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Abstract

Prerequisite relations among concepts are cru-
cial for educational applications, such as cur-
riculum planning and intelligent tutoring. In
this paper, we propose a novel concept pre-
requisite relation learning approach, named
CPRL, which combines both concept represen-
tation learned from a heterogeneous graph and
concept pairwise features. Furthermore, we ex-
tend CPRL under weakly supervised settings
to make our method more practical, includ-
ing learning prerequisite relations from learn-
ing object dependencies and generating train-
ing data with data programming. Our experi-
ments on four datasets show that the proposed
approach achieves the state-of-the-art results
comparing with existing methods.

1 Introduction

With the increasing availability of learning re-
sources and the requirement of self-regulated learn-
ing, there is a rising need to organize knowledge
in a reasonable order. Concept prerequisite rela-
tions are essentially considered as the dependen-
cy among concepts, and they are crucial for peo-
ple to learn, organize, apply and generate knowl-
edge (Margolis and Laurence, 1999). For example,
if someone wants to learn the knowledge about
Conditional Random Fields, the knowledge about
Hidden Markov Model should be learned first. Con-
sequently, the concept Hidden Markov Model is
a prerequisite concept of the concept Condition-
al Random Fields. Nowadays, prerequisite rela-
tions among concepts have played a crucial role
in educational applications, such as curriculum
planning (Liu et al., 2016) and intelligent tutor-
ing (Wang and Liu, 2016; Chen et al., 2018).

Recently, several attempts have been made to
extract prerequisite relations among concepts from
textbooks (Wang et al., 2016; Liang et al., 2018),
MOOCs (Massive Open Online Courses) (Pan

∗∗ corresponding author

et al., 2017), courses (Liang et al., 2015a; Liu et al.,
2016; Liang et al., 2017; Li et al., 2019a; Roy et al.,
2019) and scientific papers (Gordon et al., 2016).
They either proposed a local statistical information,
such as reference distance (Liang et al., 2015a)
and cross-entropy (Gordon et al., 2016) to mea-
sure the prerequisite relations between concepts,
or proposed handcrafted features to learn a prereq-
uisite relation classifier (Pan et al., 2017). Liang
et al. (2017) proposed CPR-Recover to recover
concept prerequisite relations from course depen-
dencies. More recently, Li et al. (2019a) applied
variational graph autoencoders to learn concept
prerequisite relations from courses. While Roy
et al. (2019) developed a supervised learning ap-
proach called PREREQ.

However, there are still several challenges to
learn the prerequisite relations among concepts.
Firstly, there are multiple and complex relations
among concepts and learning resources, but they
were not fully utilized before. Secondly, labeling
training data is enormously expensive and time
consuming, especially when domain expertise is re-
quired for concept prerequisite relation judgement.

In order to address these challenges, we propose
a novel concept prerequisite relation learning ap-
proach, named CPRL, which firstly learns concept
representation via a relational graph convolutional
network (R-GCN) (Schlichtkrull et al., 2018) on a
heterogeneous graph, and predicts the concept pre-
requisite relations with a Siamese network. Then, it
is optimized with the learning object dependencies
and handcrafted features.

Moreover, we extend CPRL under the weakly-
supervised settings to make our approach more
practical, including learning prerequisite relation
from learning object dependencies and generating
training data with data programming paradigm.

Our contributions can be summarized as follows:

• We propose a heterogeneous concept-learning
object graph (HCLoG), which can model the
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multiple and complex relations among con-
cepts and learning resources to learn concept
representation.

• We propose a novel concept prerequisite rela-
tion learning approach, named CPRL, which
combines evidences from concept representa-
tions via R-GCN on HCLoG, learning object
dependencies, and concept pairwise features.

• We extend CPRL under weakly supervised
settings to avoid costly training data labeling.

• We conduct extensive experiments on four
real-world datasets with different domains:
Textbook, MOOC, LectureBank and Univer-
sity Course, and our approach achieves new
state-of-the-art performance.

2 Problem Formulation

The educational data can be a textbook or a course,
which can be modeled as a sequential learning ob-
jects (denoted as LO for short), such as book chap-
ters, MOOC videos and lectures. There are con-
cepts in an educational data, and we would like to
extract the prerequisite relation among these con-
cepts, as shown in Figure 1.

……A textbook

……A MOOC 
course

A course

videos

chapters

……

lectures

graph

minimal 
spanning tree Kruskal’s 

algorithm

Figure 1: An example of prerequisite relation learning
for concepts in educational data.

For convenience, we will use the following nota-
tions:

• D = {o1, o2, ..., oM} is an educational data,
where oi denotes the i-th learning object in
D and is represented as a document. The
document can be the text from a book chapter,
or the speech script from a MOOC video.

• C = {c1, c2, ..., cN} is a set of concepts in D.

Therefore, the problem could be formally de-
fined as: given an educational data D and its corre-
sponding concepts C, the goal is to learn a function
Fθ : C × C → {0, 1}, which can predict whether
ci is a prerequisite concept of cj by mapping the
concept pair 〈ci, cj〉 to a binary class.

3 The CPRL Framework

The overview of our proposed CPRL is shown in
Figure 2.

