,000 languages. Since
collecting and annotating task-specific parallel mul-
timodal data in all languages is impractical, a
framework that makes vision-language models gen-
eralize across languages is highly desirable.

One technique that has shown promise to greatly
improve the applicability of NLP models to new
languages is zero-shot cross-lingual transfer, where
models trained on a source language are applied

∗Equal contribution.

as-is to a different language without any additional
annotated training data (Täckström et al., 2012;
Klementiev et al., 2012; Cotterell and Heigold,
2017; Chen et al., 2018; Neubig and Hu, 2018). In
particular, recent techniques for cross-lingual trans-
fer have demonstrated that by performing unsuper-
vised learning of language or translation models
on many languages, followed by downstream task
fine-tuning using only English annotation, models
can nonetheless generalize to a non-English lan-
guage (Wu and Dredze, 2019a; Lample and Con-
neau, 2019; Huang et al., 2019a; Artetxe et al.,
2020; Hu et al., 2020). This success is attributed to
the fact that many languages share a considerable
amount of underlying vocabulary or structure. At
the vocabulary level, languages often have words
that stem from the same origin, for instance, “desk”
in English and “Tisch” in German both come from
the Latin “discus”. At the structural level, all lan-
guages have a recursive structure, and many share
traits of morphology or word order.

For cross-lingual transfer of vision-language
models, the visual information is clearly an essen-
tial element. To this end, we make an important yet
under-explored step to incorporate visual-textual re-
lationships for improving multilingual models (De-
vlin et al., 2019; Artetxe et al., 2020). While spo-
ken languages could be different, all humans share
similar vision systems, and many visual concepts
can be understood universally (Sigurdsson et al.,
2020; Zhang et al., 2020). For example, while
is termed “cat” for an English speaker and “chat”
for a French speaker; they understand similarly.
We leverage this observation to learn to associate
sentences in different languages with visual con-
cepts for promoting cross-lingual transfer of vision-
language models.

In this work, we focus on multilingual text-to-
video search tasks and propose a Transformer-
based video-text model to learn contextual mul-
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tilingual multimodal representations. Our vanilla
model yields state-of-the-art performance in multi-
lingual text→video search when trained with multi-
lingual annotations. However, under the zero-shot
setting, rather surprisingly, there is a significant
performance gap between English and non-English
queries (see §5.5 for details). To resolve this prob-
lem, motivated by recent advances in large-scale
language model (Artetxe et al., 2020) and multi-
modal pre-training (Lu et al., 2019; Miech et al.,
2019; Patrick et al., 2020), we propose a multi-
lingual multimodal pre-training (MMP) strategy
to exploit the weak supervision from large-scale
multilingual text-video data. We construct the
Multilingual-HowTo100M dataset, that extends the
English HowTo100M (Miech et al., 2019) dataset
to contain subtitles in 9 languages for 1.2 million
instructional videos.

Our method has two important benefits. First,
compared to pre-training on English-video data
only, pre-training on multilingual text-video data
exploits the additional supervision from a variety
of languages, and therefore, enhances the search
performance on an individual language. Second,
by exploiting the visual data as an implicit “pivot”
at scale, our methods learns better alignments in
the multilingual multimodal embedding space (e.g.,
“cat”- -“chat”), which leads to improvement in
zero-shot cross-lingual transfer (e.g., from “cat”-

to “chat”- ) of vision-language models.

In our experiments on VTT (Xu et al., 2016)
and VATEX (Wang et al., 2019), our method
yields state-of-the-art English→video search per-
formance. For zero-shot cross-lingual transfer, the
proposed multilingual multimodal pre-training im-
proves English-video pre-training by 2 ∼ 2.5 in av-
erage R@1 across 9 languages. Additionally, when
trained with in-domain multilingual annotations as
other baselines, our method outperforms them by a
large margin in multilingual text→video search on
VATEX and text→image search on Multi30K (El-
liott et al., 2016).

To summarize, we make the following contribu-
tions: (1) We propose a transformer-based video-
text model that learns contextual multilingual mul-
timodal representations (§3.1). (2) We empirically
demonstrate that vision-language models, unlike
NLP models, have limited zero-shot cross-lingual
transferrability. (§5.5). (3) We introduce the multi-
lingual multimodal pre-training strategy and con-
struct a new Multi-HowTo100M dataset (§4) for

pre-training to improve zero-shot cross-lingual ca-
pability of vision-language models. (4) We demon-
strate the effectiveness of our approach, by achiev-
ing state-of-the-art multilingual text→video search
performance in both the zero-shot (§5.5) and fully
supervised setup (§5.6).

2 Related Work

Cross-lingual representations. Early work on
learning non-contextual cross-lingual representa-
tions used either parallel corpora (Gouws and
Søgaard, 2015; Luong et al., 2015) or a bilin-
gual dictionary to learn a transformation (Faruqui
and Dyer, 2014; Mikolov et al., 2013). Later ap-
proaches reduced the amount of supervision using
self-training (Artetxe et al., 2017). With the ad-
vances in monolingual transfer learning (McCann
et al., 2017; Howard and Ruder, 2018; Peters et al.,
2018; Devlin et al., 2019), multilingual extensions
of pre-trained encoders have been proven effective
in learning deep contextual cross-lingual represen-
tations (Eriguchi et al., 2017; Lample and Conneau,
2019; Wu and Dredze, 2019b; Siddhant et al., 2020;
Pires et al., 2019; Pfeiffer et al., 2020). We extend
prior work to incorporate visual context.
Video-text representations. The HowTo100M
dataset (Miech et al., 2019) has attracted signif-
icant interest in leveraging multimodal pre-training
for text→video search (Korbar et al., 2020), cap-
tioning (Iashin and Rahtu, 2020), and unsuper-
vised translation via image-based (Surı́s et al.,
2020; Huang et al., 2020b) and video-based (Sig-
urdsson et al., 2020) alignment. This work stud-
ies a challenging and unexplored task: Zero-shot
cross-lingual transfer of vision-language models.
Unlike prior image/video-text work that utilizes
RNN (Dong et al., 2019; Chen et al., 2020a; Burns
et al., 2020; Kim et al., 2020) and inter-modal con-
trastive objectives (Sigurdsson et al., 2020; Liu
et al., 2019; Huang et al., 2019b; Patrick et al.,
2021), we employ Transformers to learn contex-
tual multilingual multimodal representations and
uniquely models cross-lingual instances. Moreover,
we build Multi-HowTo100M, the largest text-video
dataset for multilingual multimodal pre-training.
Cross-lingual Transfer. Cross-lingual transfer has
proven effective in many NLP tasks including de-
pendency parsing (Schuster et al., 2019), named
entity recognition (Rahimi et al., 2019), sentiment
analysis (Barnes et al., 2019), document classifi-
cation (Schwenk and Li, 2018), and question an-
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Figure 1: The proposed video-text model for learning contextual multilingual multimodal representations. We
utilize intra-modal, inter-modal, and conditional cross-lingual contrastive objectives to align (x, v, y) where x
and y are the captions or transcriptions in different languages of a video v. TP: Transformer pooling head.

swering (Lewis et al., 2020; Artetxe et al., 2020).
Recently, XTREME (Hu et al., 2020) was proposed
to evaluate the cross-lingual transfer capabilities of
multilingual representations across a diverse set of
NLP tasks and languages. However, a comprehen-
sive evaluation of multilingual multimodal models
on zero-shot cross-lingual transfer capabilities is
still missing. To our best knowledge, we are the
first work that investigates and improves zero-shot
cross-lingual transfer of vision-language models.

