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Abstract

Existing work on automated hate speech clas-
sification assumes that the dataset is fixed and
the classes are pre-defined. However, the
amount of data in social media increases every
day, and the hot topics changes rapidly, requir-
ing the classifiers to be able to continuously
adapt to new data without forgetting the previ-
ously learned knowledge. This ability, referred
to as lifelong learning, is crucial for the real-
word application of hate speech classifiers in
social media. In this work, we propose life-
long learning of hate speech classification on
social media. To alleviate catastrophic forget-
ting, we propose to use Variational Represen-
tation Learning (VRL) along with a memory
module based on LB-SOINN (Load-Balancing
Self-Organizing Incremental Neural Network).
Experimentally, we show that combining vari-
ational representation learning and the LB-
SOINN memory module achieves better per-
formance than the commonly-used lifelong
learning techniques.

1 Introduction

With the rapid rise in user-generated web con-
tent, the scale and complexity of online hate have
reached unprecedented levels in recent years. ADL
(Anti-Defamation League) conducted a nationally
representative survey of Americans in December
2018 and the report shows that over half (53%)
of Americans experienced some type of online ha-
rassment.1 This number is higher than the 41%
reported to a comparable question asked in 2017
by the Pew Research Center (Center, 2017). To
address the growing online hate, a great deal of
research has focused on automatic hate speech clas-
sification. Most of the previous work focuses on
binary classification (Warner and Hirschberg, 2012;
Zhong et al., 2016; Nobata et al., 2016; Gao et al.,
2017; Qian et al., 2018b) or coarse-grained multi-

1https://www.adl.org/onlineharassment

Figure 1: An illustration of our proposed task. hgi: the
ith hate group. The model is trained on a sequence
of sub-datasets, split by their hate ideologies, e.g., anti-
Muslim and Kuklux Klan. The task on each sub-dataset
is to identify the hate group given the tweet.

class classification (Waseem and Hovy, 2016; Bad-
jatiya et al., 2017; Davidson et al., 2017). Qian
et al. (2018a) argue that fine-grained classification
is necessary for fine-grained hate speech analysis.
The Southern Poverty Law Center (SPLC) moni-
tors hate groups throughout the United States by a
variety of methodologies to determine the activities
of groups and individuals, including reviewing hate
group publications.2 Therefore, instead of differen-
tiating normal posts from the other offensive ones,
Qian et al. (2018a) propose a more fine-grained
hate speech classification task that attributes hate
groups to individual tweets. However, a common
limitation of all the research mentioned above is
that they assume the dataset to be static and train
the classifiers on each isolated dataset, i.e., isolate
learning, ignoring the rapid increase of the amount
of data in social media and the rapid change of the
hot topic.

A report from L1ght3, a company that special-
izes in measuring online toxicity, suggests that

2https://www.splcenter.org/fighting-hate/extremist-
files/ideology

3https://l1ght.com/Toxicity_during_coronavirus_Report-
L1ght.pdf
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amid the growing threat of the coronavirus, there
has been a 900% growth in hate speech towards
China and Chinese people on Twitter since Febru-
ary 2020. As a result of the rapid change of social
media content, the hate speech classifiers are re-
quired to be able to continuously learn and accumu-
late knowledge from a stream of data, i.e., lifelong
learning. Learning on each portion of the data is
considered as a task, so a stream of tasks are joined
to be trained sequentially. In this work, we propose
a novel lifelong fine-grained hate speech classifi-
cation task, as illustrated in Figure 1. The models
trained by isolate learning tend to face catastrophic
forgetting (McCloskey and Cohen, 1989; Ratcliff,
1990; McClelland et al., 1995; French, 1999) due to
a non-stationary data distribution in lifelong learn-
ing. To address this problem, an extensive body
of work has been proposed for various lifelong
learning tasks. However, our experiments show
that the commonly-used lifelong learning methods
still exhibit catastrophic forgetting in our proposed
tasks. One important difference between the Twit-
ter hate group dataset and the other image datasets
commonly used in lifelong learning study is that
the similarity among the different tasks is unstable
and relatively low, as indicated by the low aver-
age Jaccard Indexes of the topic words in Table 1.
To alleviate this problem, we introduce VRL to
distill the knowledge from each task into a latent
variable distribution. We also augment the model
with a memory module and adapt the clustering al-
gorithm, LB-SOINN, to select the most important
samples from the training dataset of each task.