We firstly build a heterogeneous concept-
learning object graph from the educational data,
and then use a relational graph convolutional net-
work (R-GCN) (Schlichtkrull et al., 2018) to repre-
sent the concepts and learning objects. Then, pair-
wise features for concepts are extracted according
to their textual and structural information. Final-
ly, all features are combined to learn the concept
prerequisite relations.

It should be noted that the dependencies among
learning objects can be viewed as a signal of weak
supervision, which are also used to train the model.

3.1 Heterogeneous Concept-Learning Object
Graph

We build a heterogeneous concept-learning object
graph from an educational data, which contains
concepts and learning objects, so the concept co-
occurrence and the learning object-concept rela-
tions can be explicitly modeled.

The heterogeneous concept-learning object
graph is defined as a graph G = (V, E), where
V consists of two types of nodes: concept nodes
Vc = {c1, c2, ..., cN} and learning object nodes
Vo = {o1, o2, ..., oM}, and E represents the rela-
tions among them.

Specifically, we define the following three types
of edges in G.

1. an edge between a concept and a learning ob-
ject, and the weight is the term frequency-
inverse document frequency (tfidf) of the con-
cept in the document, where the term frequen-
cy is the number of times the concept appears
in the document, while the inverse document
frequency is the logarithmically scaled inverse
fraction of the number of documents that con-
tain the concept. E.g., eco in Figure 2.

2. an edge between two concepts which co-
occur in a fixed size sliding window in doc-
uments. Point-wise mutual information (P-
MI) is used to calculate the weight. Formally,
pmi(i, j) = log p(i,j)

p(i)·p(j) , p(i, j) = #W (i,j)
#W

and p(i) = #W (i)
#W , where #W (i, j) is the

number of sliding windows that contain both
ci and cj , #W (i) is the number of sliding
windows that only contain ci, and #W is the
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Figure 2: The overview of our proposed CPRL framework.

number of sliding windows in D. E.g., ecc in
Figure 2.

3. an edge between two learning objects, and
the weight is the normalized distance between
these two learning objects in the educational
data. Formally, dis(i, j) = |j−i|

M . E.g., eoo in
Figure 2.

Thus, the adjacency matrix A ∈ R(M+N)×(M+N)

of the graph G is defined as:

Aij =


pmi(i, j) i and j are concepts
tfidf(i, j) i is a concept and j is a LO
dis(i, j) i and j are LOs
1 i = j
0 otherwise

3.2 Concept Representation via R-GCN
Since there are different types of relations among
the nodes in the heterogeneous concept-learning
object graph, we employ R-GCN to learn the repre-
sentations of concepts and LOs.

We first use pretrained word embeddings
GLoVE (Pennington et al., 2014) to represent each
concept node inG. To represent the learning object,
we calculate the average word embeddings of con-
cepts in that learning object. Then, we update the
node representation with R-GCN by aggregating
messages from its direct neighbors as follows:

hl+1
i = σ(W l

0h
l
i +

∑
r∈R

∑
j∈Nr

i

1

ci,r
W l
rAijh

l
j)

where N r
i is the neighbors of node i of relation

r ∈ R, W l
r ∈ Rd×d is a relation-specific weight

matrix, W l
0 ∈ Rd×d is a general weight matrix,

hli is the hidden state of node i at l-th layer, σ is
the ReLU function, and ci,r =

∑
j∈Nr

i
Aij is a

normalization constant.
We stack the networks for L layers, and the con-

cepts and learning objects can be represented by
the hidden state of nodes in the L-th layer.

3.3 Prerequisite Relation Classification

After representing concepts via R-GCN, a Siamese
network is used to predict whether the concept ci
is prerequisite of cj .

We firstly take the concept representation of
ci and cj as the input of a Siamese network, as
shown in Figure 3, to calculate the likelihood of
ci being a prerequisite concept of cj . Formally,
~ci = ReLU(Ws · hLci + bs), where hLci is the out-
put of the R-GCN for concept ci in L-th layer.
Then, the likelihood pGCN (ci, cj) is calculated as
σ(W T [~ci;~cj ;~ci − ~cj ;~ci ⊗ ~cj ] + b), where σ is the
sigmoid function, ⊗ and − are the element-wise
multiplication and subtraction operators, and [·; ·]
means the concatenation of vectors.

Finally, we use the cross-entropy as the loss
function: Lc = 1

|T |
∑

(ci,cj ,yij)∈T −[yij ·
log(pGCN (ci, cj)) + (1 − yij) · log(1 −
pGCN (ci, cj))], where T is the training dataset,
and yij ∈ {0, 1} is the ground truth of (ci, cj).

FC+ReLU FC+ReLU
shared weights

𝑣𝑣 = 𝑐𝑐𝑖𝑖; 𝑐𝑐𝑗𝑗; 𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑗𝑗; 𝑐𝑐𝑖𝑖 ⊗ 𝑐𝑐𝑗𝑗
𝑐𝑐𝑖𝑖 𝑐𝑐𝑗𝑗

𝑝𝑝 = 𝜎𝜎(𝑊𝑊𝑇𝑇 ⋅ 𝑣𝑣 + 𝑏𝑏)

ℎ𝑐𝑐𝑗𝑗
𝑇𝑇ℎ𝑐𝑐𝑖𝑖

𝑇𝑇

Figure 3: The Siamese network

3.4 Optimized with LO Dependencies

Intuitively, the dependencies among learning ob-
jects can reflect the prerequisite relations among
concepts, but how can we utilize the learning object
dependencies to enhance our model?