3 Method

We consider the problem of learning multilingual
multimodal representations from a corpus C of
video-text pairs {(xi, vi)}Ci=1, where vi is a video
clip and xi is its corresponding text (caption or
transcription) that is written in one of K languages.
Our goal is to learn a shared multilingual text en-
coder cx = Φ(x) and a video encoder cv = Ψ(v),
both of which project the input to a shared D-
dimensional embedding space cv, ct ∈ RD, where
semantically similar instances (i.e., paired (xi, vi))
are closer to each other than the dissimilar ones
(i.e., (xi, vj), i 6= j). In the following, we de-
note a batch of multilingual text-video samples
as B = {(xi, vi)}Bi=1} where B ⊂ C.

3.1 Multilingual Multimodal Transformers
Figure 1 gives an overview of the proposed method.
Our text encoder consists of a multilingual Trans-
former (e.g. multilingual BERT (Devlin et al.,
2019)) and a text Transformer pooling head (ex-
plained below). Similarly, our video encoder con-
sists of a 3D-CNN (e.g. R(2+1)D network (Tran
et al., 2018)) and a video Transformer pooling head.
We use these multilingual multimodal Transform-
ers to encode text and video for alignment.

Unlike prior multilingual text-image mod-
els (Gella et al., 2017; Kim et al., 2020; Huang

et al., 2019b) that utilize word embeddings and
RNNs, our multilingual text encoder is built on a
multilingual Transformer that generates contextual
multilingual representations ex ∈ RN×D to encode
a sentence x containing N words. We employ an
additional 2-layer Transformer which we will call
a “Transformer pooling head (TP)” as it serves as
a pooling function to selectively encode variable-
length sentences and aligns them with the corre-
sponding visual content. We use the first output
token of the second Transformer layer as the final
sentence representation. Precisely, we set cx =

Trans(2)x (query=key=value=ex)[0] where Trans(2)x
is a 2-layer stack of Transformers (Vaswani et al.,
2017) with ex as the (query,key,value) in the multi-
head attention. Note that we use the same text
encoder to encode sentences in all languages.

For encoding videos, our model uses pre-trained
3D-CNNs that encode spatial-temporal context
in a video. For a M -second video v, we apply
R(2+1)D (Tran et al., 2018) and S3D (Miech et al.,
2020) networks to its frames, concatenate network
outputs, and apply a linear layer to encode the vi-
sual input, ev ∈ RM×D, to our model. Similarly to
the text part, we employ a two-layer Transformer
as the pooling head to encode videos with different
lengths into fixed-length representations. Formally,
we set cv = Trans(2)v (query=key=value=ev)[0].
Since videos are typically long and have a high
frame rate (e.g., 30 fps), it is infeasible to update
3D-CNNs simultaneously and therefore, we use
pre-extracted video features. Our model is parame-
terized by θ = θmBERT ∪ θTransx ∪ θTransv .

3.2 Multilingual Text-Video Alignment

For learning multimodal representations, the com-
mon practice is to minimize a contrastive objective
to map the associated (video, text) embeddings
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to be near to each other in a shared embedding
space. The inter-modal max-margin triplet loss has
been widely studied in video-text (Yu et al., 2018;
Liu et al., 2019) and image-text (Kim et al., 2020;
Burns et al., 2020; Huang et al., 2019b) research. In
this work, we generalize and model all inter-modal,
intra-modal, and cross-lingual instances with a
noise contrastive estimation objective (NCE) (Gut-
mann and Hyvärinen, 2010; van den Oord et al.,
2018; Chen et al., 2020b).
Inter-modal NCE. LetX and V denote the subsets
of the sampled sentences in multiple languages and
videos in B, respectively. And let s(a, b) = aT b

‖a‖‖b‖
be the cosine similarity measure. We use an (inter-
modal) NCE objective defined as:

L(X ,V) = − 1

B

B∑
i=1

log`NCE(Φ(xi),Ψ(vi)), (1)

where

`NCE(cx, cv) =
es(cx,cv)

es(cx,cv) +
∑

(x′,v′)∼N e
s(cx′ ,cv′ )

(2)
In inter-modal NCE, Linter = L(X ,V), the noise
N is a set of “negative” video-text pairs sampled to
enforce the similarity of paired ones are high and
and those do not are low. Following Miech et al.
(2020), we set the negatives of (xi, vi) as other xj
and vj , j 6= i in B.

Intuitively, inter-modal NCE draws paired (se-
mantically similar) instances closer and pushes
apart non-paired (dissimilar) instances. Note that
we do not distinguish language types in X and the
sentences in all possible languages will be drawn
towards their corresponding videos in the shared
multilingual text-video embedding space.
Intra-modal NCE. Beyond cross-modality match-
ing, we leverage the intra-modal contrastive ob-
jective to learn and preserve the underlying struc-
ture within the video and text modality. For exam-
ple, Corgi should be closer to Husky than Balinese.
Prior image-text work (Gella et al., 2017; Huang
et al., 2019c) utilizes a triplet loss to maintain such
neighborhood relationships. Inspired by recent suc-
cess in self-supervised image and video represen-
tation learning (Yalniz et al., 2019; Ghadiyaram
et al., 2019), our model leverages intra-modal NCE
that constrains the learned representations to be
invariant against noise and to maintain the within-
modality structure simultaneously. We minimize

the following intra-modal NCE loss:

Lintra = L(X ,Xm) + L(V,Vm), (3)

where Xm and Vm are the noised version of the
original sentences and videos. For noising, we
randomly mask 5% of the multilingual text tokens
and video clips. We optimize our model by

min
θ
Linter + Lintra (4)

3.3 When Visually-Pivoted Multilingual
Annotations Are Available

In many multilingual multimodal datasets, there
are sentences in different languages that describe a
shared visual context. For example, 10 English and
10 Chinese descriptions are available for each video
in VATEX. With these visually-pivoted (weakly
paralleled) sentences (x, y), we further revise the
contrastive objectives to leverage this additional
supervisory signal. Given a visually-pivoted cor-
pus Cp that contains all possible combination of
visually-pivoted pairs {(xi, vi, yi)}

Cp

i=0, we sample
batches Bp = {(xi, vi, yi)}B

p

i=1,Bp ⊂ Cp and re-
vise the contrastive objective as:

Linter = L(X ,V) + L(Y,V) (5)

Lintra = L(X ,Xm) + L(Y,Ym) + L(V,Vm)
(6)

Visual-pivoted Cross-lingual NCE. Inspired
by Translation Language Modeling (TLM) in
XLM (Lample and Conneau, 2019), we propose a
multimodal TLM-like contrastive objective which
promotes alignments of descriptions in different
languages that describe the same video. We use the
intuition that conditioned on a video, the descrip-
tions (need not to be translation pairs) in different
languages would likely be semantically similar. To
this end, we set the cross-lingual NCE as:

Lcross = L(X|V,Y|V) (7)

For visually-pivoted sentences, as shown in
Fig. 1, we generate their representations condi-
tioned on the video they describe. We extend the
key and value of multihead attention with the addi-
tional visual content ev and generate new cx|v and
cy|v for matching. Specifically, our model employs

cx|v = Trans(2)x (query=ex, key=value=ex||ev)[0].
With the access to (visually-pivoted) multilingual
annotations, we optimize our model by

min
θ
Linter + Lintra + Lcross (8)
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ya fries ya Kifaransa unaweza pia kuandamana nayo

también la voy a acompañar con un poco de papas fritas
und dann ziehen Sie es so fest wie möglich是什么，它是热风枪，我花了十美元买了

It will also be accompanied with a little of french fries
а затем потяните его как можно плотнееWhat it is, is a heat gun and I got this for ten bucks
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we just made our six-sided coaster so
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khoai tây chiên bạn cũng có thể đi kèm với nó

00:01:16.290 --> 00:01:21.210

Figure 2: Video clips and the corresponding multilingual subtitles in Multi-HowTo100M.