Our contributions are three-fold:

• This is the first paper on lifelong learning of
fine-grained hate speech classification.

• We propose a novel method that utilizes VRL
along with an LB-SOINN memory module to
alleviate catastrophic forgetting resulted from
a severe change of data distribution.

• Experimental results show that our proposed
method outperforms the state-of-the-art sig-
nificantly on the average F1 scores.

2 Related Work

Most research on lifelong learning alleviates catas-
trophic forgetting in the following three directions.
Regularization-based Methods: These methods
impose constraints on the weight update. The goal

Ideology Avg. JI Keywords
Christian Identity 0.019 Jesus, Yahuwshua
Radical Tr. Catholic 0.031 catholic, remnant
Neo Confederate 0.039 southern, Free Dixie
Anti Semitism 0.047 Israel, Trump
Anti Catholic 0.049 Texe Marrs, truth
Hate Music 0.049 death, radio
Anti Muslim 0.064 Muslim, Islam
Black Separatist 0.071 black, panther
Racist Skinhead 0.074 shirt, white
Anti Immigration 0.075 immigration, border
Holocaust Identity 0.078 Jewish, Trump
Neo Nazi 0.091 Hitler, white
Kuklux Klan 0.100 ni**a, f**king
Anti LGBTQ 0.100 family, marriage
White Nationalist 0.105 white, America

Table 1: Information about the 15 hate ideologies. Tr.:
Traditional. Avg JI: the average of the Jaccard Index be-
tween the topic words of one ideology and those of an-
other ideology. The topic words are extracted by Latent
Dirichlet Allocation (LDA) (Blei et al., 2003). The top
2 most frequent topic words are selected as keywords.

of the constraints is to minimize deviation from
trained weights when training on a new task. The
constraints are generally modeled by additional reg-
ularization terms (Kirkpatrick et al., 2017; Zenke
et al., 2017; Fernando et al., 2017; Liu et al., 2018;
Ritter et al., 2018). Elastic Weight Consolidation
(EWC) (Kirkpatrick et al., 2017) alleviates catas-
trophic forgetting by slowing down learning on the
model parameters which are important to the previ-
ous task. The importance of the parameters is esti-
mated by the Fisher information matrix. Instead of
the Fisher information matrix, PathNet (Fernando
et al., 2017) uses agents embedded in the neural
network to determine which parameters of the neu-
ral network can be reused for new tasks and the
task-relevant pathways are frozen during training
on new tasks.
Architecture-based Methods: The main idea of
this approach is to change architectural properties
to dynamically accommodating new tasks, such as
assigning a dedicated capacity inside a model for
each task. Rusu et al. (2016) propose Progressive
Neural Networks, where the model architecture is
expanded by allocating a new column of neural
network for each new task. Part and Lemon (2016,
2017) combine Convolutional Neural Network with
LB-SOINN for incremental online learning of ob-
ject classes. Although they also use LB-SOINN in
their work, the usage of LB-SOINN in this work is
completely different. They use LB-SOINN to pre-
dict object class while our proposed method adapts
the original LB-SOINN to calculate the importance
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of the training samples without making any pre-
diction on the class. A problem with the methods
in this category is that the available computational
resources are limited in practice. As a result, the
model expansion will be prohibited when the num-
ber of tasks increases to a certain degree.
Data-based Methods: These methods alleviate
catastrophic forgetting by utilizing a memory mod-
ule, which either stores a small number of real
samples from previous tasks or distills knowledge
from previous tasks. The main feature of Gra-
dient Episodic Memory (GEM) (Lopez-Paz and
Ranzato, 2017) is the episodic memory, storing
a subset of the samples from the observed tasks.
GEM computes the losses on the episodic memo-
ries and treats them as inequality constraints, avoid-
ing them to increase. Averaged GEM (Chaudhry
et al., 2019) is a more efficient version of GEM.
de Masson d’Autume et al. (2019) propose a life-
long language learning model using a key-value
memory module for sparse experience replay and
local adaptation. Sun et al. (2020) formulate life-
long language learning as a language modeling
task and replay the generated pseudo-samples of
previous tasks during training.

