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Abstract

We propose a data augmentation method for
neural machine translation. It works by in-
terpreting language models and phrasal align-
ment causally. Specifically, it creates aug-
mented parallel translation corpora by gen-
erating (path-specific) counterfactual aligned
phrases. We generate these by sampling new
source phrases from a masked language model,
then sampling an aligned counterfactual tar-
get phrase by noting that a translation lan-
guage model can be interpreted as a Gumbel-
Max Structural Causal Model (Oberst and
Sontag, 2019). Compared to previous work,
our method takes both context and alignment
into account to maintain the symmetry be-
tween source and target sequences. Experi-
ments on IWSLT 15 English — Vietnamese,
WMT’17 English — German, WMT’18 En-
glish — Turkish, and WMT’19 robust English
— French show that the method can improve
the performance of translation, backtranslation
and translation robustness.

1 Introduction

Neural machine translation (NMT) models (Kalch-
brenner and Blunsom, 2013; Bahdanau et al., 2014;
Vaswani et al., 2017) have reached state-of-the-art
performance on various benchmarks. However,
these models frequently rely on large-scale paral-
lel corpora for training, exhibiting degraded per-
formance on low-resource languages (Zoph et al.,
2016). Further, modern NMT systems are often
brittle, as noises (e.g. grammatical errors) can cause
significant mistranslations (Sakaguchi et al., 2017;
Michel and Neubig, 2018).

Data augmentation is a promising direction to
overcome these issues. It works by enlarging the
number of data points for training without manually
collecting new data. It is widely used to improve
diversity and robustness and to avoid overfitting
on small datasets. Even though data augmentation
(e.g. image flipping, cropping and blurring) has
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Figure 1: We interpret a translation language model
p(Y;|X,Y—;) (V_, means that phrase Y; has been re-
moved from sequence )) as a causal model. The ran-
domness of the causal model comes from unobserved
variables G. For data augmentation, we sample coun-
terfactual parallel sequences based on the causal effects
singled-out by an unsupervised alignment model (i.e.,
the black arrows from X’ to ) above).

become a standard technique in computer vision
(Krizhevsky et al., 2012; Huang et al., 2017; Chen
et al., 2020), it is non-trivial to apply in machine
translation since even a slight modification to a
sequence can result in drastic changes in its syntax
and semantics. Indeed there is relatively little work
in this direction due to these difficulties (Sennrich
et al., 2016; Fadaee et al., 2017; Wang et al., 2018;
Gao et al., 2019; Xia et al., 2019; Kobayashi, 2018).
Further, work based on word replacement either
ignores the contexts of replaced words or breaks
the alignment between source and target sequences,
both detrimental for generating high-quality data.

In this paper we observe that a translation lan-
guage model can be interpreted as a causal model,
as described in Figure 1. Doing so allows us to ask
counterfactual questions of the form: Given source
and target sequences, if a phrase in the source se-
quence is changed, how would the target sequence
change? We propose a data augmentation method
for machine translation that generates counterfac-
tual parallel translation data. To ensure these coun-
terfactuals are close to the original data we sam-
ple a new source phrase from a masked language
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model. We then consider the (path-specific) coun-
terfactual target phrase that is aligned to that source
phrase (given by an unsupervised phrasal alignment
method). The idea is that this augmentation proce-
dure exposes inductive biases in existing language
models that enables new translation models to learn
more efficiently and exhibit more robust general-
isation. Specifically, our augmentation procedure
performs the following three steps:

1. We utilize unsupervised phrasal alignment
(e.g. Neubig et al. (2011) and Dyer et al.
(2013)) to obtain correspondences between
source and target phrases.

2. A source phrase is removed and then resam-
pled according to a trained masked language
model (Devlin et al., 2018; Raffel et al., 2019).

3. We perform (path-specific) counterfactual in-
ference on the causal model given by a trained
translation language model (Lample and Con-
neau, 2019) to resample only the aligned target
phrase, given the changed source phrase.