In the heterogeneous concept learning object
graph, concepts and learning objects are both rep-
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resented in the same space, so they can be fed to
the same Siamese network.

Formally, we feed the representations of learning
object oi and oj to the same Siamese network men-
tioned in previous section, and obtain the likelihood
of the learning object dependency as pGCN (oi, oj).
Similarly, we define the loss function as: Lo =
1
|T |

∑
(oi,oj ,yij)∈T −[yij · log(pGCN (oi, oj))+(1−

yij) · log(1− pGCN (oi, oj))], where T is the train-
ing dataset, and yij ∈ {0, 1} is the ground truth of
(oi, oj).

Predicting the dependencies among learning ob-
jects can be considered as an auxiliary task for
concept prerequisite relation learning, so the loss
function could be: L = Lc + µLo.

3.5 Fusing Handcrafted Pairwise Features

In order to fully utilize the information of LOs, we
also extract concept pairwise features from their
textual and structural information.

Liang et al. (2015a) pointed out that when learn-
ing concept A, if one needs to refer to concept B a
lot but not vice versa, then B is more likely to be a
prerequisite of A than A of B. Inspired by this idea,
we propose a new generic metric, namely learn-
ing object reference distance (LOrd), in a learning
object sequence D = {o1, o2, ..., oM} to measure
prerequisite relations among concepts.

For a concept pair (ci, cj), we propose the refer-
ence weight (rw) to qualify how cj is referred by
LOs which mention concept ci, defined as:

rw(ci, cj) =

∑
o∈D f(ci, o) · r(o, cj)∑

o∈D f(ci, o)

where f(ci, o) indicates the frequency of concept
ci appears in the learning object o, and r(o, cj) ∈
{0, 1} denotes whether concept cj appears in o.
Then, the LOrd is defined as: LOrd(ci, cj) =
rw(cj , ci) − rw(ci, cj). Obviously, LOrd can be
easily calculated for textbooks, MOOC courses and
university courses.

In addition, for MOOCs, we use features as in
(Pan et al., 2017). While for textbooks, we extract
several pairwise features as in (Pan et al., 2017), in-
cluding Semantic Relatedness, Wikipedia reference
distance and complexity level distance. The details
can be referred in the Appendix.

Moreover, we also extract head matching feature
and ToC distance (Wang et al., 2016) for concept
pairs for textbooks. Head matching feature repre-
sents whether two concepts have a common head or

not, which is obtained by suffix matching. Usually,
it implies the existence of prerequisite relation, e.g.,
tree and binary tree. ToC distance measures the
distance of concepts in the table of contents in D.

All the pairwise features are concatenated and
fed into a forward neural network, which will gen-
erate the prediction result pF (ci, cj) for the con-
cept pair (ci, cj). The loss function for the pair-
wise features is: Lf = 1

|T |
∑

(ci,cj ,yij)∈T −[yij ·
log(pF (ci, cj)) + (1− yij) · log(1− pF (ci, cj))].

Therefore, the overall loss function is: L =
Lc + µLo + λLf , where µ and λ are two hyper-
parameters.

4 The CPRL with Weak Supervision

In practice, it is expensive to collect massive hand-
labeled data for model training. One intuitive way
to alleviate the labeling cost is that we can train
the model in one domain (e.g. Calculus), and then
use it to predict the concept prerequisite relations
in other domains (e.g. Data Structure and Physics).
However, the idea fails and we will explain it in
our experiments.

Therefore, we extend our model under the weak
supervision settings in two ways.

We call the first way as learning prerequisite re-
lations from LO dependencies. Since concepts and
LOs are embedded into the same space through
R-GCN in the heterogeneous graph, our model
can implicitly infer the prerequisite relationships
between concepts by explicitly learning the depen-
dencies between LOs. This procedure is called
CPRLlo.

Another way is use the data programming (Rat-
ner et al., 2016) paradigm to create probabilistic
training data. Data programming expresses weak
supervision strategies or domain heuristics as label-
ing functions (LFs), and then estimates the label
accuracies by fitting a generative model. The pro-
cess is shown as Figure 4.

Probabilistic Training Data

Generative Model 

Learning Objects

Books/MOOCs/Courses

Label Functions

Label Matrix

1 0 1 -1

1 0 0 1

0 1 -1 0

0 -1 1 1

Figure 4: The pipeline of probabilistic label generation.

Here, we express some of the concept pairwise
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features extracted before as heuristic labeling func-
tions (LF for short): λ : (ci, cj) → {−1, 0, 1},
where −1 means the labeling function abstains
from providing a label. We define label functions
corresponding to the features among concepts, and
some examples are shown in Figure 5.

def 𝐿𝐿𝐿𝐿_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗):
if 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗 < 𝜃𝜃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚 return 1
elseif 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗 > 𝜃𝜃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 return 0
else return -1

def 𝐿𝐿𝐿𝐿_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗):
if 𝑐𝑐𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑗𝑗′𝑚𝑚 𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑚𝑚𝑚𝑚𝐿𝐿𝑆𝑆𝑠𝑠𝑠𝑠 return 1 else return -1 

Figure 5: Two LF examples, where θmaxLOrd and θminLOrd

are learned thresholds. Other LFs and the settings of
thresholds are listed in the Appendix.

