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Abstract

We propose EASE, a simple diagnostic tool
for Visual Question Answering (VQA) which
quantifies the difficulty of an image, question
sample. EASE is based on the pattern of an-
swers provided by multiple annotators to a
given question. In particular, it considers two
aspects of the answers: (i) their Entropy; (ii)
their Semantic content. First, we prove the
validity of our diagnostic to identify samples
that are easy/hard for state-of-art VQA models.
Second, we show that EASE can be success-
fully used to select the most-informative sam-
ples for training/fine-tuning. Crucially, only
information that is readily available in any
VQA dataset is used to compute its scores.'

1 Introduction

Visual Question Answering (VQA; Antol et al.,
2015) requires models to jointly understand an
image and a natural language question. This is
a challenging task; despite massive training data
and recent pre-training strategies (Tan and Bansal,
2019; Lu et al., 2019; Chen et al., 2020) models still
struggle to close the gap with oracle performance.

VQA datasets (e.g., Goyal et al., 2017; Gurari
etal., 2018) consist of (image, question) pairs for
which NV human annotators have provided an an-
swer in natural language. When trained on these
samples, VQA models are fed with the most fre-
quently chosen answer in the pattern. During in-
ference, the answer with the highest probability is
evaluated against the pattern of N ground-truth an-
swers. According to the standard VQA metric (An-
tol et al., 2015), a model’s prediction is considered
as perfectly correct if it matches an answer that was
frequent in the pattern; less accurate if matching
an underrepresented one. This metric implies that,
for the majority of cases, several annotators agree
on the same exact answer—and a model can thus
achieve 100% accuracy in the task. On the other

'Code at: github.com/shailzajolly/EaSe

s.pezzelle@uva.nl

m.nabi@sap.com

Q: What is the pattern of the
little girl's dress?

GT: plaid: 4, checks and
flowers: 1, checkered with
flowers: 1, polka dots,
squares, plaid: 1, squares
and flowers: 1, flowers: 1,
plaid and floral: 1

EaSe: 1.0

Q: Where is this?

GT: road: 4, outside: 2,
pakistan: 1, outdoors: 1,
sidewalk: 1, sweden: 1
EaSe: 0.30

Figure 1: One image from VQA2.0 with two questions
and the answers by 10 annotators. Frequency of each
unique answer (e.g., plaid : 4) and EASE values of the
samples (the higher, the easier) are reported.

hand, this suggests that various (image, question)
pairs can have different patterns of answers; i.e.,
they can be more or less scattered depending on
the features of the question, the image, or both.
In Fig. 1, the annotators did not converge on the
same answer for either of the two questions. How-
ever, while in the top question the 10 annotators
provided semantically similar answers (e.g., plaid,
plaid and floral, etc.), in the bottom one very dif-
ferent answers were given (e.g., road, sweden).

In line with recent work aimed at predicting the
agreement between annotators (Gurari and Grau-
man, 2017), the distribution of answers for a given
(image, question) pair (Yang et al., 2018), or the
difficulty of visual questions (Terao et al., 2020), in
this paper we introduce EASE, a diagnostic tool for
VQA which is based on the answers provided to a
given question. We propose that two main features
of the answer pattern, Entropy and Semantic con-
tent, are informative of the degree of difficulty of a
sample. In particular, we conjecture that the more
scattered an answer pattern, the more difficult the
sample (Fig. 1, down)—unless some or all of those
answers are semantically similar (Fig. 1, top).
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By experimenting with various VQA datasets
and models, we first assess the effectiveness of
our diagnostic to identify the samples that are
easy/difficult for a model. Second, we use EASE
to select increasingly difficult subsets of data that
we use to train/fine-tune our models, based on the
hypothesis that difficult cases are also more infor-
mative during training. In both cases, we show that
our simple method is very effective: (1) models are
shown to struggle with the most difficult samples
according to it; (2) training/fine-tuning models with
only a little fraction of samples—the most difficult
ones—makes them achieve very high results, which
are comparable to models trained/fine-tuned with
the whole training data. Finally, EASE is shown
to correlate with the confidence scores provided by
human annotators along with their answers, which
reveals that it captures a notion of difficulty in line
with that by human speakers.

