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Abstract

Transformer-based pre-trained language mod-
els have significantly improved the perfor-
mance of various natural language processing
(NLP) tasks in the recent years. While effec-
tive and prevalent, these models are usually
prohibitively large for resource-limited deploy-
ment scenarios. A thread of research has thus
been working on applying network pruning
techniques under the pretrain-then-finetune
paradigm widely adopted in NLP. However,
the existing pruning results on benchmark
transformers, such as BERT, are not as re-
markable as the pruning results in the litera-
ture of convolutional neural networks (CNNs).
In particular, common wisdom in pruning
CNN states that sparse pruning technique com-
presses a model more than that obtained by re-
ducing number of channels and layers (Elsen
et al., 2020; Zhu and Gupta, 2017), while ex-
isting works on sparse pruning of BERT yields
inferior results than its small-dense counter-
parts such as TinyBERT (Jiao et al., 2020). In
this work, we aim to fill this gap by study-
ing how knowledge are transferred and lost
during the pre-train, fine-tune, and pruning
process, and proposing a knowledge-aware
sparse pruning process that achieves signifi-
cantly superior results than existing literature.
We show for the first time that sparse prun-
ing compresses a BERT model significantly
more than reducing its number of channels
and layers. Experiments on multiple data sets
of GLUE benchmark show that our method
outperforms the leading competitors with a
20-times weight/FLOPs compression and ne-
glectable loss in prediction accuracy'.

1 Introduction

Pre-trained language models, such as BERT (De-
vlin et al., 2019), become the standard and effective
methods for improving the performance of a variety
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of natural language processing (NLP) tasks. These
models are pre-trained in a self-supervised fash-
ion and then fine-tuned for supervised downstream
tasks. However, these models suffer from the heavy
model size, making them impractical for resource-
limited deployment scenarios and incurring cost
concerns (Strubell et al., 2019).

In parallel, an emerging subfield has studied the
redundancy in deep neural network models (Zhu
and Gupta, 2017; Gale et al., 2019) and proposed
to prune networks without sacrificing performance,
such as the lottery ticket hypothesis (Frankle and
Carbin, 2019). Common wisdom in CNN literature
shows that sparse pruning leads to more compres-
sion rate than structural pruning. For example, for
the same number of parameters (0.46M), the sparse
MobileNets improve by 11.2% accuracy over the
dense ones (Zhu and Gupta, 2017). However, sim-
ilar conclusions are not observed for pre-trained
language models.

The main question this paper attempts to an-
swer is: how to perform sparse pruning under the
pre-train and fine-tune paradigm? Answering this
question correctly is challenging. First, these mod-
els adopt pre-training and fine-tuning procedures,
during which the general-purpose language knowl-
edge and the task-specific knowledge are learned
respectively. Thus, it is desirable and challeng-
ing to keep the weights that are important to both
knowledge during pruning. Second, unlike CNNss,
pre-trained language models have a complex archi-
tecture consisting of embedding, self-attention, and
feed-forward layers.

To address these challenges, we propose Sparse-
BERT, a knowledge-aware sparse pruning method
for pre-trained language models, with a special fo-
cus on the widely used BERT model. SparseBERT
is executed in the fine-tuning stage. It preserves
both general-purpose and task-specific language
knowledge while pruning. To preserve the general-
purpose knowledge learned during pre-training,
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Figure 1: How knowledge is transferred under different pruning strategies. (a) is the general pre-training and
fine-tuning procedure (Section 3.1). ¢ is an encoder. gy, and gz, ,, are the encoders well-trained on the pre-training
and fine-tuning datasets respectively. £ and D are the general-purpose language knowledge and the task-specific
knowledge respectively. There is a domain error between pre-training and testing, and a generalization error
between fine-tuning and testing. (b) and (c) are two basic pruning strategies (Section 3.2.1). Both £ and £P" are
subsets of knowledge L. Lp is related to the downstream task. £P" is preserved in a pruned encoder grrr. (d) is
the proposed pruning strategy (Sections 3.2.2-3.2.3). (£P") p refers to the knowledge obtained by first pruning and
then fine-tuning. (L£p)P" corresponds to first fine-tuning and then pruning while distilling.
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Figure 2: Knowledge Analysis.