We apply m such LFs to the unlabeled concep-
t pairs {(cti , ctj )nt=1} to generate a label matrix
Λ ∈ {−1, 0, 1}n×m. Then, we use the weak super-
vision framework Snorkel (Ratner et al., 2019a) to
train a probabilistic model. The probabilistic mod-
el takes the label matrix Λ as input, and generates
the probabilistic training labels Ỹ = p(Y |Λ) for
each concept pair. The generated labels could be
used to train our model.

With the probabilistic training data, Lc and Lf
are changed to the noise-aware variants: Lc =∑

(ci,cj)∈T Eyij∼Ỹ [−[yij · log(pGCN (ci, cj)) +

(1 − yij) · log(1 − pGCN (ci, cj))]] and Lf =∑
(ci,cj)∈T Eyij∼Ỹ [−[yij · log(pF (ci, cj)) + (1 −

yij) · log(1−pF (ci, cj))]]. This procedure is called
CPRLdp.

5 Experiments

5.1 Datasets
In order to validate the efficiency of our model,
we conducted experiments on four datasets with
different domains.

• Textbook: we selected six Chinese textbooks
in each of the three domains: Calculus, Data
Structure, and Physics, and then extracted 89,
84 and 139 concepts, and labeled 449, 439
and 623 prerequisite relations for each domain
respectively. The datasets will be publicly
available later.

• MOOC: we used MOOC data1 mentioned in
(Pan et al., 2017), which involves two domain-
s: Data Structure and Algorithms (DSA) and
Machine Learning (ML).

1http://keg.cs.tsinghua.edu.cn/jietang/software/acl17-
prerequisite-relation.rar

• LectureBank: This dataset2 (Li et al., 2019a)
contains 1,352 English lecture files collected
from university courses, and the annotations
of prerequisite relations on 208 concepts.

• University Course: This dataset3 (Liang et al.,
2017) has 654 courses with 861 course prereq-
uisite edges from various universities in USA,
and 1008 pairs of concepts with prerequisite
relations are manually annotated.

The set of concepts and prerequisite relations
among them was annotated by experts, and released
with the datasets. The statistics of the datasets are
listed in the appendix.

5.2 Baselines

We used the following state-of-the-art approaches
as baselines.

Binary classifiers: We compared our model
with the binary classifiers as in (Pan et al., 2017),
including Naïve Bayes classifier (NB), Support vec-
tor machine (SVM), Logistic Regression (LR) and
Random Forest classifier (RF).

RefD: RefD (Liang et al., 2015b) is a simple
link-based metric for measuring the prerequisite
relations among concepts.

GAE: GAE denotes graph autoencoder, which
encodes a graph with GCN, and predicts links
through the adjacency matrix reconstruction. Li
et al. (2019a) used GAE for concept prerequisite
relation learning.

VGAE: VGAE is an extension to GAE, which
was also used in (Li et al., 2019a) for concept pre-
requisite relation learning.

PREREQ: PREREQ (Roy et al., 2019) obtain-
s latent representations of concepts through the
pairwise-link LDA model, and identifies concept
prerequisite relations through a Siamese network.

We also compared our weakly-supervised vari-
ants with CPR-Recover (Liang et al., 2017), which
is an unsupervised approach, and can recover con-
cept prerequisite relations from course dependen-
cies.

Consistent with many methods, we mainly used
F-score(F1) to evaluate the performance of CPRL
with all the baselines. We also compared preci-
sion(P) and recall(R) against other methods.

2https://github.com/Yale-LILY/LectureBank
3https://github.com/suderoy/PREREQ-IAAI-

19/tree/master/datasets/University%20Course%20Dataset
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5.3 Implementation Details

In all datasets, only concept prerequisite pairs are
manually annotated, and we split the positive sam-
ples into train and test sets. In order to fairly com-
pare with the previous researches, 90% samples of
LectureBank were used for training while the rest
10% for testing. For other datasets, the proportions
changed to 70% and 30%. Then, we generated neg-
ative samples by sampling random unrelated pairs
of concepts from the vocabulary in addition to the
reverse pair of original positive samples. In order
to address the imbalance problem, we oversampled
3.5 and 1.5 times the number of the positive exam-
ples in the training and testing sets for Textbook
dataset and other datasets respectively. The results
are averaged over 5 train-test splits.

The parameters were initialized randomly from a
Gaussian distribution with zero mean and standard
deviation σ = 0.3. The initial learning rate γ is 0.5
for Textbook and 0.1 for other datasets. Besides, the
learning rate annealed every 50 epochs by 0.99γ.
We trained CPRL using the Stochastic Gradient
Descent method and stopped training if the train
loss did not decrease for 30 consecutive epochs.
For baseline models, we used default parameter set-
tings as in their original implementations, and also
used 300-dimensional GloVE as the pre-trained
word embeddings.