2 Approach

We focus on (image, question) VQA samples and
aim to quantify their difficulty, i.e., how challeng-
ing it is for a model to answer them correctly. We
propose that the difficulty of a sample can be quanti-
fied based on the (readily available) characteristics
of the pattern of answers provided by the annota-
tors, and devise a diagnostic tool that builds on this
assumption. In particular, we focus on two aspects
of the pattern: 1) its Entropy, i.e., how scattered it
is in terms of the number of unique answer strings;
2) its Semantics, i.e., how (dis)similar are the an-
swers in it with respect to their overall semantic
representation. We name our diagnostic tool EASE
and describe it in detail below.

Entropy (E) We consider all the answers pro-
vided by the annotators for a given sample. Similar
to Yang et al. (2018), we measure the Entropy of a
pattern using Eq. 1:

1M
E(py) = o > i * log(p,) (1)
k=1

where p; is the distribution of the M unique an-
swers based on their frequency, and 7 is the highest
possible Entropy value? that is used to normalize
E in [0, 1]. High E values (close to 1) are assigned
to highly scattered distributions; vice versa, low
values of E (close to 0) are assigned to highly con-

*In our data, the maximum Entropy value is equal to 2.302.

sistent distributions, e.g., when all annotators agree
on the same answer.

Semantics (SE) E is based on the frequency of
unique answer strings in a given pattern. As such,
it treats various strings as different, regardless of
whether strings are semantically similar. This, how-
ever, is crucial: answers to a given question that
are semantically different reveal inconsistencies
among annotators, which in turn is indicative of
the difficulty of a sample. In contrast, semanti-
cally similar answers are a proxy for the ease of the
sample, though these answers are different in their
surface realization (see, e.g., a couple vs. a pair).

We use a simple method based on pre-trained
word embeddings (Mikolov et al., 2018) to oper-
ationalize SE. In particular, given a pattern of
answers, we perform the following steps to re-
organize it by aggregating semantically similar an-
swers and their corresponding frequencies: (1) We
compute a representation of each answer in the pat-
tern by averaging its words embeddings, similar
to Chao et al. (2018); (2) We build an answer’s
centroid, i.e., an average representation of all the
unique answers that encodes the overall semantics
in the pattern; (3) We compute the pairwise co-
sine similarity (cos) between the centroid and each
unique answer in the pattern (negative values are
clamped to 0 to have similarity in [0, 1]); (4) We
group together all the answers whose cos with the
centroid embedding exceeds a certain threshold.
The threshold 7 is dynamically set. It is computed
at the datum-level to adapt to the features of each
datapoint, and is defined by:

T = cos (MAX, centroid) — e (2)

where € is a small positive number close to 0 (here
we experiment with € = 0.0001), and MAX is the
answer with the maximum frequency in the pattern.
In case more than one MAX is present, the lowest 7
is used. Finally, we obtain a new distribution where
the answers that are semantically consistent with
the pattern’s overall content (the centroid) are put
together, and their frequencies are summed up.

EASE diagnostic We take the new distribution
of answers after applying SE, ps., and compute
EASE, a single value in [0, 1] which quantifies the
ease of a VQA sample. We obtain it as follows:

EASE(pse) =1- E(pse) 3)

2408



Method  Split VQA2.0 VizWiz
T v T \Y%

TH 40522 19805 3201 522

EaSe (9%) (9%) (16%)  (16%)
BH 189281 92606 10443 1646

(43%) (43%) (52%)  (52%)
E 213954 101943 6356 1005

(48%) (48%) (32%)  (32%)
TH 108457 53230 11903 1897

Entropy (25%) (25%) (60%)  (60%)
BH 187287 90896 7337 1165

(42%) (42%) (36%)  (37%)

E 148013 70228 760 111

(33%) (33%) (4%) (3%)
Total 443757 214354 20000 3173

(100%) (100%)  (100%)  (100%)

Table 1: Top: Number of samples in the TH, BH, and E
splits of VQA2.0 and VizWiz based on EaSe. Bottom:
number of samples based on Entropy. In brackets: per-
centage in the corresponding T(rain)/V(al) partition.

where the second term quantifies the Entropy of pge
(see Eq. 1), and the first term is introduced to make
EASE values increase with the ease of a sample.