Different from prior work, our approach takes ad-
vantage of both source/target context and alignment
for data augmentation. Experiments on IWSLT’15
English — Vietnamese, WMT’17 English — Ger-
man, and WMT’18 English — Turkish show that
our method improves the translation performance
on both high-resource and low-resource datasets.
We additionally demonstrate that our method com-
plements existing approaches such as backtransla-
tion (Sennrich et al., 2015a). Finally, we demon-
strate that our method improves translation robust-
ness (we evaluate this on the WMT’ 19 English —
French robustness dataset).

2 Background

In this section we describe background on neural
machine translation (NMT), phrasal alignment, and
causal modelling.

Neural machine translation. Given a set of par-
allel sequences, S = {(X%, V") }Y,, NMT maxi-
mizes the log-likelihood of ) given X, assuming
each (X%, V) pair is independently and identically
distributed:

max

> logpe(V'XY).

(XL, YHes

However, paired sequences are usually expensive
to collect, as it requires an expert to translate se-
quences X' into another language )’. Data aug-
mentation aims to generate new parallel sequences
(X, V') without manually collecting new data.

Phrasal alignment. Phrasal alignment identifies
the translation relationships among phrases in par-
allel sequences. Given a parallel sequence (X)),
where X = (Xl = iIZ'l,XQ = I9, ~~7X|X\ = xw‘)
and Y = (Y1 = y1,Y2 = yo,.., Y}y = ypy))
(X/Y and z/y denote a phrase and its value, re-
spectively), phrasal alignment h learns a mapping
that projects each position ¢ of X' to a position j
of Y, i.e. 7 = h(7). In this paper, we use pialign
(Neubig et al., 2011) to obtain alignments.

Causal modelling. We formulate causality using
the structural causal model (SCM) framework of
Pearl (2003). Each SCM is a set of structural equa-
tions represented by a graph. The edges of this
graph specify the inputs and outputs of the struc-
tural equations. Specifically, a variable V; is caused
by a set of observable parent variables pa(V;) and
unobserved variables Uy if there exists a (determin-
istic or stochastic) structural equation f;:

Vi = fi(pa(Vi), Us).

If the structural equations f are identified, it
is possible to compute a causal quantity called
counterfactuals. Counterfactuals are questions that,
given the current state of the world, ask what would
have changed if some variable V' had been differ-
ent. For example, “Would a person have been able
to obtain a visa if they had been born in a differ-
ent country?”. Formally we denote the counterfac-
tual value of a variable V;, had another variable
W € pa(V;) been w (i.e., compared to its observed
value w) as V; w . To compute counterfactuals
we can follow a three-step procedure (for more
details see Chapter 4 of Pearl et al. (2016)): 1. Ab-
duction: Given a prior distribution on unobserved
variables p(U;), compute the posterior given all
observed variables V = v: p(U;|V = v); 2. Ac-
tion: Modify the structural equation for V;, so that
W is fixed to the counterfactual value w (the mod-
ified equation is denoted as f; ;); 3. Prediction:
Compute the distribution p(V; |V = v) using
p(U;[V = v), the observed variables v, and the
modified structural equation f; ..
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Figure 2: The three steps of Translation-Counterfactual Word Replacement. See text for details.

3 Method

Our goal is to take an input sequence pair (X', ))
and create augmented data from it. We aim to do
so by removing phrases, resampling them in the
source sequence, and computing the counterfactual
effect of doing so in the target sequence. We argue
that for any such augmentation method for NMT,
it is crucial to leverage both contextual and align-
ment information, for the following reasons. (1)
Context: As contextual information is widely used
to disambiguate words (Peters et al., 2018) and
generate realistic-looking sequences (Zellers et al.,
2019), it is critical to utilize contextual information
to obtain grammatically-correct and semantically-
sound sequences. (2) Alignment: Phrasal align-
ment plays a critical role in statistical machine
translation (Brown et al., 1993; Vogel et al., 1996).
As phrasal alignment provides information about
which phrase in the source sequence produces a
phrase in the target sequence, a data augmenta-
tion algorithm which disregards alignment risks
breaking the symmetry between source and target
sequences. To this end, in Section 3.1, we intro-
duce a technique called Translation-Counterfactual
Word Replacement (TCWR) for leveraging both
context and alignment to replace phrases in source
and target sequences. In Section 3.2, we propose
a new data augmentation algorithm based on this
replacement technique. In Section 3.3, we describe
the architectures used to parameterize the models.