There are also studies combining multiples
methods above. Xia et al. (2017) combine the
architecture-based method and the data-based
method. Wang et al. (2019) combine the regu-
larization method and the data-based method for
lifelong learning on relation extraction. Our pro-
posed method is also a combination of the regular-
ization method and the data-based method but in a
different way.

3 Task Description

We use the dataset as in Qian et al. (2018a), where
the tweet handles are collected based on the hate
groups identified by SPLC. SPLC categorizes these
hate groups according to their hate ideologies. For
each hate ideology, the top three Twitter handles are
selected in terms of the number of followers. The
dataset includes all the content (tweets, retweets,
and replies) posted with each Twitter account from
the group’s inception date, as early as 2009, until
2017. Altogether, the dataset consists of 42 hate
groups from 15 different ideologies. Table 1 shows
the 15 ideologies. Each instance in the dataset
is a text tuple of (tweet, hate group name, hate
ideology).

We separate the dataset by ideology. The rea-

son is that various existing hate speech datasets
collect data using keywords or hashtags (Waseem
and Hovy, 2016; Davidson et al., 2017; Golbeck
et al., 2017), which have a strong relationship with
hate ideologies or topics. We also observe that the
hot spots of society can lead to a significant shift
of major hate speech topics or the emergence of
new hate ideologies on social media as mentioned
in section 1, indicating that the expansion of the
hate speech dataset may be accompanied by the
emergence of new hate ideologies.

Therefore, we separate the collected data into a
sequence of 15 subsets according to their ideolo-
gies and sort them by the date of the first tweet post
in each subset, from the earliest to the latest. The
task on each subset is to identify the hate group
given the tweet text. Qian et al. (2018a) propose a
hierarchical Conditional Variational Autoencoder
model for the fine-grained hate speech classifica-
tion task. The architecture and the training process
of their model require the number of classes to be
pre-defined. However, we do not pre-define the
number of classes in our task since such kind of
information is not available in the real-world ap-
plication of lifelong learning. The model should
be able to incorporate emerging hate groups at any
time of training. In order to satisfy this condition,
we formulate the task of identifying the group as
a ranking task, instead of a classification task. For
each tweet, we provide the model with a set of can-
didate groups, consisting of all the previously seen
hate groups, including the ground truth group. The
model takes each combination of the tweet and the
candidate group as input and outputs a score. The
corresponding loss function is:

Lr=
∑

(x,ys)∈D

∑
yi∈Y \{ys}

h(fθ(x, ys)−fθ(x, yi)) (1)

where x is the tweet text, ys is the ground truth
group of x. Y is candidate group set of x, which
consists of all the seen hate groups until x is ob-
served by the model, including the ground truth
group ys of x, so yi ∈ Y \{ys} is the negative
candidate group of x. fθ is the scoring model pa-
rameterized by θ. h(a) = max(0,m−a), m is the
chosen margin.

Same as in other lifelong learning studies, we
consider learning on each of the hate ideologies in
the sequence as a task, so we have a sequence of
15 tasks. As mentioned in section 1, the similar-
ity among our tasks is unstable and relatively low.
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Therefore, when the model is continuously trained
on the tasks, it may encounter a sudden change of
vocabulary, topic, and input data distribution. This
makes our tasks more challenging compared to the
other lifelong learning tasks because the abrupt
change can make the catastrophic forgetting prob-
lem more severe. This is also the reason that some
techniques achieving significant improvement in
the image classification tasks do not perform well
on our task (see section 5).