3 Method

3.1 Models

We experiment with two models: BUTD (Ander-
son et al., 2018) and LXMERT (Tan and Bansal,
2019) (LXM). BUTD uses a GRU to encode the
input questions and to attend the image Rol fea-
tures, enabling region-based attention to generate
the answer. LXM is a transformer-based archi-
tecture pretrained on several language and vision
tasks. We use it with the default hyper-parameters
set in the original implementation. The models
are trained (BUTD) or fine-tuned (LXM), and then
evaluated, on the datasets described below.

3.2 Datasets

We experiment with VQA2.0 (Goyal et al., 2017)
and VizWiz (VW; Gurari et al., 2018). We choose
these two datasets since they are very different from
each other, both in terms of the images (object-
centered vs. everyday-life) and the type and pur-
pose of the questions (written, crowdsourced vs.
spoken, goal-oriented) they contain. This funda-
mental diversity is confirmed by a preliminary anal-
ysis® on the answers to the questions contained in

3Further details in Appendix B. See also Jolly et al. (2018).

Dataset / Split BUTD LXM LXM-S
all 6343 7148 63.18
VQA20 TH 29.82 3656 30.52
BH 6397 7126 64.06
E 6947 7846 68.73
all ~ 50.35 53.75 45.79
VW TH 2948 31.84 26.61
BH 49.08 52.82 4438
E 6327 6665 58.08

Table 2: Accuracy by BUTD, LXM, and LXM-S on the
entire validation set (all) of VQAZ2.0 and VizWiz (VW)
and the 3 splits defined by EaSe. For all models in both
datasets, accuracy consistently increases from TH to E.

the validation split. In VQA2.0, 33% of the ques-
tions are assigned the same answer string by all
annotators; as for VizWiz, this percentage drops to
only 3%. We take this low agreement as a proxy
for the difficulty of the samples in this (and any)
dataset: the more disegreement, the harder.

3.3 Proof-of-Concept Analysis

To preliminarly test our hypothesis, we compute
the EASE value for each sample in the train/val
partitions of the two datasets and assign the sam-
ples into 3 splits based on their EASE value (num-
ber of samples per split in Tab. 1, top): (1) EASY
(E): EASE = 1.0; (2) BOTTOM-HARD (BH): 0.5
<= EASE < 1.0; (3) TOP-HARD (TH): EASE
< 0.5. We then test our trained models on each
of our validation splits. If our hypothesis is cor-
rect, models should struggle with the harder splits
selected by our tool. Tab. 2 shows that all models—
BUTD, LXM and LXM-S, a version of LXM
trained from scratch on the task—indeed achieve
much lower performance on the hard splits; in TH,
their accuracy is halved compared to the entire (all)
data. Moreover, it is interesting to note that, for
LXM, pretraining appears to be overall beneficial,
with the pretrained version outperforming the non-
pretrained one in both datasets and all splits, with
a margin of around 8 points on the entire data.

For comparison, we run the same analysis us-
ing Entropy (specifically, 1 — Entropy) instead of
EASE. As can be seen in Table 1 (bottom), the
two methods give rise to very different data dis-
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Model TD VQA2.0 VizWiz

al TH BH E al TH BH E
BUTD TH®R)* 50.14 2046 5334 53.0 42775 2491 4057 55.58
BUTD TH 44.13 261 513 4113 4246 251 39.69 56.02
BUTD TH+BH 566 2973 612 57.64 4858 2958 47.57 60.1
BUTD TH+BH+E 6143 29.61 6281 6636 50.12 29.56 4895 62.73
LXM  THR)* 69.61 3476 6944 7655 4642 26.03 4578 58.06
LXM TH 67.24 35.64 67.58 73.02 46.65 26.13 4579 58.73
LXM  TH+BH 69.85 37.05 70.63 75.52 51.65 3029 50.07 65.36
LXM TH+BH+E 70.57 3551 7026 77.65 5340 3282 5226 6597