At the inference time, we simply apply cx =
Φ(x) and cv = Ψ(v) to encode multilingual text
queries and videos. For text-to-video search, we
sort videos according to their cosine similarity
scores to the text query.

4 The Multilingual HowTo100M Dataset

As large-scale pre-training has been shown im-
portant in recent NLP and vision-language mod-
els, we construct the Multilingual HowTo100M
dataset (Multi-HowTo100M) to facilitate research
in multilingual multimodal learning. The origi-
nal HowTo100M (Miech et al., 2019) dataset is a
large-scale video collection of 1.2 million instruc-
tional videos (around 138 million clips/segments)
on YouTube, along with their automatic speech
recognition (ASR) transcriptions as the subtitles.
For each video in HowTo100M, we crawl and col-
lect the multilingual subtitles provided by YouTube,
which either consist of user-generated subtitles or
those generated by Google ASR and Translate in
the absence of user-generated ones. Essentially,
we collect video subtitles in 9 languages: English
(en), German (de), French (fr), Russian (ru), Span-
ish (es), Czech (cz), Swahili (sw), Chinese (zh),
Vietnamese (vi).

At the time of dataset collection (May 2020),
there are 1.1 million videos available, each with
subtitles in 7-9 languages. The video length ranges
from 1 minute to more than 20 minutes. We utilize
Multi-HowTo100M for multilingual multimodal
pre-training to exploit the weak supervision from
large-scale multilingual text-video data. In Fig. 2,
we provide a visualization of few instances sam-
pled in Multi-HowTo100M with the corresponding
video frame, timestamp, and transcriptions in differ-
ent languages. Please refer to Appendix for more
details and dataset statistics.

5 Experiment

In this section, we first describe our experimental
setup (§5.1-5.3). In §5.4, we conduct ablation stud-
ies to validate the effectiveness of proposed multi-
lingual text-video model . With the best models at
hand, we investigate their zero-shot cross-lingual
transferability in §5.5, where we showcase that
the proposed multilingual multimodal pre-training
serves as the key facilitator. We then verify the
superior text→video search performance of our
method under the monolingual, multilingual, and
cross-modality settings in §5.6.

5.1 Evaluation Datasets

MSR-VTT (VTT) (Xu et al., 2016) contains
10K videos, where each video is annotated with
20 captions. Additionally, we created pseudo-
multilingual data by translating the English cap-
tions into 8 languages with off-the-shelf machine
translation models.1 We use the official training set
(6.5K videos) and validation set (497 videos). We
follow the protocol in Miech et al. (2019); Liu et al.
(2019) which evaluates on text→video search with
the 1K testing set defined by Yu et al. (2018).
VATEX (Wang et al., 2019) is a multilingual (Chi-
nese and English) video-text dataset with 35K
videos. Five (en,zh) translation pairs and five non-
paired en and zh descriptions are available for
each video. We use the official training split (26K
videos) and follow the testing protocol in Chen
et al. (2020a) to split the validation set equally into
1.5K validation and 1.5K testing videos.
Multi30K (Elliott et al., 2016) is a multilingual ex-
tension of Flickr30K (Young et al., 2014). For each
image, there are two types of annotations available:
(1) One parallel (English,German,French,Czech)
translation pair and (2) five English and five Ger-

1https://marian-nmt.github.io/
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man descriptions collected independently. The
training, validation, and testing splits contain 29K,
1K, and 1K images respectively.

5.2 Implementation Details
For the video backbone, we use a 34-layer,
R(2+1)-D (Tran et al., 2018) network pre-trained
on IG65M (Ghadiyaram et al., 2019) and a
S3D (Miech et al., 2020) network pre-trained on
HowTo100M. We pre-extract video features and
concatenate the two 3D-CNN outputs to form
ex ∈ RM×1024 as a video input.

For the text backbone, we use multilingual BERT
(mBERT) (Devlin et al., 2019) or XLM-Roberta-
large (XLM-R) (Artetxe et al., 2020), where the
latter achieves near SoTA zero-shot cross-lingual
transfer performance for NLP tasks. Following Hu
et al. (2020), instead of using the top layer, we
output the 12-th layer in XLM-R and mBERT. For
vision-language tasks, we freeze layers below 9 as
this setup empirically performs the best.

Our model employs a 2-layer Transformer with
4-head attention for the text and video transformer
pooling (TP) modules. The embedding dimension
D is set to 1024. We use the Adam (Kingma and
Ba, 2015) optimizer and a 0.0002 learning rate to
train our model for 16 (pre-training) and 10 (fine-
tuning) epochs. The softmax temperature in all
noise contrastive objectives is set to 0.1.

5.3 Experimental Setup
We use Multi-HowTo100M for multilingual mul-
timodal pre-training (MMP). For each video, we
randomly sample the start and end time to con-
struct a video clip. For a video clip, we randomly
sample one language type each time from 9 lan-
guages and use the consecutive ASR transcriptions
that are closest in time to compose (text-video)
pairs for training. For simplicity and speed pur-
poses, we follow the training protocol of XLM-
R to pre-train on a multilingual corpus wihtout
using translation pairs, i.e., we use multilingual
text-video pairs (x, v) but no translation pairs from
Multi-HowTo100M and utilize only inter- and intra-
modal NCE (Eq. 1-3) for MMP.

We fine-tune our model on VTT, VATEX, and
Multi30K to evaluate on text→video search tasks.
In the zero-shot cross-lingual transfer experiments,
we use only English-video data and fine-tune with
Eq. 1-3. We then test the model with non-English
queries. When annotations in additional languages
are available (by humans in VATEX and Multi30K;

Text-B Video-B R@1↑ R@5↑ R@10↑
XLM-R S3D 19.5 49.0 62.8
XLM-R R(2+1)D 19.0 49.5 63.2
XLM-R R+S 21.0 50.6 63.6
mBERT R+S 19.9 49.8 62.5

Table 1: Text and Video (B)ackbone comparison.

T layers V layers R@1↑ R@5↑ R@10↑
1 1 20.0 50.3 63.2
2 1 20.1 50.5 63.8
2 2 21.0 50.6 63.6
2∗ 2∗ 20.7 50.5 63.3
4 4 20.8 50.4 63.8

Table 2: Architecture comparison. Number of multi-
lingual multimodal transformer layers. *:Weight shar-
ing between video and text transformers.

Objective Inter Intra Cross R@1↑ R@5↑ R@10↑
Triplet X 13.3 36.0 55.2
Triplet X X 20.9 49.3 63.0
NCE X 21.4 49.3 61.1
NCE X X 21.0 50.6 63.6
NCE* X X 21.3 50.7 63.5
NCE* X X X 21.5 51.0 63.8

Table 3: Objective comparison. *Training with addi-
tional machine translated de-video and fr-video pairs.

by MT models (i.e., translate-train) in VTT),
we utilize all available multilingual annotations
(i.e., fully supervised) and iterate over all possible
(x, v, y) pairs to train with Eq. 5-7 to demonstrate
the strong performance target for evaluating zero-
shot cross-lingual transfer on VTT and to com-
pare fairly with other fully-supervised baselines
in multilingual text→video search on VATEX and
Multi30K. We report the standard recall at k (R@k)
metrics (higher is better).