3.1 Translation-Counterfactual Word
Replacement

Consider the sequence pair (X,)) in Fig-
ure 2. A translation language model that learns
p(Y;|X,Y—;) (where J_; indicates the sequence
Y with Y; removed) for all j € {1, ..., ||} induces
a causal graph on this pair. Specifically it is fully
connected, in the following way: (a) all phrases
in X cause all phrases in )/, (b) all phrases in )

cause all other phrases in ) (these connections are
signified by the wide gray arrow in Figure 2). Ad-
ditionally, there are unobserved variables Gi*, G
that cause each individual phrase (more on this be-
low). We choose this fully connected structure to
take contexts of each phrase into account. Note that
this graph is cyclic, yet the counterfactual distribu-
tion we care about is identifiable given the posterior
of the unobserved variables (which we describe be-
low) and the known equations of the causal model
(i.e., the translation language model).

Consider that we have an alignment between X
and Y, which singles-out the causal effects shown
with black arrows in Figure 2. Our idea is to de-
rive a new sequence pair (XA , )>) by computing a
counterfactual. We propose to calculate the coun-
terfactual corresponding to a single alignment, i.e. a
path-specific counterfactual: “What would Y; have
looked like, had X; = &; instead of x;, given that
Y; is aligned to X, and all other phrases X_;, Y _;
had been held constant?”. This allows us to con-
sider 1. Context: By holding all other phrases
constant we control for the specific context around
the changed phrases 4, §;'; 2. Alignment: The de-
rived counterfactual is based on the direct effect of
X; on Y}, where this singled-out link is identified
from an alignment.

We now outline the three steps to calculate
the counterfactual. The example in Figure 2
is used for illustration. The goal is to sam-
ple from the following counterfactual distribu-
tion: (Y2 (X3¢ 3,8 3¢x_3,V_sey_o}| X, V) with
the translation language model, which describes
“What would Y5 have looked like, had X3 = 3 in-
stead of =3, given that Y5 is aligned to X3, and all
other phrases X_3,Y_o had been held constant?”.
For ease of illustration, we assume both X3 and Y5

'Further, the posterior of unobserved random variables G]y
given &X', ) will encode additional context w.r.t. the original
sequence pair X, ).
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contain one token after Byte Pair Encoding (BPE)
segmentation (Sennrich et al., 2015b). In Section
3.3, we explain how we use a sequence-to-sequence
model to generate phrases containing multiple to-
kens after segmentation.

1. Abduction. The goal of the abduction step
is to estimate any unobserved variables that im-
pact the counterfactual. As our translation lan-
guage model specifies a categorical distribution
p(Y2|X,Y_2), this unobserved randomness, i.e.
the prior of G¥, takes the form of a Gumbel ran-
dom vector. This is due to the fact that random
sampling from a categorical distribution can be
done via a procedure called the Gumbel-Max Trick
(Maddison et al., 2014b).

Definition 3.1 (Gumbel-Max Trick). Two steps are
required to sample from a categorical distribution
p(Y) with K categories: 1. Sample g1, ..., gx ~
Gumbel(0,1). Each gy can be computed as gy, =
—log(—loguy) where u,, ~ Uniform(0,1); 2.
Compute y = argmax;_; g logp(Y = k) + gi.

As such, sampling from the translation language
model p(Y2|X, V_) with vocabulary size |V | can
be written as follows,

yo = argmax logp(Yo = k|X,V_2) + gx,
k=1,..,|V|

s.t. g ~ Gumbel(0, 1).