4 Our Approach

As mentioned in section 2, one way to alleviate
catastrophic forgetting is to use a memory mod-
ule, storing a small number of real samples from
previous tasks and a simple way to utilize the mem-
orized samples is to replay the memory when train-
ing on a new task, such as mixing them with the
training samples from the current task. The idea
behind this approach is that the memorized sam-
ples should reflect the data distribution so that the
replay of the memory can help the model make in-
variant predictions on the samples of the previous
tasks. However, this approach may not work well
when the size of the memory is small. The reason
is that when there is only a small amount of data
memorized, the memory is not able to reflect the
data distribution of the previous task and thus the
model can easily overfit on the memorized samples
instead of generalizing to all the samples in the
previous task.

We address this problem from two aspects. First,
since the memory size is limited, it is beneficial to
select the most representative training samples in
the previous tasks to memorize. Second, simply
storing the real training samples in the memory
may not be sufficient to represent the knowledge
of the previous tasks, so we need a better way to
distill knowledge from the observed samples along
with a method to utilize it when training on a new
task. We combine two techniques: Variational Rep-
resentation Learning (VRL) and Load-Balancing
Self-Organizing Incremental Neural Network (LB-
SOINN) to achieve these goals. We propose a su-
pervised version of LB-SOINN to select the most
important training samples in the current task. VRL
not only distills the knowledge from the current
training task but also provides an appropriate hid-
den representation as input for the LB-SOINN, so
we introduce VRL first.

4.1 Variational Representation Learning
The distilled knowledge of previous tasks can take
various forms, but the key point is that it should be
related to the data distribution of the corresponding
task so that it can be utilized to alleviate catas-
trophic forgetting. Inspired by the Variational Au-
toencoder (VAE) (Kingma and Welling, 2013), we
consider the distribution of the hidden representa-
tion of the input data as the distilled knowledge.

The original VAE model is proposed for data
generation, so the objective of the original VAE is:

Obj =
∑
x∈X

log p(x) (2)

p(x) =

∫
z
p(x|z)p(z)dz (3)

z is the latent variable, i.e., the hidden representa-
tion of the input. Since the integration over z is
intractable, we instead try to maximize the corre-
sponding evidence lower bound (ELBO) and the
corresponding loss function is as follows:

Lvae =
∑
x∈X

Ez∼pα(z|x)[− log pϕ(x|z)]+

DKL[qα(z|x)||pβ(z)]

(4)

p(x|z), q(z|x), and p(z) are the likelihood distri-
bution, posterior distribution, and prior distribution.
α,ϕ, and β indicate parameterization. The loss
function can be separated into two parts. The first
part E[− log p(x|z)] is the reconstruction loss, try-
ing to reconstruct the input text from the latent
variable. It pushes z to reserve as much informa-
tion of the input as possible. This is consistent with
our goal to learn the knowledge of the data dis-
tribution. The second part is DKL[q(z|x)||p(z)],
where DKL is the Kullback–Leibler (KL) diver-
gence. Minimizing it pushes the posterior and the
prior distributions to be close to each other. By
assuming the posterior p(z|x) to be a multivariate
Gaussian distribution N (µz,Σz), the latent vari-
able z is sampled from N (µz,Σz).

In the original VAE, p(z) is chosen to be a sim-
ple Gaussian distributionN (0, 1). However, this is
over-simplified in our task because different from
the unsupervised generation task of the original
VAE, our ranking task is supervised. Our task not
only requires z to contain information of the tweet
text itself but also requires it to indicate the group
information of the tweet. In other words, the dis-
tilled distribution should be conditioned on both the
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Figure 2: An illustration of our method. The dotted arrows indicate the computation of the loss. The light-colored
dashed arrows illustrate the update of the memory module. Note that the layers in the rounded rectangle share
parameter weight. There is only one encoder for the group input, followed by two linear layers. We make a copy
of it in the figure just for a clear illustration of loss computation. x̂: the reconstructed tweet input. s1, s2: scores
of (x, ys) and (x, yi) separately. µ∗

z and Σ∗
z are the previously memorized distribution on the latent variable of x.