5.4 Comparison Experiments and Ablations
In this section, we ablate and compare different
text/video encoders, Transformer model architec-
tures, and learning objectives for English→video
search on VTT.
Text and Video Encoders. Table 1 compares dif-
ferent text and video encoder backbones. For the
visual encoders, while R(2+1)D outperforms S3D,
the simple concatenation (i.e., early-fusion) of their
output features provides a 1.5 ∼ 2.0 improvement
in R@1. For the text encoder, XLM-R significantly
outperforms mBERT.
Transformer Pooling. Table 2 compares various
configurations of the proposed Transformer pool-
ing module. We observe that a simple 2-layer
Transformer achieves the best performance. Weight
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Model en de fr cs zh ru vi sw es Avg↑
mBERT 19.9 11.1 11.6 8.2 6.9 7.9 2.7 1.4 12.0 9.1
mBERT-MP 20.6 11.3 11.9 8.0 7.1 7.7 2.5 1.1 12.5 9.2
mBERT-MMP 21.8 15.0 15.8 11.2 8.4 11.0 3.7 3.4 15.1 11.7
XLM-R 21.0 16.3 17.4 16.0 14.9 15.4 7.7 5.7 17.3 14.7
XLM-R-MP 23.3 17.4 18.5 17.1 16.3 17.0 8.1 6.2 18.5 15.8
XLM-R-MMP 23.8 19.4 20.7 19.3 18.2 19.1 8.2 8.4 20.4 17.5
mBERT + translated VTT 19.6 18.2 18.0 16.9 16.2 16.5 8.4 13.0 18.5 16.1
mBERT-MMP + translated VTT 21.5 19.1 19.8 18.3 17.3 18.3 8.9 14.1 20.0 17.4
XLM-R + translated VTT 21.5 19.6 20.1 19.3 18.9 19.1 10.3 12.5 18.9 17.8
XLM-R-MMP + translated VTT 23.1 21.1 21.8 20.7 20.0 20.5 10.9 14.4 21.9 19.4

Table 4: Recall@1 of multilingual text→video search on VTT. Upper: Zero-shot cross-lingual transfer. Lower:
Performance with synthesized pseudo-multilingual annotations for training. MMP: multilingual multimodal pre-
training on Multi-HowTo100M. MP: Multimodal (English-Video) pre-training on HowTo100M.
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Figure 3: R@1 trends in languages used for multilin-
gual multimodal pre-training. Left: English→video
search. Right: Zero-shot German→video search.

sharing of the video and text Transformer slightly
degrades the performance. Therefore, we choose
to separate them.
Learning Objective. From Table 3, the intra-
modal contrastive objective is important for both
NCE and Triplet loss. In general, the NCE loss
outperforms the Triplet loss. The proposed inter-
modal and intra-modal NCE objective achieves the
best performance. When captions in multiple lan-
guages are available, cross-lingual NCE addition-
ally provides a consistent improvement.

5.5 VTT Zero-Shot Cross-Lingual Transfer

Table 4 shows the multilingual text→video search
results on VTT. With the best English-video mod-
els at hand (with either mBERT or XLM-R as the
text backbone), we first investigate how well these
models transfer to other non-English languages
under the zero-shot setting. We then analyze the
benefit of the proposed multilingual multimodal
pre-training.

The upper section shows the zero-shot results.
Unlike cross-lingual transfer in NLP tasks, employ-
ing multilingual Transformers in vision-language
tasks apparently does not generalize well across
languages. For example, there is a significant
drop in R@1 (19.9→11.1 (-44%) with mBERT,

21.0→16.3 (-24%) with XLM-R) when directly ap-
plying English-finetuned model to German→video
search. For comparison, there is only a -10% degra-
dation for XLM-R on en→ de cross-lingual trans-
fer in XNLI (Conneau et al., 2018). Multimodal
(English-video) pre-training (MP) on HowTo100M
only improves average R@1 (+0.1 or mBERT and
+1.1 for XLM-R) compared to model-from-scratch.
In contrast, our proposed multilingual multimodal
pre-training (MMP) is shown to be the key facilita-
tor for zero-shot cross-lingual transfer. MMP im-
proves German→Video search (11.1→15.0, +35%
for mBERT, and 16.3→19.4, +20% for XLM-R)
and achieves 2.6 ∼ 2.8 improvement in average
R@1. We attribute the effectiveness of MMP to
learning improved alignments between multilin-
gual textual and visual context in the shared embed-
ding space, as relatively balanced improvements
between English→video and non-English→video
is observed with fine-tuning.

Fig. 3 demonstrates the trend of R@1 while
incrementally incorporating additional languages
for MMP. For XLM-R, the improvement in R@1
asymptotically converges when pre-training with
more multilingual text-video pairs. On the other
hand, for zero-shot German→video search, pre-
training with more languages keeps improving the
search performance, even though the additional
language (e.g., French) is different from the target
language (i.e., German).

The lower section of Table 4 shows the results
of models fine-tuned with (synthesized) pseudo-
multilingual annotations. It can be regarded as
the translate-train scenario, which serves as a
strong performance target for evaluating zero-shot
cross-lingual transfer, as discussed in (Lample and
Conneau, 2019; Hu et al., 2020). Both mBERT
and XLM-R yield better performance across non-
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Figure 4: Qualitative multilingual (en, ru, vi, zh) text→video search results on VTT.

English languages with the in-domain translated
pseudo-multilingual annotations. However, for
English→video search, a 0.7 degradation is ob-
served compared to the zero-shot setting. It is
likely due to the noise in the translated captions.
Notably, there is still a performance gap between
zero-shot and translate-train settings for models
with mBERT. In contrast, the gap is much smaller
for models with XLM-R. In the following sections,
we refer Ours-MMP as our best model with XLM-
R as the text backbone and compare it with other
state-of-the-art methods.
Qualitative Results Fig. 4 shows the multilin-
gual text→video search results with Ours-MMP
(VTT:en-only) on VTT under the zero-shot setup.
Note that only one shared English-finetuned model
is used for text→video search in all languages. As
demonstrated, the proposed model successfully re-
trieves the correct videos with English (en) and Rus-
sian (ru) queries. The other top-ranked videos also
share similar visual appearance to the correct one.
For zero-shot transferring of the English-finetuned
model to distant languages such as Vietnamese
(vi) and Chinese (zh), we observe that there is still
limitation for our zero-shot models to understand
abstract concepts (e.g., “space project”) and asso-
ciate small objects (e.g., “microphone”) with the
text queries in distant languages.

5.6 Comparison to Supervised State of the
Art

English→Video Search on VTT. Table 5 shows
the comparison of English→video models on VTT.
For a fair comparison to other baselines, our model
fine-tunes only with the original English annota-
tions on VTT. The results show that our model out-
performs other baselines by a large margin. Specif-
ically, our model achieves 8.9 R@1 improvement
over the original HowTo100M model (Miech et al.,
2019) and other recent baselines with pre-training
on HowTo100M. Using a smaller set of visual fea-

Model R@1↑ R@5↑ R@10↑
JSFusion (Yu et al., 2018) 10.2 31.2 43.2
JPoSE (Wray et al., 2019) 14.3 38.1 53.0
VidTrans† (Korbar et al., 2020) 14.7 − 52.8
HT100M† (Miech et al., 2019) 14.9 40.2 52.8
Noise† (Amrani et al., 2020) 17.4 41.6 53.6
CE2 (Liu et al., 2019) 20.9 48.8 62.4
Ours(VTT:en-only) 21.0 50.6 63.6
Ours-MMP (VTT:en-only) 23.8 52.6 65.0

Table 5: English→video search performance on VTT.
†: Models with pre-training on HowTo100M.