The abduction step samples from the posterior
distribution over these Gumbel random variables,
given the observed pair (X,)), i.e., p(G3|X, ).
Fortunately, sampling from the posterior is straight-
forward to do in two steps (Maddison et al., 2014a;
Maddison and Tarlow, 2017): 1. Let yo = k*.
Sample gg+ ~ Gumbel(0,1); 2. For the remain-
ing k, compute the probabilities from the model
p(Yo = k|X,Y_2), and sample from the distri-
bution §; ~ Gumbel(logp(Yo = k|X,V_5),1)
truncated within the range (—oo, gi+ ). The result-
ing samples [g1,...,g|y|] are from the posterior
p(GY|X, ). We describe these steps in more de-
tail in Algorithm 1.

2. Action. In this step, we replace a phrase x3
in the source sequence with a substitute phrase 3.
While any replacement leads to a valid counterfac-
tual, we propose to sample &3 as

jS ~ p(X3|X_3),

where p(X3|X_3) is given by a trained masked
language model. By sampling from a distribution

Algorithm 1: Gumbel Posterior Sampling

Input :The observed phrase y; = k*
Probabilities p(Y; = k|X,)—;)
fork=1,...,|V]|

Output : Sampled Gumbel values
& ~p(GY|X,Y)

Sample g+ ~ Gumbel(0, 1)

for k < 1to |V|do

if k& # k* then
// Sample from truncated Gumbel
Sample hj, ~ Gumbel(0, 1)
u = hy +log p(Yj = k| X, V_;)
gr = —log(e™ "k + e~ %)

conditioned on the remaining phrases in X, we
sample a realistic replacement word for X3. In
Figure 2, we sample 23 = ‘apple’ in place of x3=
‘house’.

3. Prediction. Given the posterior sam-
ples [g1,..,qv ] ~ p(GY|X,Y) and
the substitute phrase 3, we can compute
the counterfactual distribution of interest
p(}/Q,{X;ﬁ—ig,X,g(—X,g,y,gFyfg}|X?y)’ Via the
trained translation language model. We do so by
computing:

2 = argmax log p(Ys = k|23, X_3,Y_2) + g
k=1,...|V|
(D

The sample {2 from the counterfactual distribu-
tion is based on the direct effect of X3 on Y5.
We remark that the causal model we consider was
first introduced by Oberst and Sontag (2019) and
called the Gumbel-Max Structural Causal Model.
Our insight here is that counterfactuals from this
model can be used as an effective data augmenta-
tion method for machine translation.

3.2 Data Augmentation

Given the above procedure to replace phrases, we
propose a new data augmentation method, shown in
Algorithm 2. The algorithm takes an input pair of
sequences (X, )) and loops through every phrase
X; € X. At each iteration with probability c it
replaces the phrase pair (x;, y;) with (Z;, 7;).

3.3 Training Language Models

We introduce a special [MASK] token (Devlin
et al., 2018) to represent a removed phrase for pa-
rameterizing both p(X;|X_;) and p(Y;| X, Y_;) as:
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Algorithm 2: Data Augmentation

Input :(X,)): A sequence pair
c: A sampling probability
h: An alignment mapping
Output : A new pair (X,))
X, Yy=2Xx,Y
for i < 1to |X| do
Sample u ~ Uniform(0, 1)
if u < cthen
L /‘%, JA) <—replace(é‘€, )A), i, h)

Function replace (X, ), i, h)
Get aligned index j = h(i)
&~ p(GY|X,))
T ~ p(Xi|X_;)
Yj~
P(E,{Xie;ei,x,WX,i,y,j —y_;} \X, y)
Set the i-th phrase of X to &;
Set the j-th phrase of Y to §;

| return X, )
pgl(Xi‘Xl,...,Xi = [MASK],...,X|X‘) (2)
and
p@z(}/}‘X7Yh"'7Y} = [MASKLa}/‘YO (3)

Eq. 2 only requires monolingual datasets, which
are abundant. On the other hand, Eq. 3 requires
parallel corpora to train. We parameterize Eq. 3
using a variant of the translation language model
(Lample and Conneau, 2019). The main difference
is that only phrases in target sequences are masked,
whereas Lample and Conneau (2019) mask both
source and target tokens, with the goal of learning
bilingual relations. Another difference is that a
phrase with consecutive tokens is masked, while
masked tokens in Lample and Conneau (2019) are
not necessarily consecutive.