Table 3: Accuracy on each split of VQAZ2.0 and VizWiz obtained by gradually training models first on TH, then
adding BH and finally adding E samples. TD refers to type of training data used for training. TH(R) refers to the
setting in which we use a split randomly sampled from the training data with the same size of TH. *The random
sampling was performed 10 times; as such, the reported accuracy is the average over 10 accuracy values.

tributions. For example, in the train partition of
VQAZ2.0, Entropy assigns much more cases than
EASE to the TH split (in proportion, 25% cases for
Entropy vs. 9% for EASE) and much less to the
E one (33% Entropy vs. 48% EASE). On the one
hand, this confirms the crucial role of our semantic
component in determining EASE scores. On the
other hand, we notice that the results obtained by
the three models on the splits defined by Entropy
follow a less clear pattern compared to the EASE
ones (see Tab. 4 in Appendix). For example, in
VizWiz, both BUTD and LXM-S achieve higher
results in BH compared to E, which indicates that
Entropy is not as effective as our tool in measuring
the difficulty of a sample. Finally, for sanity check,
we also tested model performance on splits having
the same size of EASE’s TH, BH and E but includ-
ing random samples (see Tab. 5 in Appendix). The
sampling was performed 10 times and results aver-
aged. As expected, no difference in performance
between the three splits was observed.

Overall, this proof-of-concept analysis reveals
that current SOTA models—including the exten-
sively pretrained LXM—suffer with samples that
are deemed hard by EASE. This suggests that our
diagnostic tool genuinely selects the most challeng-
ing samples of a dataset. An intuitive question is
whether training a model with these hard samples
can make models more robust. This is based on the
intuition that challenging samples could be more

informative during training compared to easy ones.

We test this hypothesis in the next section, where
we use the splits defined by EASE to train models
in a HardFirst (HF) approach.

4 Experiments

In HF, we train our VQA models incrementally,
first using TH samples only, then adding BH sam-
ples, and finally using all training samples. The
weights for the first stage are initialized randomly;
we load the model’s weights from previous stages
for each incremental stage. For VQAZ2.0, the
percentage of samples for each stage is 9.13%
(TH), 51.79% (TH+BH), and 100% (ALL), and for
VizWiz is 16%, 68.22%, and 100%. We hypothe-
size that harder splits, i.e., with low EASE scores,
contain richer multimodal information that could
be more informative during a model’s learning. For
comparison, we also evaluate models in the TH(R)
condition: we train/fine-tune models with a set of
data (with the same size as TH) randomly sampled
from the training set. We repeat the sampling 10
times, and report the average accuracy.

5 Results

Results in Tab. 3 support our hypotheses. (1) With
only 52% of the training data (TH+BH), BUTD
obtains 90% of all validation accuracy (VA) in
VQA2.0 compared to the model trained on the
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Figure 2: Percentage of samples per question type in
VQAZ2.0-train for each of the three splits used in the
HF training regime. Other contains all wh- questions,
Number count questions, Yes/No polar questions.

whole data (Table 2). This is even more pronounced
in VizWiz, where using TH+BH during training
(68% of total data) leads to a comparable perfor-
mance as the one obtained with the whole training
data. Similarly, LXM achieves 98% VA using only
52% of training data for VQA?2.0, and 97% VA
with 68% training data in VizWiz.