Lrec is the reconstruction loss, which is the first term in equation 4. Please refer to section 4 for the meaning of
other variables in the figure.

tweet and its group label to reflect the data distribu-
tion in a supervised task. Setting the prior to be the
same for all the hate groups pushes z or the distri-
bution of z to ignore the label information. Instead,
the prior should be different for each hate group, so
we replace p(z) with p(u|ys), where ys is the group
label of x and u is the latent variable. p(u|ys) is
assumed to be a multivariate Gaussian distribution
N (µu,Σu). Note that the replacement itself can
not guarantee p(u|ys) to be different for each hate
group because the loss function in equation 4 does
not push p(u|ys) to satisfy this condition. However,
the ranking loss function 1 fills in the gap. There-
fore, our loss function on the current training task
is a combination of these two.

Lcur=
∑

(x,ys)∈D

∑
yi∈Y \{ys}

h(fθ(x, ys)−fθ(x, yi))

+Ez∼pα(z|x)[− log pϕ(x|z)]
+DKL[qα(z|x)||pβ(u|ys)]

(5)

The right part of Figure 2 illustrates the computa-
tion process of VRL.

4.2 LB-SOINN Memory Module

VRL provides a way to summarize knowledge into
latent variable distributions. However, we still need
a method to utilize the learned distribution to allevi-

ate catastrophic forgetting. We do this by incorpo-
rating a memory moduleDmem to store a small sub-
set of important training samples along with their
latent variable distributions, so each sample stored
in the memory is a tuple of (x, yz, qα′(z|x)). Here
qα′(z|x) is the distribution computed when the
model completes training on the task that (x, yz)
belongs to. The memorized samples are taken as
anchor points when training on a new task. We
introduce a memory KL divergence loss to push
qα(z|x) computed when training on a new task to
be close to the memorized distribution qα′(z|x)).
Therefore, the complete loss function is:

L = Lcur +DKLmem

= Lcur +
∑

(x,ys)∈Dmem

DKL[qα(z|x)||qα′(z|x))] (6)

Since the size of the memory is limited, we intro-
duce a supervised version of LB-SOINN to select
the most important training samples in the current
task. The input for the LB-SOINN is the hidden
representation of the tweet text, which is z in the
case of Variational Representation Learning (see
Figure 2). We refer readers to Zhang et al. (2013)
for the detailed explanation of LB-SOINN. The
original LB-SOINN is an unsupervised clustering
algorithm that clusters unlabeled data by topology
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learning. We utilize the topology learning of LB-
SOINN instead of clustering since our task is su-
pervised. Therefore, we make the following adjust-
ments to the original LB-SOINN.

1) The criteria to add a new node: Add a new node
to the node set if one of the following condition is
satisfied: a) The distance between the input and the
winner is larger than the winner’s threshold. b) The
distance between the input and the second winner
is larger than the second winner’s threshold. c) The
label of the input sample is not the same as the
label of the winner.

2) Build connections between nodes: Connect the
two nodes with an edge only if the winner and the
second winner belong to the same class.

3) We disable the removal of edges whose ages are
greater than a predefined parameter. We disable the
deleting of nodes and the algorithm of updating the
subclass labels of every node. The node label is the
label of the instances assigned to it. Our adjusted
algorithm guarantees that each node will only be
assigned the samples from one class.