To better tackle unknown and rare tokens, we
adopt BPE to segment phrases into tokens. As the
number of tokens is undetermined during genera-
tion, we use a sequence-to-sequence Transformer
model (Vaswani et al., 2017) to encode inputs and
decode tokens one by one until a special end-of-
sequence symbol is encountered.

More specifically, given a sequence of N to-
kens (t1,...,tn), the sequence contains a spe-
cial [MASK] token signifying a masked phrase.

Each token ¢; is first projected into its embed-
ding e;,, which is a sum of its token embed-
ding, position embedding, and language embed-
ding, inspired by XLM (Lample and Conneau,
2019). Then, a Transformer encoder is applied
to encode the tokens into their hidden representa-
tions H € RV*° (where o denotes the hidden size),
i.e. H = Encoder(e;,, ..., e, ). The hidden repre-
sentation of [MASK], hjmask) € R?, is fed into a
Transformer decoder to predict the tokens of the
masked phrase.

We learn our models  pp, (X;|X_;),
po,(Y;1X,Y—_;) by maximizing the following
objectives:

Ex~p [EiUniform(1,..., ) 108 po, (X3 X—3)]]

and

E(X,y)NS [EjNUniform(l,...,I))l) [log Doy (YJ ’/Yu y—J)H .

Here D is a monolingual dataset and S is a parallel
corpus.

4 Related Work
4.1 Data Augmentation for NMT

We categorize previous work on data augmentation
for NMT into two classes, word replacement and
backtranslation.

Word replacement. WordDropout (Sennrich
et al.,, 2016) randomly zeros out word embed-
dings in order to introduce noises. BPEDropout
(Provilkov et al., 2020) stochastically corrupts the
segmentation procedure of BPE, leading to differ-
ent subword segmentations with the same BPE vo-
cabulary. RAML (Norouzi et al., 2016) applies
a reward-augmented maximum likelihood objec-
tive, which essentially augments target sequences
with sequences sampled based on metrics, such as
edit distance and BLEU score (Wang et al., 2018).
SwitchOut (Wang et al., 2018) extends RAML, aug-
menting both source and target sequences by ran-
domly replacing words with noisy words sampled
from a uniform distribution. These works do not
take context and alignment into account. TDA
(Fadaee et al., 2017) first uses two uni-directional
language models to replace a word in the source
sequence, before replacing the corresponding word
based on a bilingual lexicon. TDA does not con-
sider contexts in target sequences and relies on a
high-quality bilingual lexicon. SCDA (Gao et al.,
2019) uses a soft augmentation approach, where
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Dataset # Sequences # Words # Chars Dataset # Train #Dev # Test
News Commentary 0.46M 10.05M  63.96M WMT’18 En-Tr 206K 3007 3000
News Crawl 2010 6.8M 0.14B 0.83B WMT’17 En-De 585M 2,999 3,004
IWSLT’15 En-Vi 133K 1,553 1,268
. e : WMT’19 Robust En-Fr 36,058 852 1,401

Table 1: The statistics of the monolingual datasets. Europarl-v7 En-Fr M X i

the one-hot representation of a word is replaced by
a soft distribution of words given by a language
model. DADA (Cheng et al., 2019) uses gradient
information to generate adversarial sequences for
more robust NMT. AdvAug (Cheng et al., 2020)
extends DADA, where embeddings of virtual se-
quences are sampled from an adversarial distribu-
tion for augmentation. SCDA and AdvAug ignore
the alignment information, thereby breaking the
symmetry of source and target sequences. While
DADA takes both context and alignment into ac-
count, it replaces multiple words in source and
target sequences simultaneously, which risks gen-
erating unnatural sequences. In this paper, we uti-
lize both alignment and contextual information to
sequentially replace aligned phrases for better per-
formance.