For R-GCN, we set the number of R-GCN layers
L = 2 and set the embedding size of the first convo-
lution layer as 256 and the second convolution layer
as the number of concepts in each dataset. We ex-
perimented with other settings and found that small
changes did not influence the result much. In addi-
tion, we set λ = 0.2 and µ = 0.1, since they made
the best performance. The influence of parameters
L, λ and µ can be referred to the Appendix.

5.4 Performance Comparison

Table 1 shows the precision, recall and F-score on
four datasets with different domains.

From the table, we find that (1) CPRL achieves
the best performance with F-score against all base-
lines on all datasets, except for DSA domain of the
MOOC dataset. (2) CPRL performs best in Lecture-
Bank and University even without pairwise features
and dependencies among learning objects. It tells
that HCLoG can effectively model the multiple and
complex relations among concepts and learning re-
sources to learn better concept representation. (3)
RefD can indeed measure the prerequisite relations

among concepts, and obtains a higher precision, but
a lower recall. (4) GAE and VGAE utilize GCN for
adjacency matrix reconstruction, but they perform
worse than CPRL. The reason is that CPRL utilizes
the heterogeneous concept learning object graph to
learn the concept representation, which can fully
utilize the complex relationships among concepts
and learning objects, while GAE and VGAE only
use the graph among concepts.

5.5 Ablation Study

In order to prove the effects of pairwise features
and LO dependencies, we conducted ablation ex-
periments on Textbook and MOOC datasets. The
results are shown in table 2

Dataset Metric CPRL CPRLf CPRLc

Textbook

DS
P 0.795 0.793 0.811
R 0.809 0.802 0.749
F1 0.802 0.797 0.779

PHY
P 0.778 0.779 0.778
R 0.798 0.799 0.716
F1 0.788 0.789 0.746

CAL
P 0.770 0.772 0.769
R 0.825 0.809 0.755
F1 0.797 0.790 0.762

MOOC

DSA
P 0.640 0.659 0.562
R 0.619 0.615 0.565
F1 0.630 0.636 0.563

ML
P 0.800 0.788 0.767
R 0.642 0.628 0.598
F1 0.712 0.699 0.672

Table 2: Ablation Study on CPRL. Row-wise best re-
sults are in bold. CPRLf and CPRLc are the models
which minimize Lc + λLf and Lc respectively.

As shown in Table 2, CPRL performs better than
CPRLf and CPRLc on most of the datasets, so
pairwise features and learning object dependencies
can both contribute to the performance. Besides,
even CPRLc obtains a better performance than the
baselines in Table 1, which proves the effectiveness
of the heterogeneous graph.

5.6 Effectiveness of Weak Supervision

In order to evaluate our weakly supervised prereq-
uisite relation learning approaches, we compared
our two variants CPRLlo and CPRLdp with CPR-
Recover (Liang et al., 2017) in Textbook dataset,
and the results are shown in Table 3.

From the table, we find that CPRLlo and
CPRLdp outperform CPR-Recover in all metric-
s, and CPRLdp achieves the best performance. It
proves that the knowledge of learning object de-
pendencies can be transferred to learn the concept
prerequisite relations through the concept learning
object graph. In addition, the data programming
with our designed label functions can generate help-
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Dataset Metric SVM LR RF NB RefD GAE VGAE PREREQ CPRL

Textbook

DS
P 0.818 0.852 0.755 0.481 0.920 0.446 0.434 0.226 0.795
R 0.632 0.590 0.685 0.897 0.244 0.900 0.570 0.369 0.809
F1 0.713 0.697 0.718 0.626 0.385 0.597 0.493 0.280 0.802

PHY
P 0.806 0.863 0.748 0.399 0.900 0.505 0.460 0.432 0.770
R 0.655 0.588 0.752 0.922 0.409 0.943 0.649 0.423 0.825
F1 0.723 0.699 0.750 0.557 0.562 0.657 0.538 0.427 0.797

CAL
P 0.839 0.860 0.746 0.404 0.950 0.436 0.414 0.391 0.778
R 0.637 0.570 0.715 0.995 0.302 0.900 0.558 0.506 0.798
F1 0.724 0.686 0.730 0.574 0.458 0.587 0.475 0.441 0.788

MOOC

DSA
P 0.705 0.808 0.344 0.613 0.920 0.294 0.269 0.492 0.641
R 0.624 0.168 0.715 0.696 0.252 0.715 0.657 0.462 0.619
F1 0.662 0.278 0.464 0.652 0.396 0.417 0.382 0.476 0.630

ML
P 0.668 0.748 0.375 0.577 0.784 0.293 0.266 0.448 0.800
R 0.577 0.27 0.669 0.623 0.188 0.733 0.647 0.592 0.642
F1 0.619 0.397 0.481 0.599 0.303 0.419 0.377 0.510 0.712

LectureBank
P 0.857 0.744 0.855 0.670 0.666 0.462 0.417 0.590 0.861
R 0.692 0.744 0.681 0.640 0.228 0.811 0.575 0.502 0.858
F1 0.766 0.744 0.758 0.655 0.339 0.589 0.484 0.543 0.860

University Course
P 0.796 0.595 0.739 0.478 0.919 0.450 0.470 0.468 0.689
R 0.635 0.546 0.480 0.649 0.415 0.886 0.694 0.916 0.760
F1 0.707 0.569 0.582 0.550 0.572 0.597 0.560 0.597 0.723

Table 1: The performance of CPRL on four datasets with different domains. Row-wise best results are in bold.
CPRL is the model which minimizes Lc + µLo + λLf , while the models for LectureBank and University Course
only minimize Lc since the LOs have no prerequisite relations in them and we cannot extract structural features.