LB-SOINN keeps track of the density of each
node, which is defined as the mean accumulated
points of a node. A node gets points when there is
an input sample assigned to it. If the mean distance
of the node from its neighbors is large, we give low
points to the node. In contrast, if the mean distance
of the node from its neighbors is small, we give
high points to the node. Therefore, the density of
the node reflects the number of nodes close to it and
also the number of samples assigned to it. We take
the density of the node as a measurement of the
importance of the samples assigned to the node. Af-
ter the LB-SOINN finishes training on the samples
from the current task, we sort the samples accord-
ing to the density of the node they are assigned
to and the top K samples are selected to write to
the memory. We divide the memory equally for
each of the previous tasks, so K = M/t, where
M is the total memory size and t is the number
of observed tasks, including the current task. The
old memory consists of samples from the previous
t− 1 tasks and each task keeps M/(t− 1) samples
in the old memory. For each of the t− 1 tasks, the
M/(t − 1) −M/t samples with the lowest node
densities are deleted, resulting in K empty slots in
the memory, which is then rewritten by the selected
K samples in the current task.

5 Experiments

5.1 Experimental Settings

For each task, we randomly sample 5000 tweets
from the 80% of the collected data for training,
10% of the collected data for testing, and the rest
10% for development. We allow the model to make
more than one pass over the training samples in the
current task or the current memory during training.
We use average macro F1 score and average micro
F1 score for evaluation.

Average F1:AvgF1(t) =
1

t

t∑
i=1

F1t,i (7)

where F1t,i is the F1 score, either macro F1 or mi-
cro F1, achieved by the model on the ith task after
being trained on the tth task. The larger this metric,
the better the model. We compare our methods
with the following methods:
Fine-tuning: The model contains two bidirec-
tional LSTM encoders (Hochreiter and Schmid-
huber, 1997; Zhou et al., 2016; Liu et al., 2016)
to encode the tweet and the group separately. The
score of the group is calculated as the cosine dis-
tance between the hidden state of the tweet encoder
and that of the group encoder. This model is also
the backbone model of all the methods described
below, except Fine-tuning + BERT. The model is
directly fine-tuned on the stream of tasks, one after
another, by the ranking loss function in 1.
Fine-tuning+BERT: The training framework is
the same as above, but each encoder is replaced
by a pre-trained BERT model (Devlin et al., 2019)
followed by a linear layer. The linear layers are
fine-tuned during training.
Fine-tuning+RMR (Random Memory Replay):
We augment the fine-tuning method with an addi-
tional memory module. Same as in section 4.2,
the memory is divided equally for each task, but
instead of using LB-SOINN, the K samples are
randomly sampled from the current training data
and then rewriteK random slots in the old memory.
EWC: EWC is a regularization-based method,
adding a penalty term

∑
i
λ
2Fi(θi − θ∗i )

2 to the
ranking loss function 1. Fi is the diagonal of the
Fisher information matrix F , θ is the model param-
eter, and i labels each parameter. θ∗ is the model
parameter when the model finishes training on the
previous task. λ is set to 2e6 in our experiments.
GEM: We use the episodic memory in the original
paper: the memory is populated with m random
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Number of observed tasks t=5 t=10 t=15
Avg F1 score (%) Macro Micro Macro Micro Macro Micro
Multitask 15.26 67.07 5.05 37.20 3.57 38.61
Fine-tuning 6.02 16.44 4.35 5.77 3.96 6.18
Fine-tuning + BERT 6.02 16.44 4.06 5.45 3.03 5.80
Fine-tuning + RMR 11.15 44.40 2.56 15.77 3.51 15.19
EWC 8.57 20.42 2.42 6.81 1.95 7.27
GEM 13.04 30.95 3.07 12.51 2.70 15.07
Ours 12.61 49.75 6.96 47.30 5.13 44.62

Table 2: Experimental results. RMR: random memory replay. The best results are in bold.