Backtranslation. The idea of backtranslation
dates back to statistical machine translation (Goutte
et al., 2009; Bojar and Tamchyna, 2011). Senrich
et al. (2016) use backtranslation, where monolin-
gual sequences in the target language are translated
into the source language, and obtain substantial im-
provements on the WMT and IWSLT tasks. Currey
et al. (2017) apply backtranslation to low-resource
languages, finding that even low-quality transla-
tions due to limited parallel corpora are beneficial.
He et al. (2016) propose a dual learning frame-
work, where the primal task (source-to-target trans-
lation) and the dual task (target-to-source trans-
lation) teach each other through a reinforcement
learning process until convergence. Edunov et al.
(2018) scale backtranslation to millions of monolin-
gual data and obtain state-of-the-art performance
on WMT’ 14 English—German. Xia et al. (2019)
use a two-step pivoting method for improving back-
translation on low-resource languages. We show
that TCWR can be used together with backtransla-
tion and obtain further improvements.

5 Experiments

We now describe the improvements with the data
augmentation based on TCWR.

Table 2: The statistics of the parallel corpora.

5.1 Language Model Details

We use the monolingual training data, including
News Commentary and News Crawl 2010, pro-
vided by WMT’18, for Eq. 2, while the training
set of each language pair is used for Eq. 3. The
statistics of the monolingual and parallel corpora
are summarized in Table 1 and 2, respectively.

To reduce memory overhead, we train a shared
language model for Eq. 2 and 3, i.e. §; and 6, are
tied. A language model is trained for each lan-
guage pair to avoid performing multilingual NMT
for a fair comparison with baselines, as jointly train-
ing a single model for several language pairs has
been shown to be effective for both low-resource
and high-resource languages (Aharoni et al., 2019).
Therefore, we pre-train four models for En-Tr, En-
De, En-Vi and En-Fr, respectively.

The encoder and decoder are composed of six
layers. The encoder is initialized with XLM
(Lample and Conneau, 2019) pre-trained with the
masked language model, while the decoder is ran-
domly initialized. The input-output embeddings
are tied for reducing the size of the model (Press
and Wolf, 2016). To achieve faster convergence,
we apply PreNorm (Nguyen and Salazar, 2019) for
getting rid of the warm-up stage of Transformer.
The learning rate is set to le-5 and is linearly de-
cayed with more training steps. The hidden size
o is set to 1024. Same as BERT, the maximum
sequence size is set to 512. We use LAMB (You
et al., 2019) as the optimizer. GELU (Hendrycks
and Gimpel, 2016) is used as the activation func-
tion. 16 sequences are used at each pre-training
step. We train the masked language model for 50%
of the time and the left time is used for training the
translation language model.

After pre-training, we use the pre-trained mod-
els to perform data augmentation on training data.
Then, the augmented data are combined with train-
ing data for training NMT models.
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Figure 3: BLEU scores on the development set of the
WMT’18 English — Turkish task with different pre-
training steps.
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Figure 4: Learning curves of training language models
for the WMT’ 18 English — Turkish task with either
the random initialization or the XLLM initialization.

5.2 NMT Model Details

We use fairseq® to implement the NMT models.
The vocabularty size is 37K. Six encoder and de-
coder layers are applied. The hidden size is set to
1024. 16 self-attention heads are employed. We
use Adam as the optimizer. The learning rate is
initially set to le-7 and is gradually increased to
Se-4 with 4K warm-up steps, before applying linear
decay. Dropout is set to 0.3. Label smoothing with
the smoothing factor 0.1 is used. For decoding, we
use beam search, and the beam size is set to 12.
SacreBLEU (Post, 2018) is used as the metric.

5.3 Sensitivity Study
5.3.1 Pre-training Steps

We study the effect of pre-training steps on machine
translation quality. We use the language models at
different pre-training steps and evaluate these mod-
els on the development set of the WMT’ 18 English
— Turkish task. The results are shown in Figure 3.
The BLEU score improves with more pre-training
steps and peaks at around 110K steps. We do not
observe better performance with more pre-training
steps, as the models become more overfitted on the
training sets.

https://github.com/pytorch/fairseq
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Figure 5: BLEU scores on the development set of the
WMT’18 English — Turkish task with different sam-
pling probabilities.