Dataset Approach P R F1

Textbook

DS
CPR-Recover 0.317 0.577 0.409

CPRLlo 0.425 0.504 0.461
CPRLdp 0.570 0.926 0.706

PHY
CPR-Recover 0.291 0.609 0.394

CPRLlo 0.427 0.487 0.455
CPRLdp 0.503 0.856 0.634

CAL
CPR-Recover 0.447 0.624 0.521

CPRLlo 0.470 0.659 0.551
CPRLdp 0.517 0.803 0.629

Table 3: Comparison our weakly supervised prerequi-
site relation learning variants with CPR-Recover.

ful training data, and achieve comparable perfor-
mance with the supervised CPRL.

5.7 Verification of Domain Transfer Ability
In order to explore the transfer ability of our model
between different domains, we conducted an exper-
iment on Textbook dataset.

Specifically, for CPRL, we firstly trained the
model in one domain, and then used the model to
predict prerequisite relations between concepts in
another domain. While for CPRLdp, we obtained
the best thresholds such as θmaxLOrd and θminLOrd in LFs
in one domain and then used them to other domains.
The results are shown in Table 4

CPRL CPRLdp

DS PHY CAL DS PHY CAL
DS 0.802 0.393 0.219 0.706 0.621 0.587

PHY 0.640 0.797 0.430 0.692 0.634 0.616
CAL 0.520 0.438 0.788 0.658 0.633 0.629

Table 4: Domain transfer ability verification experi-
ments for CPRL and CPRLdp, where each row and col-
umn represent the source and target domain respective-
ly, and the values in the cells are F1-scores.

We observe that (1) F-scores drop severely in

CPRL, so we cannot simply transfer the model
across domains due to the difference among con-
cepts and LOs. (2) CPRLdp is more stable and can
be used in practice since we only need to label a
small amount of training data in one domain.

5.8 Effectiveness of Ensemble

Our approach can learn the concept prerequisite
relations from one learning object sequence, such
as a textbook. While the concepts in textbooks in
the same domain are basically the same, so the pre-
requisite relations among them can be aggregated.

Here, we used a simple majority voting strate-
gy for aggregation, and the results are shown in
Figure 6. From the table, we see a significant im-
provement for the ensemble results.
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Figure 6: The ensemble results which are aggregated
from six textbooks in each domain.

6 Related Work

6.1 Prerequisite Relation Learning

Learning prerequisite relations between concepts
has attracted much recent work, and can be classi-
fied into three categories: local statistical informa-
tion based approaches, recovery based approaches
and learning based approaches.
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As local statistical information, reference dis-
tance (Liang et al., 2015a) and cross-entropy (Gor-
don et al., 2016) were proposed to measure the con-
cept prerequisite relations. CPR-Recover (Liang
et al., 2017) is a recovery based approach, which
recovers prerequisite relations from course depen-
dencies. The learning based approaches are the
most popular. For example, Pan et al. (2017) pro-
posed contextual, structural and semantic features
for concept prerequisite relation classification. Roy
et al. (2019) applied the pairwise-link LDA model
to represent concept, and trained a Siamese network
to identify prerequisite relations. Li et al. (2019a)
trained variational graph autoencoders to predic-
t concept prerequisite relations. However, these
approaches didn’t model the mutiple and complex
relations among concepts and learning resources.
Meanwhile, they also need a large set of training
data, which is costly to obtain.In order to reduce the
amount of training data required, active learning
was investigated in (Liang et al., 2018) and (Liang
et al., 2019) for concept prerequisite learning.

6.2 Weakly Supervised Learning

One of the most significant bottlenecks for ma-
chine learning is the need for a big training data set.
Nowadays, it is very promising to use weakly su-
pervised learning techniques to reduce the amount
of human intervention needed. For example, dis-
tant supervision can produce noisy training data
by aligning unlabeled data with an external knowl-
edge base, e.g. relation extraction in (Smirnova
and Cudré-Mauroux, 2018). Crowdsourcing (Yuen
et al., 2011) and heuristic rules (Sa et al., 2016)
can also generate noisy training data.

However, these weakly supervised data is in-
complete, inexact and inaccurate, so it is important
to integrate multiple noisy labeling data to pro-
duce more accuracy data. Data programming (Rat-
ner et al., 2016) provides a simple and unifying
framework for the creation of training sets, which
expresses weak supervision strategies as labeling
functions, and then uses a generative model to de-
noise the labeling data. Snorkel4 (Ratner et al.,
2019a) is a system built around the data program-
ming paradigm for rapidly creating, modeling, and
managing training data. Several works have been
explored to use data programming for training data
creation. For example, SwellShark (Fries et al.,
2017) was proposed for quickly building biomed-

4https://www.snorkel.org/

ical named entity recognition taggers using lexi-
cons, heuristics, and other forms of weak supervi-
sion instead of hand-labeled data. GWASkb with
thousands of genotype-phenotype associations was
created by using Snorkel in (Kuleshov et al., 2019).
Snorkel was also used for chemical reaction rela-
tionship extraction (Mallory et al., 2020), discourse
structure learning (Badene et al., 2019) and medical
entity classification (Fries et al., 2020).