Number of observed tasks t=5 t=10 t=15
Avg F1 score (%) Macro Micro Macro Micro Macro Micro
Full Model 12.61 49.75 6.96 47.30 5.13 44.62
w/o DKLmem 15.00 58.64 4.21 36.36 3.72 40.87
w/o VRL 11.05 35.03 4.53 13.69 3.65 11.28
w/o LB-SOINN 13.01 50.99 6.15 44.42 5.59 30.91

Table 3: Ablation study. w/o DKLmem: DKLmem in the equation 6 is removed. w/o VRL: VRL is replaced by the
model used in the fine-tuning setting, i.e., fine-tuning + LB-SOINN memory replay. w/o LB-SOINN: LB-SOINN
memory replay is replaced by random memory replay, i.e., VRL + RMR. The best results are in bold.

samples from each task. m is a predefined size
of the episodic memory. We set m = 100 in our
experiments, so each task can add 100 tweets to
the memory. By the end of the 15 tasks, the total
memory of GEM contains 1500 tweets.

Multitask Learning: The tasks are trained simul-
taneously. We mix the training data from multiple
tasks to train the model. This setting does not fol-
low the lifelong learning setting where the tasks are
trained sequentially. We add this setting in our ex-
periments to show the potential room for improve-
ment concerning each lifelong learning method.

We do not compare our method with Support
Vector Machine (Suykens and Vandewalle, 1999)
or Logistic Regression, because they require the
number of classes to be fixed and to be known in
advance, which is unrealistic in our tasks. We also
do not compare our method with Qian et al. (2018a)
since the latter also has this requirement, as men-
tioned in section 3. Adapting their method for the
lifelong learning setting requires modifying both
the model architecture and the training algorithm,
which is beyond the scope of this paper.

In all our experiments, we use 1-layer bi-LSTM
as encoders except the fine-tuning + BERT setting
and we use cosine distance to measure similarity.
The input of the group encoder is the concatenation
of the group name and its hate ideology. We use
1-layer bidirectional GRU (Cho et al., 2014) as the
decoder in VRL. The hidden size of the encoders
and the decoders is 64. The latent variable size in
VRL is 128. We use 300-dimensional randomly ini-

tialized word embeddings. All the neural networks
are optimized by Adam optimizer with the learning
rate 1e-4. The batch size is 64. The loss mar-
gin m = 0.5. The maximum number of training
epochs for each task is set to 20. For LB-SOINN,
λ=1000, η=1.04. The memory size is limited
to 1000 tweets for all the methods using a mem-
ory module except GEM. We do not set episodic
memory size for each task as GEM because for life-
long hate speech classification, the number of tasks
keeps increasing in the real world, and assuming
unlimited total memory is unrealistic.

5.2 Experimental Results

The experimental results are shown in Table 2. We
report the performance of each method after the
model finishes training on the first 5 tasks, first
10 tasks, and all the 15 tasks. The average macro-
F1 score is much lower than the average micro-F1
score due to the imbalanced data of each task. The
large performance gap between the multitask train-
ing and fine-tuning shows that there exists severe
catastrophic forgetting and that the low average
F1 scores in the fine-tuning setting are not due
to the model capacity. Replacing the bi-LSTM
encoder with the pre-trained BERT encoder does
not improve the performance.This reconfirms that
the low scores result from catastrophic forgetting,
not model capacity. Actually fine-tuning and fine-
tuning with BERT achieves the same average F1
scores at t = 5 because both models completely for-
get the previous tasks after converging on the fifth
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task, so both models achieve the same F1 scores on
the testing data of the fifth task while achieving 0
scores on the previous four tasks. Due to the large
model capacity of BERT, fine-tuning with BERT
tends to overfit on the training data more seriously,
leading to slight performance decline at t = 10
and t = 15 compared to using bi-LSTM encoders.
Since model capacity is not the key factor to solve
catastrophic forgetting, we simply use bi-LSTM as
encoders in our model instead of BERT, consider-
ing the computational cost.