5.3.2 Effect of the XLM Initialization

We plot the learning curves of the language model
for En-Tr with/without XLM initialization. As
shown in Figure 4, the model with the XLM initial-
ization converges faster and better compared to the
model with the random initialization. As XLM is
trained using the masked language model objective
on large-scale monolingual data, we draw the con-
clusion that large-scale pre-training can improve
downstream language model pre-training tasks. We
further evaluate the models on the development
set of the WMT’18 English — Turkish task. The
model with the XLM initialization also performs
better (17.49 BLEU) compared to its counterpart
(16.68 BLEU). Thus, the model with the XLM
initialization can also generate better data for im-
proving NMT.

5.3.3 Sampling Probability

As shown in Figure 5, we vary the sampling prob-
ability in Algorithm 2 and evaluate on the devel-
opment set of the WMT’18 English — Turkish
task. We observe that the BLEU score is maxi-
mized with sampling probability 0.2. The BLEU
scores decrease with larger sampling probabilities.

5.4 Ablation Study

Method En — Tr
TCWR 17.49
-Source 16.47
-Target 16.29
-Alignment 16.59
-Gumbel 16.85

Table 3: The BLEU scores on the development set of
the WMT’18 English — Turkish task with source con-
text, target context, alignment, and Gumbel ablation.

We ablate the source context, target context and
alignment to validate the effectiveness of these
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Method En—Tr En—De En— Vi
Baseline 15.35 27.54 31.66
+WordDropout 15.4 27.81 31.81
+SwitchOut 15.52 27.92 31.83
+SCDA 15.72 28.05 31.72
+TDA 15.69 28.16 31.79
+BPEDropout 15.95 28.29 33.59
+DADA 16.14 29.03 32.15
+TCWR 17.38 29.37 33.76

Table 4: The BLEU scores on the testing sets of En-Tr,
En-De and En-Vi. The baseline method denotes train-
ing without any data augmentation.

components. We randomly choose a phrase with
uniform distribution to replace the original phrase
for ablating source and target contexts. For ablat-
ing alignment, we randomly choose a position in
the target sequence instead of following the align-
ment given by pialign. We also study removing
gr in Eq. 1. Since g comes from the abduction
step, which encodes the information from the orig-
inal pair (X,)), Eq. 1 encourages the model to
sample a new pair that is similar to the original
pair. Therefore, the model without gj, collapses
to a probabilistic approach that directly samples
phrases from the translation language model, disre-
garding the information from the original pair.

The results are shown in Table 3. We observe
that ablating the source context, target context
and alignment are negative for translation quality,
demonstrating the necessity of considering all these
components for data augmentation. The result of
ablating g, shows the effectiveness of incorporat-
ing the original information from (X, )).

5.5 Translation Result

We evaluate the algorithms on WMT’ 17 English
— German (En-De), WMT’18 English — Turkish
(En-Tr) and IWSLT’ 15 English — Vietnamese (En-
Vi). As shown in Table 2, En-Tr and En-Vi are two
low-resource language pairs, while En-De is a high-
resource language pair.

For En-Tr, we use newstest!l7 for validation and
newstestl8 for testing. For En-De, we use new-
stest16 for validation and newstest17 for testing.
For En-Vi, we use the TED tst2012 for validation
and the TED #5201 3 for testing.

We compare TCWR with six baselines, Word-
Dropout, BPEDropout, SwitchOut, SCDA, TDA
and DADA. For WordDropout and BPEDropout,
we perform a range search on its dropout proba-
bility from O to 1 and select the best one on de-

Method En—Tr En—De En— Vi
Baseline 15.35 27.54 31.66
+TCWR 17.38 29.37 33.76
+BT 19.24 29.19 33.38
+BT +TCWR 20.19 30.26 35.72

Table 5: The BLEU scores on the testing sets with back-
translation and TCWR.

velopment sets. Similarly, we choose the temper-
ature with the highest score on development sets
for SwitchOut. For SCDA, we search the replacing
probability and set it to 0.15. We follow the official
implementation® of TDA. We reuse the hyperpa-
rameters from Cheng et al. (2019) for DADA.