In addition, data programming was further im-
proved under different situations. For example,
MeTaL (Ratner et al., 2019b) was proposed for
modeling and integrating weak supervision sources
with different unknown accuracies, correlations,
and granularities. Cross-modal data programming
was proposed in (Dunnmon et al., 2020). Fly-
ingSquid (Fu et al., 2020) speeded up weak su-
pervision with triplet methods.

7 Conclusion

In this paper, we propose a novel concept
prerequisite relation learning approach, named
CPRL, which combines both concept representa-
tion learned from a heterogeneous graph and con-
cept pairwise features. Furthermore, we extend
CPRL under weakly supervised settings to make
our method more practical. The experiments on
four datasets show that our method achieves state-
of-the-art performance. In addition, we also prove
the effectiveness of our weakly supervised prereq-
uisite relation learning variants.

In future, we plan to design more effective label
functions or employ more reliable weakly super-
vised learning approaches (Li et al., 2019b; Guo
et al., 2019) to further improve the performance.
Moreover, we will also introduce concept prerequi-
site relations into curriculum planning and intelli-
gent tutoring applications, e.g. organizing learning
resources into a reasonable order and incorporat-
ing prerequisite relations into knowledge tracing
technologies.
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A Appendix

A.1 Datasets Statistics
We conducted experiments on four datasets with
different domains and the statistics are detailed in
Table 5.

A.2 Concept Pairwise Features
For MOOC dataset, we used the features as in
(Pan et al., 2017). While for Textbook dataset, we
also extract several pairwise features as in (Pan
et al., 2017), including Learning object reference
distance, Semantic Relatedness, Wikipedia refer-
ence distance (Wrd) and complexity level distance
(Cld).

Semantic Relatedness measures the relatedness
of two concepts in the semantic space, which can
be calculated by: sr(ci, cj) = 1

2(1 +
vci ·vcj

||vci ||·||vcj ||
),

where vci is the semantic vector of concept ci.
Wikipedia reference distance is defined based

on the structure of Wikipedia. Specifically, for a
concept ci, we can obtain a set of top M most
related concepts according to the semantic relat-
edness between two concepts, denoted as Rci .
Then, the Wikipedia reference weight can be de-

fined as: Wrw(ci, cj) =

∑
e∈Rci

Erw(e,cj)·sr(e,ci)∑
e∈Rci

sr(e,ci)
,

where Erw(e, ci) is a binary indicator, in which
Erw(e, ci) = 1 if the Wikipedia article of e refer-
s to any concept in Rci , and Erw(e, ci) = 0
otherwise. Thus, the Wikipedia reference dis-
tance is defined as: Wrd(ci, cj) = Wrw(cj , ci)−
Wrw(ci, cj).

Complexity level distance is defined based on
the observation that if a concept covers more chap-
ters in a textbook or it survives longer time in the
textbook, it is more likely to be a basic concept
rather than an advanced one. Besides, the larger
the difference between the distribution of two con-
cepts, the more likely they are to have a prerequisite
relationship. Therefore, we can measure complex-
ity level distance from two aspects. On the one
hand, CldFrequency(ci, cj) = ava(ci) − ava(cj),
where ava(ci) = |I(D,ci)|

|D| . On the other hand,
CldDistribution(ci, cj) = D(P (ci)||P (cj)) where
P (ci) means the distribution of concept i in D and
D(P (ci)||P (cj)) represents the KL Divergence be-
tween the distribution of concept i and concept
j.

Moreover, we also extract head matching feature
and ToC distance for concept pairs in Textbook
dataset. Head matching feature represents whether

two concepts have a common head or not, which
is obtained by suffix matching. Usually, it implies
the existence of prerequisite relation, e.g., tree and
binary tree. ToC distance measures the distance of
concepts in the table of contents in D.

A.3 Labeling Functions
We use the concept pairwise features mentioned
before as heuristics labeling functions, and the la-
beling functions used in Textbook dataset are listed
in Figure 7.

def 𝐿𝐿𝐿𝐿_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗):
if 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗 < 𝜃𝜃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚 return 1
elseif 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗 > 𝜃𝜃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 return 0
else return -1

def 𝐿𝐿𝐿𝐿_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗):
if 𝑐𝑐𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑗𝑗′𝑚𝑚 𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑚𝑚𝑚𝑚𝐿𝐿𝑆𝑆𝑠𝑠𝑠𝑠 return 1

else return -1 

def 𝐿𝐿𝐿𝐿_𝑊𝑊𝐿𝐿𝐿𝐿(𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗):
if 𝑊𝑊𝐿𝐿𝐿𝐿 𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗 < 𝜃𝜃𝑊𝑊𝐿𝐿𝐿𝐿