(2) Compared to the TH(R) condition, models
trained/fine-tuned with TH achieve higher results
in the TH split of both VQA2.0 and VizWiz, which
confirms that TH samples are particularly bene-
ficial for dealing with challenging cases. At the
same time, when evaluated on the entire data (all),
they perform similarly to TH(R) in VizWiz and
slightly worse than TH(R) in VQAZ2.0. This is to
be expected: randomly sampling from VizWiz—
where 68% cases are either BH or TH—will likely
produce a more similar distribution to that of TH
as compared to sampling from VQA?2.0, where E
cases are 48% of the total. Since proportions are
the same in the validation set, training/fine-tuning
with easier cases in VQAZ2.0 will have a positive
impact on E, which will drive performance on all.

Overall, these results indicate that the hard sam-
ples selected by EASE are more informative than
easier ones and help models obtain comparable
performance with significantly less training data.

6 Analysis

6.1 EASE vs. Question Types

We explore whether the hard splits selected by
EASE contain question types that are known to
be particularly challenging for VQA models, e.g.,

VQA-Train
. VQA-Val

0.0 J
[0.0]

Figure 3: Average EASE scores against binned confi-
dence scores in VQA2.0. Closed/open brackets indi-
cate that values are included/not-included in the bin.

o g =
> o ©
L

Average EaSe scores

o
N

(0.0-0.5) [0.5-1.0) [1.0]
Average confidence Scores

count and wh- questions. As can be seen in Fig. 2,
a higher proportion of wh- (Other) and count (Num-
ber) questions is observed in the hardest split com-
pared to the other splits of VQA2.0.* In contrast,
polar questions (Yes/No) are poorly represented in
TH, which indicates they are overall less challeng-
ing for humans and less informative for the models.

6.2 EASE vs. Confidence Scores

We test whether EASE correlates with human intu-
ition of when is difficult to answer a question. To
this end, we use the confidence scores provided by
annotators along with their answers in VQA2.0,’
which self-evaluate whether annotators are confi-
dent in providing their answer. We map confidence
scores yes, maybe, no to 1, 0.5, and 0, respectively,
and compute the average confidence score for each
sample. We then compute Spearman’s correlation
between confidence scores and EASE scores, and
find a substantial positive correlation both in train
(p = 0.49) and val (p = 0.48) sets. This trend is
also clear in Fig. 3, where higher confidence scores
correspond to increasingly higher EASE values.

7 Conclusion

We present EASE, a simple diagnostic tool which
quantifies the difficulty of a VQA sample based
on its pattern of answers. We show that EASE
selects the most informative samples of a dataset,
which is helpful to train/fine-tune VQA models
more efficiently with less, but highly-informative
data. In future work, we plan to combine model
prediction for difficulty estimation in EASE.

*A similar, though less pronounced pattern, is observed in
VizWiz; see Fig. 6 in Appendix.
SWe perform the same analysis for VizWiz (Appendix).
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A Appendix
B Dataset analysis

As described in Section 3.2 of the main paper, we
did a preliminary analysis of the answers to the val-
idation split questions. Each (image, question),
is coupled with 10 answers provided by as many
annotators. We use these annotations to see the hu-
man agreement for a given (image, question) pair.
Fig. 4 and Fig. 5 shows the statistics for VQA2.0
and VizWiz. It clearly shows that in VQAZ2.0,
33% of the questions are assigned the same an-
swer string by all annotators (i.e., in 1/3 questions,
there is a perfect agreement between them); as for
VizWiz, this percentage drops to only 3%. If we
consider the questions with no more than 3 unique
answers, this is the case for 71% cases in VQA2.0
and just 30% in VizWiz. We use this disagreement
as a proxy for the difficulty of these datasets.
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C EASE vs. Question Type

As described in Section 6.1 of the main paper,
EASE selects samples with difficult question types
for VQAZ2.0. Figure 2 (main paper) reports the pro-
portion of question types that present in each split
defined by EASE: as conjectured, we see a higher
proportion of the other question type (i.e., wh-)
and number questions in the hardest split of both
datasets compared to the others. Yes/No questions
are poorly represented in the hardest split, which
suggests they are less challenging for humans and
the models.