English to Video Chinese to Video
Model R@1↑ R@5↑ R10↑ R@1↑ R@5↑ R@10↑
VSE (Kiros et al., 2014) 28.0 64.3 76.9 - - -
VSE++ (Faghri et al., 2018) 33.7 70.1 81.0 - - -
Dual (Dong et al., 2019) 31.1 67.4 78.9 - - -
HGR (Chen et al., 2020a) 35.1 73.5 83.5 - - -
Ours (VATEX:en-only) 43.5 79.8 88.1 23.9 55.1 67.8
Ours-MMP (VATEX:en-only) 44.4 80.5 88.7 29.7 63.2 75.5
Ours-MMP (VATEX:en, zh) 44.3 80.7 88.9 40.5 76.4 85.9

Table 6: Multilingual text→video search on VATEX.

tures and training on a smaller (6,513 vs 9,000)
training set2, our model also outperforms CE (Liu
et al., 2019) with or without pre-training.
Multilingual Text→Video Search on VA-
TEX. Table 6 summarizes English→video and
Chinese→video search performance on the
VATEX dataset. Under the zero-shot setting where
we train with only English-video pairs, our model
already outperforms other baselines. However, a
clear performance gap between English→video
and Chinese→video search is observed, indicating
that cross-lingual transfer to a distant language
remains challenging even with XLM-R. With the
proposed MMP, the gap is significantly closed
by 5.8/8.1/7.7 in R@1/5/10. When in-domain
human-annotated Chinese captions are available,
the performance of our model can further be
improved for both languages and our model yields
new state-of-the-art performance.

2CE uses 9,000 videos (VTT training and part of exclusive
testing set) for training, while other baselines and our model
in Table 5 are trained on the official VTT training set which
contains 6,513 videos.
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M30K English to Image German to Image Czech to Image
Model # lang. R@1↑ R@5↑ R10↑ R@1↑ R@5↑ R@10↑ R@1↑ R@5↑ R@10↑
OE (Vendrov et al., 2015) 2 25.8 56.5 67.8 21.0 48.5 60.4 - - -
VSE++ (Faghri et al., 2018) 2 39.6 69.1 79.8 31.3 62.2 70.9 - - -
Pivot (Gella et al., 2017) 2 26.2 56.4 68.4 22.5 49.3 61.7 - - -
FB-NMT (Huang et al., 2020a) 2 47.3 75.4 83.5 37.0 64.0 73.1 - - -
MULE (Kim et al., 2020) 4 42.2 72.2 81.8 35.1 64.6 75.3 37.5 64.6 74.8
SMALR (Burns et al., 2020) 10 41.8 72.4 82.1 36.9 65.4 75.4 36.7 68.0 78.2
MHA-D (Huang et al., 2019b) 2 50.1 78.1 85.7 40.3 70.1 79.0 - - -
Ours (M30K:en-only) 1 48.4 78.3 85.9 31.4 61.1 72.6 33.2 65.2 76.1
Ours-MMP (M30K:en-only) 1 50.0 79.2 86.8 33.8 63.3 74.7 37.9 68.8 78.2
Ours-MMP (M30K:en, de, cs, fr) 4 51.6 80.1 87.3 45.1 75.6 85.0 46.6 75.9 83.4

Table 7: Multilingual text→image search on Multi30K. MMP: Multilingual multimodal pre-training.

Cross-Modality Transfer to Multi30K: From
Video-Text to Image-Text. To extend our study
on zero-shot cross-lingual transfer for image-text
tasks, we investigate the feasibility of transferring
our video-text model across modalities. We replace
the 3D-CNN in the original video-text model with
a 2D-CNN to encode the image. In practice, fol-
lowing MHA-D (Huang et al., 2019b), we utilize
the Faster-RCNN (Ren et al., 2015) pre-trained in
Visual Genome (Krishna et al., 2016) to extract
regional visual features. Essentially, an image is
encoded as ev = RM×H where M = 36 is the
maximum number of visual objects in an image.
For models with MMP, we initialize their weights
with the model pre-trained on Multi-HowTo100M.
To tackle the feature mismatch between 2D-CNN
and 3D-CNN, we leverage a linear layer with a
doubled learning rate to map 2D-CNN features to
the same dimension as 3D-CNN features.

Table 7 shows the results on Multi30K. For
zero-shot cross-lingual transfer, when trained
from scratch (M30K:en-only), our model achieves
comparable performance to MHA-D but lags in
German→image search since it only uses En-
glish annotations. In Ours-MMP, pre-training
improves all recall metrics even with modality
gap. The average R@1 improvement is 3.2.
A larger gain for (relatively) low-resource lan-
guage such as Czech is observed. Without us-
ing any Czech annotations, our zero-shot model
with MMP achieves comparable Czech→image
search performance to SMALR (Burns et al.,
2020), which uses 10 languages including Czech.
However, when transferring across modalities
and using only English annotations, there are
performance gaps between English→Image and
German/Czech→Image search, implying that trans-
ferring models across modalities is feasible but
remains challenging. We consider zero-shot cross-
modal cross-lingual transfer as our future work.

For a fair comparison with other baselines, when
trained with annotations in all 4 languages pro-
vided by Multi30K, our model greatly outper-
forms all baselines by large margins in multilingual
text→image search.

6 Conclusion

We have presented a multilingual multimodal pre-
training (MMP) strategy, the Multi-HowTo100M
dataset, and a Transformer-based text-video model
for learning contextual multilingual multimodal
representations. The results in this paper have
convincingly demonstrated that MMP is an essen-
tial ingredient for zero-shot cross-lingual transfer
of vision-language models. Meanwhile, there are
many remaining challenges, such as resolving the
performance gap between zero-shot and training
with in-domain non-English annotations; as well as
techniques to transfer varieties of vision-language
models (e.g., VQA (Goyal et al., 2017), TVQA (Lei
et al., 2020)) or visually-enhanced NLP models
such as unsupervised multimodal machine transla-
tion (Huang et al., 2020b). We believe the proposed
methodology, and the corresponding resources we
release, will be an important first step towards
spurring more research in this direction.

Acknowledgments

This work is supported by the DARPA grants
funded under the AIDA program (FA8750-
18-2-0018) and the GAILA program (award
HR00111990063) (P.Y.). This work is also sup-
ported by EPSRC Centre for Doctoral Training
in Autonomous Intelligent Machines & Systems
[EP/L015897/1] (M.P.). The authors appreciate
Prahal Arora, Shengxin Zha, Polina Kuznetsova,
Xu Hu, and Geoffrey Zweig for their suggestions
of this work. The authors would also like to thank
the anonymous reviewers for their feedback.



2452

References
Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant

Agrawal, Ivan Laptev, Josef Sivic, and Simon
Lacoste-Julien. 2016. Unsupervised learning from
narrated instruction videos. In Computer Vision and
Pattern Recognition (CVPR).

Elad Amrani, Rami Ben-Ari, Daniel Rotman, and Alex
Bronstein. 2020. Noise estimation using density
estimation for self-supervised multimodal learning.
arXiv preprint arXiv:2003.03186.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017.
Learning bilingual word embeddings with (almost)
no bilingual data. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 451–462,
Vancouver, Canada. Association for Computational
Linguistics.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.
2020. On the cross-lingual transferability of mono-
lingual representations. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 4623–4637, Online. Asso-
ciation for Computational Linguistics.