𝑚𝑚𝑖𝑖𝑚𝑚 return 1
elseif 𝑊𝑊𝐿𝐿𝐿𝐿 𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗 > 𝜃𝜃𝑊𝑊𝐿𝐿𝐿𝐿

𝑚𝑚𝑚𝑚𝑚𝑚 return 0
else return -1

def 𝐿𝐿𝐿𝐿_𝑇𝑇𝑇𝑇𝑇𝑇(𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗):
if 𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗 < 𝜃𝜃𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚 return 1
elseif 𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗 > 𝜃𝜃𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 return 0
else return -1

def 𝐿𝐿𝐿𝐿_𝑇𝑇𝐶𝐶𝐿𝐿_𝐿𝐿𝐿𝐿𝑚𝑚𝐹𝐹(𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗):
if 𝑇𝑇𝐶𝐶𝐿𝐿_𝐿𝐿𝐿𝐿𝑚𝑚𝐹𝐹 𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗 < 𝜃𝜃𝑇𝑇𝐶𝐶𝐿𝐿_𝐹𝐹𝐿𝐿𝐹𝐹𝐹𝐹

𝑚𝑚𝑖𝑖𝑚𝑚 return 1
elseif 𝑇𝑇𝐶𝐶𝐿𝐿_𝐿𝐿𝐿𝐿𝑚𝑚𝐹𝐹 𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗 > 𝜃𝜃𝑇𝑇𝐶𝐶𝐿𝐿_𝐹𝐹𝐿𝐿𝐹𝐹𝐹𝐹

𝑚𝑚𝑚𝑚𝑚𝑚 return 0
else return -1

def 𝐿𝐿𝐿𝐿_𝑇𝑇𝐶𝐶𝐿𝐿_𝐷𝐷𝑆𝑆𝑚𝑚𝑚𝑚(𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗):
if 𝑇𝑇𝐶𝐶𝐿𝐿_𝐷𝐷𝑆𝑆𝑚𝑚𝑚𝑚 𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗 < 𝜃𝜃𝑇𝑇𝐶𝐶𝐿𝐿_𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷

𝑚𝑚𝑖𝑖𝑚𝑚 return 1
elseif 𝑇𝑇𝐶𝐶𝐿𝐿_𝐷𝐷𝑆𝑆𝑚𝑚𝑚𝑚 𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗 > 𝜃𝜃𝑇𝑇𝐶𝐶𝐿𝐿_𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷

𝑚𝑚𝑚𝑚𝑚𝑚 return 0
else return -1

Figure 7: The labeling functions used in Textbook
dataset.

The optimal thresholds of the labeling functions
can be obtained by grid search with a small amount
of training data. Some empirical values are given
in Table 6 for the Textbook dataset.

Wrd LOrd ToC CldFreq CldDist

θmax
Feature 1.3 -0.2 0.2 0.4 0.3
θmin
Feature -1.3 -0.8 -0.2 -0.8 -0.5

Table 6: The thresholds of label functions for the Text-
book dataset.

A.4 Influence of Parameters
In order to determine the parameters λ and µ in
the loss function, we conducted the experiments
on Textbook dataset in Physics domain with dif-
ferent λs and µs, and Figure 8 shows the results.
Therefore, we chose λ = 0.2 and µ = 0.1 in our
experiments, which made the best performance.

0 0.1 0.2 0.5 1

0 0.778 0.783 0.781 0.792 0.783

0.1 0.789 0.793 0.789 0.789 0.785

0.2 0.796 0.797 0.786 0.779 0.782

0.5 0.790 0.784 0.787 0.790 0.787

1 0.783 0.786 0.786 0.785 0.784

µ

λ

Figure 8: The F-score of CPRL with different λs and
µs on Textbook dataset in Physics domain.

In addition, we also evaluated our approach with
different number of GCN layers (L), and the result
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Dataset # Learning Object # Concepts # Pairs(+) # Pairs(-) # Tokens per Learning Object

Textbook
DS 102 89 449 673 1861

CAL 134 84 439 658 1608
PHY 113 139 623 934 3745

MOOC DSA 148 175 354 1239 5285
ML 271 216 1446 5061 1893

LectureBank 923 208 913 1369 3240
University Course 654 407 1007 1510 60

Table 5: Statistics of the Datasets. In University Course, each course is described only using its brief introduction,
so the average number of tokens in the learning objects is limited.

is shown in Figure 9. From the figure, we can see
that the F-score increases gradually and then drops
finally. Thus, we chose L = 2 in our experiments.
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Figure 9: The F-score of CPRL with different Ls on
Textbook dataset in different domains.

A.5 Impact of Training Set Size
To compare with the previous research, we used
90% positive samples of LectureBank and 70% pos-
itive samples of other datasets to train the model.

In order to further explore the ability of our mod-
el, we train our model with with different number
of training data, and show the result in Physics
domain in the Textbook dataset in Figure 10.

It is shown that, when we use more positive sam-
ples to train the model, it can reach a higher F1-
Score. Besides, it could outperform the baselines
with only about 30% positive samples, which im-
plies our model’s ability to fully utilize the training
samples.

Figure 10: The impact of the size of training set.