VQA 2.0
33%

27%
1%
2%
3%
4%
5%
6%

H O ONOU A WN-

o

11%
7%

Figure 4: Distribution of samples in the validation
splits of VQAZ2.0, against number of unique answers.
E.g., in 33% samples in VQAZ2.0, all annotators gave
the same answer.

VizWiz
16%

18%
11%

3%

HOONOUAWN

o

16%

13%

Figure 5: Distribution of samples in the validation
splits of VizWiz against number of unique answers.
E.g., in 3% samples in VizWiz, all annotators gave the
same answer.

Figure 6 shows similar pattern in VizWiz where
the percentage of Other question types is higher in
TOP-HARD split selected by EASE. It is interesting
to see that the number of Unanswerable questions
are very low in TOP-HARD. This shows another

. TH
EEm TH+BH
. Al

o o o
> o o

%age of samples per question type

o
N

Unanswerable

Other Number Yes/No

Figure 6: Number of samples per question-type in
VizWiz-train for each of the three splits used in HF
training regime. Here, Other belongs to reasoning ques-
tions (why, which, where), Number to counting ques-
tions, and Yes/No to polar questions.

Dataset/Split BUTD LXM LXM-S
TH 3473 422  34.89
VRA BH 7131 7866 71.22
E 7498 8438 7421
TH 4440 4679 4148
VW' BH 5925 6402 5331
E 5225 6486 40.54

Table 4: Accuracy by BUTD, LXM, and LXM-S on
three validation splits of VQA2.0 (VQA) and VW. The
splits are obtained via Entropy.

property of EASE in which it didn’t consider the
usual notion of associating Unanswerable ques-
tions with hard ones, while look at human agree-
ment/disagreement to decide difficulty.

D Other methods to split evaluation data

As discussed in Section 3.3, we obtained TH, BH,
E splits using Entropy and Random Selection. We
use Eq. 4 to compute Entropy over the original
answer distribution, and then subtract the score
from 1.

M

1
E(py) = o > i * log(pr) 4)
k=1

We use the same criterion, as EASE, to divide our
samples into TH, BH, and E. Table 4 shows that,
contrary to EASE splits, in VizWiz, both BUTD
and LXM-S achieve higher results in BH compared
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Dataset/Split BUTD LXM LXM-S
TH 6342 7156 63.10
VQRA BH 6345 7143 63.16
E 6335 7146 63.17
TH 5031 5359 4579
VW' BH 4988 5331 4597
E 5026 5377 46.18

Table 5: Accuracy by BUTD, LXM, and LXM-S
on three random splits of validation data of VQA2.0
(VQA) and VW. The random splits are of same size as
that of TH, BH, and E as mentioned in Section 3.3

[0.0] (0.0-0.5) [0.5-1.0) [1.0]
Average confidence Scores

VizWiz-Train
Em VizWiz-Val

I o o
» o ©

Average EaSe scores

I
N

0.0

Figure 7: Average EaSe scores per confidence scores
provided by annotators for both splits of VizWiz.
Open/close brackets indicate that values are not/ in-
cluded.

to E, which indicates that Entropy is not as effective
as our tool in measuring the difficulty of a sample.

In the Random Selection, we tested the model’s
performance on splits having similar sizes of
EASE’s TH, BH, and E split. Table 5 shows that
the three splits have the almost same accuracy. In
particular, the random splits don’t show any pattern,
unlike EASE in which TH always gets the lowest
accuracy and E gets the highest (Table 2 of main
paper). These results clearly shows that EASE se-
lects the smallest subset of training data which is
both informative and hard.

E EASE vs. Confidence scores

As discussed in Section 6.2 of main paper, we test
correlation of EaSe scores with already available
human confidences. We map confidence scores yes,
maybe, no to 1, 0.5, and 0, respectively, and com-
pute the average confidence score for each sample.

We then compute relationship between confidence
scores and EASE scores. Fig. 7 shows the analysis
for VizWiz data, where higher confidence scores
correspond to increasingly higher EASE values.
This shows that EaSe correlates with human intu-
ition of having difficultly to answer a question.
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