Jeremy Barnes, Lilja Øvrelid, and Erik Velldal. 2019.
Sentiment analysis is not solved! assessing and prob-
ing sentiment classification. In Proceedings of the
2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pages 12–23,
Florence, Italy. Association for Computational Lin-
guistics.

Andrea Burns, Donghyun Kim, Derry Wijaya, Kate
Saenko, and Bryan A. Plummer. 2020. Learn-
ing to scale multilingual representations for vision-
language tasks. In The European Conference on
Computer Vision (ECCV).

David Chen and William Dolan. 2011. Collecting
highly parallel data for paraphrase evaluation. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 190–200, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Shizhe Chen, Yida Zhao, Qin Jin, and Qi Wu. 2020a.
Fine-grained video-text retrieval with hierarchical
graph reasoning. In CVPR.

Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey Hinton. 2020b. A simple framework
for contrastive learning of visual representations. In
ICML.

Xilun Chen, Yu Sun, Ben Athiwaratkun, Claire Cardie,
and Kilian Weinberger. 2018. Adversarial deep av-
eraging networks for cross-lingual sentiment classi-
fication. Transactions of the Association for Compu-
tational Linguistics, 6:557–570.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Ryan Cotterell and Georg Heigold. 2017. Cross-
lingual character-level neural morphological tag-
ging. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 748–759, Copenhagen, Denmark. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jianfeng Dong, Xirong Li, Chaoxi Xu, Shouling Ji,
Yuan He, Gang Yang, and Xun Wang. 2019. Dual
encoding for zero-example video retrieval. In
CVPR.

Desmond Elliott, Stella Frank, Khalil Sima’an, and Lu-
cia Specia. 2016. Multi30k: Multilingual english-
german image descriptions. In Proceedings of the
5th Workshop on Vision and Language, pages 70–74.
Association for Computational Linguistics.

Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun
Cho. 2017. Learning to parse and translate improves
neural machine translation. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
72–78, Vancouver, Canada. Association for Compu-
tational Linguistics.

Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and
Sanja Fidler. 2018. Vse++: Improving visual-
semantic embeddings with hard negatives. In
BMVC.

Manaal Faruqui and Chris Dyer. 2014. Improving vec-
tor space word representations using multilingual
correlation. In Proceedings of the 14th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 462–471, Gothenburg,
Sweden. Association for Computational Linguistics.

Spandana Gella, Rico Sennrich, Frank Keller, and
Mirella Lapata. 2017. Image pivoting for learning
multilingual multimodal representations. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2839–
2845. Association for Computational Linguistics.

Deepti Ghadiyaram, Du Tran, and Dhruv Mahajan.
2019. Large-scale weakly-supervised pre-training
for video action recognition. In CVPR.

https://doi.org/10.18653/v1/P17-1042
https://doi.org/10.18653/v1/P17-1042
https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/W19-4802
https://doi.org/10.18653/v1/W19-4802
https://www.aclweb.org/anthology/P11-1020
https://www.aclweb.org/anthology/P11-1020
https://doi.org/10.18653/v1/D17-1078
https://doi.org/10.18653/v1/D17-1078
https://doi.org/10.18653/v1/D17-1078
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/W16-3210
https://doi.org/10.18653/v1/W16-3210
https://doi.org/10.18653/v1/P17-2012
https://doi.org/10.18653/v1/P17-2012
https://doi.org/10.3115/v1/E14-1049
https://doi.org/10.3115/v1/E14-1049
https://doi.org/10.3115/v1/E14-1049
https://doi.org/10.18653/v1/D17-1303
https://doi.org/10.18653/v1/D17-1303


2453

Stephan Gouws and Anders Søgaard. 2015. Simple
task-specific bilingual word embeddings. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1386–1390, Denver, Colorado. Association for Com-
putational Linguistics.

Yash Goyal, Tejas Khot, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2017. Making the
V in VQA matter: Elevating the role of image under-
standing in Visual Question Answering. In Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

Michael Gutmann and Aapo Hyvärinen. 2010. Noise-
contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings
of the Thirteenth International Conference on Artifi-
cial Intelligence and Statistics, pages 297–304.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. Xtreme: A massively multilingual multi-task
benchmark for evaluating cross-lingual generaliza-
tion. CoRR, abs/2003.11080.

Haoyang Huang, Yaobo Liang, Nan Duan, Ming Gong,
Linjun Shou, Daxin Jiang, and Ming Zhou. 2019a.
Unicoder: A universal language encoder by pre-
training with multiple cross-lingual tasks. arXiv
preprint arXiv:1909.00964.

Po-Yao Huang, Xiaojun Chang, and Alexander Haupt-
mann. 2019b. Multi-head attention with diversity
for learning grounded multilingual multimodal rep-
resentations. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1461–1467, Hong Kong, China. As-
sociation for Computational Linguistics.

Po-Yao Huang, Xiaojun Chang, Alexander Hauptmann,
and Eduard Hovy. 2020a. Forward and backward
multimodal nmt for improved monolingual and mul-
tilingual cross-modal retrieval. In Proceedings of
the 2020 International Conference on Multimedia
Retrieval, ICMR ’20, page 53–62, New York, NY,
USA. Association for Computing Machinery.

Po-Yao Huang, Junjie Hu, Xiaojun Chang, and Alexan-
der Hauptmann. 2020b. Unsupervised multimodal
neural machine translation with pseudo visual piv-
oting. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 8226–8237, Online. Association for Computa-
tional Linguistics.

Po-Yao Huang, Guoliang Kang, Wenhe Liu, Xiaojun
Chang, and Alexander G. Hauptmann. 2019c. Anno-
tation efficient cross-modal retrieval with adversar-
ial attentive alignment. In Proceedings of the 27th
ACM International Conference on Multimedia, MM
’19, page 1758–1767, New York, NY, USA. Associ-
ation for Computing Machinery.

Po-Yao Huang, Vaibhav, Xiaojun Chang, and Alexan-
der G. Hauptmann. 2019d. Improving what cross-
modal retrieval models learn through object-oriented
inter- and intra-modal attention networks. In Pro-
ceedings of the 2019 on International Conference
on Multimedia Retrieval, ICMR ’19, page 244–252,
New York, NY, USA. Association for Computing
Machinery.

Vladimir Iashin and Esa Rahtu. 2020. Multi-modal
dense video captioning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops, pages 958–959.

Donghyun Kim, Kuniaki Saito, Kate Saenko, Stan
Sclaroff, and Bryan A. Plummer. 2020. MULE:
Multimodal Universal Language Embedding. In
AAAI Conference on Artificial Intelligence.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Ryan Kiros, Ruslan Salakhutdinov, and Richard S.
Zemel. 2014. Unifying visual-semantic embeddings
with multimodal neural language models. CoRR,
abs/1411.2539.

Alexandre Klementiev, Ivan Titov, and Binod Bhattarai.
2012. Inducing crosslingual distributed representa-
tions of words. In Proceedings of COLING 2012,
pages 1459–1474.

Bruno Korbar, F. Petroni, Rohit Girdhar, and L. Torre-
sani. 2020. Video understanding as machine transla-
tion. ArXiv, abs/2006.07203.

R. Krishna, Yuke Zhu, O. Groth, J. Johnson, K. Hata,
J. Kravitz, Stephanie Chen, Yannis Kalantidis, L. Li,
D. Shamma, Michael S. Bernstein, and Li Fei-Fei.
2016. Visual genome: Connecting language and vi-
sion using crowdsourced dense image annotations.
International Journal of Computer Vision, 123:32–
73.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
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A Appendix Overview

The Appendix is organized as follows: First we pro-
vide details about the Multilingual HowTo100M
(Multi-HowTo100M) dataset for multilingual multi-
modal pre-training (MMP) in §B. Then we provide
additional implementation details and experiment
setup in §C. Additional ablation studies regarding
choices of Transformer architecture are discussed
in §D. Then we present additional cross-dataset
transfer experiments in §E.