SparseBERT uses the pre-trained BERT without
fine-tuning as the initialized model and prunes the
linear transformations in self-attention and feed-
forward layers, which is inspired by the recent
findings that self-attention and feed-forward layers
are overparameterized (Michel et al., 2019; Voita
et al., 2019) and are also the most computation con-
sumption parts (Ganesh et al., 2020). To learn the
task-specific task knowledge during pruning while
preserving the general-purpose knowledge at the
same time, we apply knowledge distillation (Hinton
et al., 2015). We adopt the task-specific fine-tuned
BERT as the teacher network and the pre-trained
BERT that is being pruned as the student. We feed
the downstream task data into the teacher-student
framework to train the student to reproduce the
behaviors of the teacher.

We summarize different types of BERT pruning
approaches in Figure 1 (see Section 3.2 for detailed
discussion) Experimental results on the GLUE
benchmark demonstrate that SparseBERT outper-

forms all the leading competitors and achieves
1.4% averaged loss with down to only 5% remain-
ing weights compared to BERT-base.

2 Related Work

A lot of efforts have been made on studying net-
work redundancy and pruning networks without
accuracy loss (Gale et al., 2019; Renda et al., 2020).
For example, the work on lottery ticket hypothe-
sis (Frankle and Carbin, 2019) showed that there
exist sparse smaller subnetworks capable of train-
ing to full accuracy in CNNs. Common wisdom
in CNN literature shows that spare pruning leads
to much more compression rate than structural
pruning (Gale et al., 2019; Elsen et al., 2020).
For example, for the same number of parameters
(0.46M), the sparse MobileNets achieve 61.8% ac-
curacy while the dense ones achieve 50.6% (Zhu
and Gupta, 2017). However, similar observations
are not observed in existing approaches for pre-
trained language models (Fan et al., 2019; Michel
et al., 2019; Chen et al., 2020; McCarley et al.,
2020; Jiao et al., 2020). Our method aims to fill the
gap and summarize these pruning strategies. There
are other compression approaches for pre-trained
language models, such as quantization (Zafrir et al.,
2019) and weight factorization (Wang et al., 2019),
which are out of the scope of this work.
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3 SparseBERT

We first formalize the knowledge transfer involved
in fine-tuning pre-trained language models. Then,
we introduce our SparseBERT.

3.1 Knowledge Transfer under the Pre-train
and Fine-tune Paradigm

The practice of fine-tuning pre-trained language
models has become prevalent in various NLP
tasks. The two-stage procedure is illustrated in
Figure 1(a). The language model is denoted by f
= g o h, where g is a text encoder and h is a task
predictor head. Text encoders, like Transformers in
BERT, are used to map input sentences to hidden
representations and task predictors further map the
representations to the label space. The pre-trained
model is trained on a large amount of data exam-
ples (xP, yP) from the pre-training task domain via
different tasks that resemble language modeling.

During pre-training, the general-purpose lan-
guage knowledge, denoted by L, is learned based
on (xP,yP). L contains a subset that is related
to the downstream task, denoted by L£p, and the
amount of £ is far greater than that of Lp (see Fig-
ure 2(a)). To transfer knowledge L (especially Lp)
from pre-training domain to downstream domain,
the well-trained encoder gj, is used to initialize
the downstream encoder. In fine-tuning, down-
stream encoder is trained based on the task-specific
knowledge D preserved in a small amount of data
examples (x¢, %) from downstream domain. Fi-
nally, the well-trained downstream encoder gy, is
evaluated on test data.

3.2 Knowledge-Aware Compression
3.2.1 Two Basic Pruning Strategies

Intuitively, there are two pruning strategies. One is
that pruning is applied to the downstream encoder
g1, during fine-tuning (see Figure 1(b)). However,
because the loss to update the weights during fine-
tuning is exclusively based on the data examples
(x4, y?) from the downstream task domain, this
pruning strategy might destruct the knowledge Lp,
which is learned based on (x?, y”) and encoded in
the initialization of gy.

The other strategy is that pruning is executed dur-
ing pre-training (see Figure 1(c)). The generated
pruned network preserves a subset of knowledge L,
denoted by £P". Unfortunately, because this strat-
egy ignores the downstream task information and
the amount of L is extremely large, i.e., £ > LP",

the knowledge £P" could be much different from
L p that we hope to preserve (see Figure 2(a)).