Adding RMR to the fine-tuning setting achieves
significant performance improvement, even better
than EWC or GEM. This is related to the character-
istic of our tasks mentioned at the end of section 3.
EWC remembers previous tasks by slowing down
the update of the model parameters important to
them, which is more suitable for the sequence of
tasks that are similar to each other. However, sig-
nificant changes in vocabulary, topic, or input data
distribution are very common in our sequence of
tasks, making memory replay more efficient than
EWC. The performance of GEM during the second
half of the training is close to that of fine-tuning
with RMR, but there exists a gap in the first half.
The reason is that GEM sets an episodic memory
for each task, of which the size is 100 in our ex-
periments, so before the 10th task in the sequence,
the size of the total memory available for GEM is
less than that of the memory module used in the
fine-tuning with RMR setting.

Although RMR improves the performance, the
average F1 scores still drop quickly when the num-
ber of tasks increases. In the late stage of sequential
training, each task can only keep dozens of samples
in the memory and the model is not able to general-
ize well based on the memory. Our method solves
this problem by combining VRL and LB-SOINN
memory replay. The performance of our model
is better and more stable than the other methods
when the number of tasks increases. Our method
achieves higher scores than multitask training in
the last four columns of Table 3 because learning
on one task is easier than learning on a mix of
tasks simultaneously. Every model in our sequen-
tial training experiments can easily achieve high F1
scores on the current task, making a large contribu-
tion to the average F1 scores. However, when doing
multitask training, the model loses this benefit.

To investigate the effect of our method, we con-
duct the ablation study as shown in Table 3. Re-

Figure 3: The testing results of the first 5 tasks in the se-
quence when our model is trained on the first 10 tasks.

moving DKLmem from the final loss function in
equation 6 does not lower the performance when
the number of observed tasks is small (t=5) be-
cause each task can store a few hundreds of samples
in the memory at the early stage of sequential train-
ing, which is sufficient for the model to learn the
previous tasks. However, when the number of tasks
increases, DKLmem shows its effect on alleviating
catastrophic forgetting.

Fine-tuning+LB-SOINN (Table 3) does not per-
form as well as fine-tuning+RMR (Table 2), while
VRL+LB-SOINN (i.e., full model) performs better
than VRL+RMR (Table 3). The reason lies in the
input for LB-SOINN.Compared to the hidden rep-
resentations spread evenly in the hidden space, the
hidden representations which are well-organized
in different group clusters make it easier for LB-
SOINN to learn a reasonable topology structure of
the training samples. VRL achieves this by explic-
itly pushing the hidden representation of tweets to
follow a learned multivariate Gaussian distribution
unique to each group. On the other hand, directly
using the hidden state of the tweet encoder does not
exhibit such kind of characteristics. VRL not only
distills task knowledge but also provides an appro-
priate input for LB-SOINN, as stated in section 4.

5.3 Error Analysis

Although our model achieves significant improve-
ment over the baseline methods, we observe that
our method does not perform well on the first task.
As shown in Figure 3, there exists a large gap be-
tween the performance on the first task and the
other tasks, and the micro-F1 score on the first task
quickly drops to almost 0 when the number of ob-
served tasks increases. We find the same results
after we change the order of tasks in the sequence,
so this is not the result of the task difficulty but is
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the result of our method. We find this problem is
due to the reconstruction loss, which is the first part
in equation 4. The model observes a very limited
number of tweets when training on the first task,
making it difficult to learn the language model and
reconstruct the tweet. As a result, the tweet repre-
sentation learned on the first task may not contain
the information we require, resulting in a large per-
formance gap. When the number of observed tasks
increases, this problem goes away quickly. We an-
ticipate pre-training the VAE in our model (the left
branch in Figure 2) on a large Twitter corpus can
alleviate this problem at the beginning of training.

6 Conclusion

In this paper, we introduce the lifelong hate speech
classification task and propose to use the VRL
and LB-SOINN memory module to alleviate catas-
trophic forgetting. Our proposed method has the
potential to benefit other lifelong learning tasks
where the similarity between the contiguous tasks
can be low. We intend to make our implementation
freely available to facilitate more application and
investigation of our method in the future.
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