B The Multilingual HowTo100M Dataset

In this section we provide the detailed statis-
tics of the Multilingual HowTo100M (Multi-
HowTo100M) dataset. We also provide a com-
parison to Sigurdsson et al. (2020) that also uses
HowTo100M for unsupervised word translation.

The Multi-HowTo100M dataset is built upon
the original English HowTo100M dataset (Miech
et al., 2019) that contains 1.2 million instructional
videos (138 million clips) on YouTube. We reuse
the raw English subtitles in HowTo100M, where
the subtitles in HowTo100M are either automatic
speech recognition (ASR) transcriptions or user
generated subtitles.

For Multi-HowTo100M, we use the same video
collection as English HowTo100M. At the time of
data collection (May 2020), there were 1.09 million
videos accessible. We collect the subtitles provided
by YouTube, which either consist of user-generated
subtitles or those generated by Google ASR and
Translate in the absence of user-generated ones. Es-
sentially, we collect video subtitles in 9 languages:
English (en), German (de), French (fr), Russian
(ru), Spanish (es), Czech (cz), Swahili (sw), Chi-
nese (zh), Vietnamese (vi). Table 8 summarizes the
dataset statistics for each language. In most cases
there are more than 1 billion tokens a language.

Fig. 5 further shows the number of tokens per
video. There are typically lengthy narrations that
contains several hundreds of tokens available in
each instructional video. Fig. 6 shows the distri-
bution of number of tokens in a subtitle. For each
subtitle segment, which ranges from 0∼20 seconds,
there are typically 15∼25 words. The most of the
cases, subtitles are well aligned in time for non-
English languages. Fig. 2 visualizes a few exam-
ples in Multi-HowTo100M.

A similar HowTo100M variant has been re-
cently reported in MUVE (Sigurdsson et al., 2020)
that is created for unsupervised word translation.

Language videos #subtitle #tokens
English 1238911 138429877 1.18B
German 1092947 69317890 1.26B
French 1093070 69399097 1.33B
Czech 1092717 68911940 1.22B
Russian 1092802 69117193 1.25B
Chinese 1092915 68939488 0.94B
Swahili 1092302 68898800 1.22B
Vietnamese 1092603 68887868 1.13B
Spanish 1092649 70143503 1.16B

Table 8: Multi-HowTo100M statistics

Our Multi-HowTo100M differs from MUVE in
the following perspectives: First, we collects 9
language for all videos in HowTo100M while
MUVE only has 4 languages available (English,
French, Japanese, and Korean) on HowTo100M.
Also, MUVE divided HowTo100M into 4 non-
overlapped sections for each language, there are
no parallel pairs for each subtitle. While in Multi-
HowTo100M, there are 7-9 languages for each sub-
title. Essentially, There are more than 1 billion
tokens in most languages in Multi-HowTo100M.
To our best knowledge, our Multi-HowTo100M
dataset is currently the largest multilingual text-
video collection.

Beyond scale, instructional videos in Multi-
HowTo100M are feasible pre-training resources
for many downstream vision-language models.
Demonstrators in instructional videos typically per-
form intentionally and explain the visual object
or action explicitly. According to the inspection
by (Miech et al., 2019), for around 51% of clips, at
least one object or action mention in the caption can
be visually seen. Prior work has shown that instruc-
tional videos are useful for event recognition (Yu
et al., 2014), action localization model (Alayrac
et al., 2016), cross-modal alignments (Malmaud
et al., 2015). We expect the previous success in the
intersection of natural language processing (NLP)
and computer vision (CV) could be further trans-
lated into more languages to have a broaden impact.

The are great potentials of using our Multi-
HowTo100M dataset in related research field such
as multilingual multimodal representation learn-
ing (Huang et al., 2019b; Kim et al., 2020; Burns
et al., 2020), multilingual multimodal transla-
tion (Huang et al., 2020b; Surı́s et al., 2020), mul-
tilingual image/video captioning (Miyazaki and
Shimizu, 2016) ... etc. We expect the release of
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Multi-HowTo100M will be a first step towards
spurring more research in these directions.

C Implementation and Experiment
Details

Pre-Processing. For pre-possessing, we truncate
the maximum length N of text to 192 for pre-
training on Multi-HowTo100M. The maximum
length is set to 96 for fine-tuning VTT (Xu
et al., 2016), VATEX (Wang et al., 2019) and
Multi30K (Elliott et al., 2016). The maximum
video length M is set to 128 for pre-training on
Multi-HowTo100M and 36 for all fine-tuning tasks.

Model Architecture. For the multilingual Trans-
formers, either multilingual BERT (Devlin et al.,
2019) or XLM-R-large (Artetxe et al., 2020), we
use the pre-trained version provided by Hugging-
Face. 3 and use their corresponding tokenizers for
tokenization. Detailed design choices regarding
output layer and frozen layer is discussed in §D.

For the video backbone, we use a 34-layer,
R(2+1)-D (Tran et al., 2018) network pre-trained
on IG65M (Ghadiyaram et al., 2019) and a
S3D (Miech et al., 2020) network pre-trained on
HowTo100M (Miech et al., 2019). We apply a
spatial-temporal average pooling over the last con-
volutional layer, resulting in a 512-dimensional
vector for each 3D CNN network. We extract vi-
sual features at a rate of 1 feature per second. Since
the 3D CNNs employs different size of input win-
dows (e.g., 8 frames for R(2+1)D and 16 for S3D),

3https://github.com/huggingface/transformers

we re-sample videos to 30 fps and employs a win-
dow of size 8 or 30 that takes consecutive frames
starting from the beginning of every second for en-
coding. We simply concatenate the two 3D-CNN
outputs and use the 1024-dimension vector as the
visual input stream to our model. Notably, instead
of using 9 different types of visual features as in CE
(Liu et al., 2019), we use only the above 2 features
and achieve superior performance.

For the Transformer pooling head (TP) modules,
we use a 2-layer Transformer with 4-head attention
for each TP. The embedding dimension D is set
to 1024. We do not use the positional embeddings
in both text and video TP as we do not find them
beneficial in our experiments. The softmax temper-
ature in all NCE contrastive objectives is set to 0.1
as used in SimCLR (Chen et al., 2020b).

Note that unlike ViLBERT (Lu et al., 2019)
or OAN (Huang et al., 2019d), our models does
not employ cross-modality attention and keep the
multi-head self-attention within the same modality.
The main reason is to reduce the inference time
complexity. For cross-modality attention, the com-
plexity is O(TV ) to encode T text queries for V
videos in a dataset before retrieval (since video and
query representations depend on each other). It
is clearly not scalable when the dataset contains
millions of videos. To this end, our model keep
self-attention within the same modality which re-
sults in a O(T + V ) complexity compared O(TV )
in prior work with cross-modality attention. In our
preliminary experiments, we also incorporate cross-
modality attention and achieved 0.3∼1.8 R@1 im-
provement. Considering the trade-off between per-
formance and scalability, we choose the latter.

Training and Inference Details and Profiling.
For the softmax temperature in NCE, we set to
0.1 as used in SimCLR (Chen et al., 2020b). We
use the Adam (Kingma and Ba, 2015) optimizer
with a initial learning rate 2 · 10−4 and clip gra-
dients greater than 0.2 during the training phase.
Dropout rate is 0.3. Since the video length and
token length is longer in the pre-training phase, we
use a 64 batch size for pre-training. For fine-tuning,
we use a batch size of 128.