3.2.2 The Proposed Pruning Strategy

As shown in Figure 1(d), SparseBERT executes
pruning at the distilling stage. It prunes the pre-
trained encoder without fine-tuning, gr,, while fine-
tuning the pruned encoder based on the down-
stream dataset (x¢,y?). Recent findings indicate
that self-attention and feed-forward layers are over-
parameterized and are the most computation con-
sumption parts (Michel et al., 2019; Voita et al.,
2019; Ganesh et al., 2020). Thus, SparseBERT
applies network pruning to the linear transforma-
tions matrices in self-attention and feed-forward
layers (see Figure 3). The choice of pruning ap-
proach is flexible. We choose magnitude weight
pruning (Han et al., 2015) in this paper, mainly
because it is one of the most effective and popular
pruning methods. More details about the pruning
strategy used in SparseBERT can be found in the
codes.

3.2.3 Knowledge Distillation Helps Pruning
Preserve Task-Specific Knowledge

To mitigate the loss of L£p, we propose to utilize
knowledge distillation while pruning. We use the
task-specific fine-tuned BERT as the teacher net-
work and the pre-trained BERT that is being pruned
as the student (see Figure 1(d) and Figure 3). The
motivation is that the task-specific fine-tuned BERT
preserves Lp. By feeding downstream task data
(x%,9%) into the teacher-student framework, we
help the student reproduce the behaviors of the
teacher to learn both £; and £ as much as possible.
We design the distillation loss as

Ldistil = Lemb + Latt + Lhid + Lprd- (1)

Lemp = MSE(ES ,ET) is the difference between
the embedding layers of student and teacher. L
= ZMSE(AZ-S , A;r) is the difference between at-
tention matrices and ¢ is the layer index. Lp;q
= ZMSE(HZS , HZT) is the difference between
hidden representations. L.q = -softmax(z”) -
log_softmax(z° /temp) is the soft cross-entropy
loss between the logits of student and teacher. temp
represents the temperature value. The proposed dis-
tillation loss is inspired by (Jiao et al., 2020) and it
helps the student imitate the teacher’s behavior as
much as possible. In addition, we perform the same
data augmentation as (Jiao et al., 2020) does to gen-
erate more task-specific data for teacher-student
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Figure 3: Illustration of the proposed knowledge-aware compression. Pruning is performed in parallel with distil-

lation, based on specific data from downstream tasks.

learning. Notably, the choices of distillation loss
and data augmentation method are flexible and we
found the ones we adopted worked well in general.

4 Experiments

4.1 GLUE Benchmark

We evaluate SparseBERT on four data sets from the
GLUE benchmark (Wang et al., 2018). To test if
SparseBERT is applicable across tasks, we include
the tasks of both single sentence and sentence-pair
classification. We report the results on dev sets. We
run 3, 20, 20, 50 epochs for QNLI, MRPC, RTE,
CoLA separately. The baselines include BERT-
base, ELMo (Peters et al., 2018), BERT-PKD (Sun
et al., 2019), Bert-of-Theseus (Xu et al., 2020),
DistilBERT (Sanh et al., 2019), MiniLM (Wang
et al., 2020), TinyBERT (Jiao et al., 2020), BERT-
Tickets (Chen et al., 2020), CompressBERT (Gor-
don et al., 2020), and RPP (Guo et al., 2019).

The results are shown in Table 1. Compared
to BERT-base, SparseBERT achieves 1.4% aver-
aged performance loss with down to 5% weights.
In addition, SparseBERT outperforms all leading
competitors with the highest sparsity.

4.2 SparseBERT v.s. Pruning at Downstream

We compare SparseBERT with the pruning de-
scribed in Figure 1(b) on the question answer tasks
of SQuAD vl1.1 and v2.0 (Rajpurkar et al., 2016,
2018). Given a question and a passage containing

Remain. QNLI MRPC RTE CoLA
Method Weights (Acc) (FI) (Acc) (Mco) V&
Without Pruning
BERT-base - 91.8 88.6 69.3 563 765
ELMo - 71.1 76.6 534 441 613
Structural Pruning
BERTs-PKD 50% 89.0 85.0 655 455 713
BERT-of-Theseus 50% 89.5 89.0 682 51.1 745
DistilBERT 50% 89.2 87.5 599 513 720
MiniLMg 50% 91.0 88.4 715 492 750
TinyBERTg 50% 90.4 87.3 66.0 540 744
TinyBERT4 18% 88.7 86.8 66.5 497 729
Sparse Pruning
BERT-Tickets 30-50%  88.9 84.9 66.0 538 732
CompressBERT 10% 76.8 - - - -
RPP 11.6% 88.0 81.9 67.5 - -
SparseBERT 5% 90.6 88.5 69.1 52.1  75.1