The results on three language pairs are shown
in Table 4. Compared to the baseline with no
data augmentation, TCWR yields improvements of
2.03, 1.63 and 1.79 BLEU for En-Tr, En-De and
En-Vi, respectively. TCWR also outperforms the
other augmentation methods, which further con-
firms the effectiveness of considering source con-
text, target context, and alignment for NMT data
augmentation. Besides, these results demonstrate
that TCWR brings consistent improvements to both
low-resource and high-resource language pairs.

5.6 Backtranslation Result

As backtranslation is a widely-used data augmenta-
tion method by utilizing monolingual data to gener-
ate new parallel pairs, we show how TCWR can be
used with backtranslation. To perform backtransla-
tion, we use the monolingual sequences from News
Crawl 2017, News Crawl 2010 and VNTC* for En-
Tr, En-De and En-Vi, respectively. Then we per-
form data augmentation on both training data and
backtranslated data. As shown in Table 5, TCWR
improves upon backtranslation, demonstrating that
TCWR and backtranslation are not mutually exclu-
sive, and TCWR can enhance the performance of
backtranslation.

5.7 Machine Translation Robustness

Noisy or non-standard input text (e.g. text with
spelling errors and code switching) can cause sig-
nificant degradation in most NMT systems. We
use the WMT’19 English — French robustness
dataset for evaluating translation robustness. As
the parallel pairs are scarce for this task, we com-

Shttps://github.com/marziehf/
DataAugmentationNMT
*https://github.com/duyvuleo/VNTC
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En: Kosovo is taking a hard look at its privatisation process in light of recurring [complaints / problems].
Tr:  Kosova, tekrar eden [sikayetler / sorunlar] 15181nda 6zellestirme siirecini incelemeye aliyor.

En: A decade later, we see that the [economy / system] is terribly unstructured.
Tr:  On yil sonra, [ekonominin / sistemin] yapisinin ¢ok kétii bozuldugunu gériiyoruz.

En: Report : most [SEE / independent] countries advance in economic freedom.
Tr:  Rapor: [GDA / bagimsiz] iilkelerinin ¢ogu ekonomik 6zgiirliikte ilerliyor.

Table 6: A case study on TCWR, where augmented positions are marked as [original / substituted].

Method En — Fr
Baseline 26.0
+WordDropout 26.52
+SwitchOut 26.61
+SCDA 26.85
+BPEDropout 27.08
+TDA 27.11
+DADA 28.14
+TCWR 28.92

Table 7: The BLEU scores on the WMT’ 19 English —
French robustness task.

bine its training data with the English — French
pairs from Europarl-v7. The models are validated
on the development set of the MTNT dataset and
tested on the released test set of the WMT’19 ro-
bustness task. The results are shown in Table 7.
We observe that TCWR outperforms the baseline
without any data augmentation or with the other
methods. If we regard the task as adapting from the
source dataset with clean text (Europarl-v7) to the
target dataset with noisy text (WMT’ 19 robustness
dataset), TCWR helps this adaptation via enlarging
training examples with language models trained
using noisy and non-standard text. We thereby con-
clude that TCWR can improve NMT robustness.

5.8 Case Study

As shown in Table 6, we perform a case study
of TCWR. We observe that TCWR can reason-
ably substitute words in source sequences based on
contexts and modify corresponding target words,
which demonstrates the benefits of considering
both context and alignment for augmentation.

Conclusion

We proposed a data augmentation method for NMT,
which introduces a causal inductive bias that takes
both context and alignment into account. The
method was shown to improve the performance
of translation, backtranslation and translation ro-
bustness on four NMT benchmarks.
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