Pre-training on the 1.2 million HowTo100M
videos takes around 10 GPU hours (NVIDA V100)
for 16 epochs. We speed up the pre-training pro-
cess by distributing the workload over 8 GPUs on
a single node of our server. We use 1 GPU for the
fine-tuning or training from scratch experiments.
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For the MSR-VTT split, it takes 12 GPU hours
to train our model on 180K video-text pairs for
20 epochs. For VATEX, it takes 32 GPU hours
to train on 260K video-text pairs for 30 epochs.
For inference, the encoding speed is around 250-
300 videos/sec and 200-250 text queries/sec. The
overall text→video search speed on 1,000 video-
text pairs (1,000 text queries over 1,000 videos)
is around 6 seconds including video/text encoding
and ranking their similarity scores.

Experiment Details. Our experiment consider
three types of pre-training: (1) Multilingual multi-
modal pre-training (MMP), (2) Multimodal pre-
training (MP), and (3) no pre-training (from
scratch). For (1) and (2), we pre-train 16 epochs
and use the model weight at 16-th epoch for fine-
tuning experiments.

For multimodal pre-training, we pre-train on the
original English HowTo100M dataset. We iterate
over all videos in HowTo100M. For each video, we
randomly sample the start and end time to construct
a video clip. For each clip, we locate the nearest
consecutive ASR transcriptions in time and use it
as to construct the (video, text) pair for training.

For multilingual multimodal pre-training
(MMP), we use Multi-HowTo100M for pre-
training. For each video, we follow the same
strategy as MP. For a clip, we sample one language
type each time from 9 languages and use the
consecutive ASR transcriptions that are closest in
time to compose (video, text) pairs for training.

After pre-training, we fine-tune our model on
VTT and VATEX to evaluate on text→video search
tasks. In the zero-shot cross-lingual transfer exper-
iments, we use only English-video data. We then
directly test the model with non-English queries
to report the zero-shot performance. When anno-
tations in additional languages are available (by
humans in VATEX and Multi30K; by MT models
(i.e. translate-train) in VTT), we train our model
with all available multilingual annotations (i.e. fully
supervised) to compare fairly with other baselines
in multilingual text→video search.

Since pre-trained model has a faster convergence
rate, we fine-tune for 10 epochs and use the model
with best validation performance (summation of
R@1, R@5, R@10) for testing. For models with-
out pre-training (i.e., from-scratch), we train for 20
epochs under the same training protocol.

Output layer Freeze lower en de
3 0 20.9 3.2
6 0 20.5 3.1
9 0 21.0 4.8
12 0 21.0 13.3
15 0 20.5 12.3
18 0 20.8 12.6
12 6 21.0 15.5
12 9 21.0 16.3
12 12 18.9 14.1

Table 9: Text→video R@1 of XLM-R output layers
and layers to freeze on VTT

Output layer Freeze lower en de
3 0 19.2 2.5
6 0 19.5 2.0
9 0 19.3 5.8
12 0 19.6 8.8
12 6 19.3 10.5
12 9 19.9 11.1
12 12 18.9 9.8

Table 10: Text→video R@1 of mBERT output layers
and layers to freeze on VTT

D Additional Ablation Studies

As has been investigated in XTREME (Hu et al.,
2020), choosing different output layers will affect
the zero-shot transferability of multilingual Trans-
formers in various NLP tasks. For text→video
search tasks, we conduct a series of experiments to
identify the desirable choices of hyper-parameters
in the proposed multilingual multimodal Trans-
former that lead to best performance in English-to-
video and (zero-shot) non-English-to-video search
performance. Beyond our ablation studies in Sec.
5, in this part we highlight our trials in the choice
of the output layer and the layers to be frozen in our
multilingual Transformer backbone (i.e., mBERT
and XLM-R). There are 24 layers in XLM-R (large)
and 12 layers in mBERT. We perform grid-search
on VTT to identify the best choice of these two
hyper-parameters.

Choice of Output Layers Table 9 and Table 10
compare different choices of output layer and lay-
ers to freeze in multilingual Transformers. Our re-
sults suggest that the best output layer for mBERT
and XLM-R is the 12-th layer. Surprisingly, while
output layer does not affect English→video search
significantly, it greatly affects the zero-shot cross-
lingual transfer performance of video-text models.
For both XLM-R and mBERT, the performance
degrade significantly if fine-tuning all layers.
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text→video English Non-English
In-domain X X

Out-of-domain X

Table 11: Coverage of our experiments

Choice of Layers to Freeze Similar to output
layers, the choice of frozen layers greatly affects
cross-lingual transferability. For both mBERT and
XLM-R, it is desirable to freeze part of the lower
layers and make the top-3 layers trainable for video-
text models. We observe that when freezing all
layers (i.e., using the pre-extracted contextual mul-
tilingual embeddings) does not lead to satisfactory
results. For mBERT, R@1 drops from 19.9 to
18.9 in English→video search and 11.1 to 9.8 in
German→video search. For XLM-R, R@1 drops
from 21.0 to 18.9 in English→video search and
16.3 to 14.1 in German→video search. These re-
sults imply that text-only contextual multilingual
embeddings along are likely to be infeasible to be
applied to vision-language tasks without proper
fine-tuning.

An important observation is that the best
English→video search performance corresponds
to the best German→video performance. This
trend implies that for model selection, the config-
uration for the best English→video model usually
translates to the best configuration for (zero-shot)
cross-lingual model. This shared trend justifies the
English→video ablation studies in the original pa-
per. Note that we utilize the best English→video
for all (zero-shot) cross-lingual experiment in our
experiment section.

For multilingual text→video search, the best
configuration we found in our experiments is to
output the 12-th layer and freeze the layers below
9 for both mBERT and XLM-R.

E Additional Experimental Results

The coverage of our text→video search experi-
ments is summarized in Table 11. Our experiments
cover the following scenarios:
In-domain, English: Table 5 (VTT) and Table 6
(VATEX) in the original paper.
In-domain, non-English: Table 4 (VTT, 9 lan-
guages) and Table 6 (VATEX, Chinese).
Out-of-domain, English: Additional (zero-shot)
generalization results across datasets are in §E.1.
Out-of-domain, non-English: We consider this
as our future work.

Model R@1 R@5 R@10
VSE (Kiros et al., 2014) 10.1 29.4 41.5
VSE++ (Faghri et al., 2018) 14.4 35.7 46.9
Dual (Dong et al., 2019) 13.7 36.1 48.2
HGR (Chen et al., 2020a) 16.4 38.3 49.8
Ours-Full 24.0 50.5 62.1

Table 12: Zero-shot generalization on YouTube2Text
with VTT-finetuned model.

E.1 Generalizability across English-Video
Datasets

In this section. we provide additional experiment
results regarding zero-shot generalization of the
VTT-finetuned model on out-of-domain dataset.
Specifically, we test on YouTube2Text (Chen and
Dolan, 2011). The aim of this experiment is to
test the cross-dataset generalizabilty of our model
without using domain-specific training data.

Table 12 shows the comparison of
English→video search results on the
YouTube2Text testing set. Models in this ta-
ble are only fine-tuned on VTT and use no
YouTube2Text training data. As can be observed,
our model with MMP generalizes well on
YouTube2Text, outperforming HGR (Chen et al.,
2020a) by 7.6 and DualEncoder (Dong et al., 2019)
by 10.3 in R@1.