Table 1: Comparison on the dev sets of GLUE.

the answer, the two tasks are to predict the answer
text span in the passage. The difference between
them is that SQuAD v2.0 allows for the possibility
that no short answer exists in the passage. We fol-
low the general setting of SparseBERT, except that
we only apply the logit distillation, i.e., Lg;sti =
Ly,q, and do not perform data augmentation, which
are the most common distillation strategies.

The results are shown in Figure 4. It is ob-
served that SparseBERT consistently outperforms
the baseline method, especially at high sparsity.
The performance gain of SparseBERT decreases
on SQuAD v2.0 mainly because SQuAD v2.0 is
more challenging than SQuAD v1.1. These ob-
servations demonstrate advantage of SparseBERT
compared to pruning at downstream.
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Figure 4: Performance comparison of SparseBERT and
the pruning approach described in Figure 1(b).

4.3 SparseBERT v.s. Pruning at Pre-Training

To get more insights about the advantage of Sparse-
BERT over the pruning described in Figure 1(c), we
compare their fitting abilities. Specifically, we use
TinyBERT as an example of the baseline pruning
method. We compare SparseBERT with TinyBERT
with 4 layers and 312 hidden dimensions, which
has a similar number of parameters as SparseBERT
(sparsity=95%). SparseBERT only distills knowl-
edge from the same layers as TinyBERT does.

We vary the number of pruning epochs and re-
port the results (loss on training set and accuracy
on dev set) on RTE in Figure 5. It is observed that
SparseBERT consistently shows smaller training
loss while higher evaluation performance, which
demonstrates that SparseBERT has a better fitting
ability when pruning compared to the baseline.
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Figure 5: Fitting ability comparison of SparseBERT
and the pruning approach described in Figure 1(c).

5 Discussion

5.1 Hardware Performance

Sparse networks were not hardware-friendly in the
past. However, hardware platforms with sparse
tensor operation support have been rising up. For
example, the latest release of Nvidia high-end GPU
A100 has native support of sparse tensor operation
up to 2x compression rate, while startup company
such as Moffett Al has developed computing plat-
form with sparse tensor operation acceleration up
to 32x compression rate.

12000,
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8000} - -t A
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00 2 4 6 8 10 12 14 16 18 20 22
Compression Ratio

Figure 6: Hardware performance under different com-
pression ratios on the MRPC dataset, with 818, 1594,
3029, 5508, 9326, and 10826 SPS (sentences per sec-
ond) respectively.

Here we deployed SparseBERT of different
sparse compression ratios (1, 2, 4, 8, 16, 20) on
Moffett AI’s latest hardware platform ANTOM
to measure the real inference speedup induced by
sparse compression, where ‘4’ indicates the model
is compressed by a factor of 4, with 75% of the
parameters being zeros. As shown in Figure 6, the
sparse compression has almost linear speedup up
to 4x and leads to more than 10x speedup when
compression rate is 20x.

5.2 Reduction of Parameters and FLOPS

We studied the reduction of parameters and FLOPS.
For example, on the MRPC dataset, BERT-base
(backbone) vs SparseBERT (backbone) = 85.53 vs
4.84 (#parameters, M) and BERT-base vs Sparse-
BERT = 10.87 vs 0.54 (GFLOPS).

5.3 Inference/Training Time

We studied the time and convergence speed. For
example, to get the reported 20x pruned result (Ta-
ble 1), it needed 12 epochs of fine-tuning on MRPC
and each epoch took 1.5 h (two RTX 2080 Ti). The
inference time was around 20 s.

6 Conclusion

We introduce SparseBERT, a knowledge-aware
sparse pruning method for pre-trained language
models, with a focus on BERT. We summarize
different types of BERT pruning approaches and
compare SparseBERT with leading competitors.
Experimental results on GLUE and SQuAD bench-
marks demonstrate the superiority of SparseBERT.
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