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Abstract

Causal inference is the process of captur-

ing cause-effect relationship among variables.

Most existing works focus on dealing with

structured data, while mining causal relation-

ship among factors from unstructured data,

like text, has been less examined, but is of

great importance, especially in the legal do-

main. In this paper, we propose a novel

Graph-based Causal Inference (GCI) frame-

work, which builds causal graphs from fact de-

scriptions without much human involvement

and enables causal inference to facilitate le-

gal practitioners to make proper decisions. We

evaluate the framework on a challenging simi-
lar charge disambiguation task. Experimental

results show that GCI can capture the nuance

from fact descriptions among multiple confus-

ing charges and provide explainable discrimi-

nation, especially in few-shot settings. We also

observe that the causal knowledge contained in

GCI can be effectively injected into powerful

neural networks for better performance and in-

terpretability. Code and data are available at

https://github.com/xxxiaol/GCI/.

1 Introduction

Causal inference is the process of exploring how

changes on variable T affect another variable Y .

Here we call T and Y as treatment and outcome,

respectively, and the changes on T are called in-
tervention. In other words, the process of drawing

a conclusion about whether and how Y changes

when intervening on T is called causal inference.

Most research in causal inference is devoted to

analyzing structured data. Take the research ques-

tion how smoking causes lung cancer (Pearl and

Mackenzie, 2018) as an example. Smoking, lung
cancer, together with distractors like age are ex-

tracted from structured data, like electronic health

records, and considered as factors. Usually, such
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Figure 1: An example of generated causal graph for the

charge fraud. Colored words are matched between

the exemplified fact description and the graph.

studies properly organize those factors into human-

designed structures, e.g., a causal directed acyclic

graph (Wright, 1921) with factors {smoking, age,

lung cancer} as nodes and causal relations {smok-
ing → lung cancer, age → lung cancer} as edges,

and perform inference on such structures.

Recent works attempt to integrate text infor-

mation into causal inference (Egami et al., 2018;

Veitch et al., 2019; Yao et al., 2019; Keith et al.,

2020), but they mainly treat the text as a single

node in the causal graph, which is relatively coarse-

grained. For instance, Yao et al. (2019) investi-

gate how the complaints from consumers affect the

company’s responses (admission or denial). They

regard the entire text of complaint as a treatment,

without looking into different aspects of the text,

like the events that consumers complained about

and the compensation that consumers requested.

Actually, discovering causal relationship inside
unstructured and high-dimensional data, like text,

is also beneficial or even crucial for scenarios in-

volving reading comprehensive text and making

decisions accordingly. For instance, when a legal

AI system assists judges to deal with complicated

cases that involve multiple parties and complex

events, causal inference could help to figure out

the exact distinguishable elements that are crucial

for fair and impartial judgements. As shown in

Figure 1, if the system can automatically spot two
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essential key points, 1) the deceitful acts of the

defendant, and 2) obtaining properties from the vic-

tim, from the unstructured fact descriptions, then

the prediction fraud can be more convincing and

helpful, rather than a label from a black box. In

practice, we would expect a legal AI system to

provide human-readable and sound explanations

to help the court make the right decisions. It is

worthwhile especially for underdeveloped areas,

where such techniques could help the judges of

rural areas with more trustworthy references from

previous judgements. This would further help to

maintain the principle of treating like cases alike
in many continental law systems. A main chal-

lenge in judicial practice is to distinguish between

similar charges, we thus propose a new task simi-
lar charge disambiguation as a testbed. Cases of

similar charges often share similar context, and a

system is expected to mine the nuance of reasoning

process from the text.

However, performing causal inference on fact

descriptions of criminal cases is not trivial at all.

It poses the following challenges. 1) Without ex-

pert involvement, it is not easy to extract factors

that are key to prediction, and organize them in

a reasonable form that can both facilitate the in-

ference process and tolerate noise. For example,

automatically extracted elements may not cover

all the key points in the textual descriptions, and

automatically built graphs may contain unreliable

edges. 2) It is not easy to benefit from both tradi-

tional causal inference models and modern neural

architectures.

In this paper, we propose a novel Graph-based

Causal Inference (GCI) framework, which could

effectively apply causal inference to legal text anal-

ysis. GCI first recognizes key factors by extracting

keywords from the fact descriptions and clustering

similar ones into groups as individual nodes. Then

we build causal graphs on these nodes with a causal

discovery algorithm that can tolerate unobserved

variables, reducing the impact of missing elements.

We further estimate the causal strength of each

edge, to weaken unreliable edges as much as pos-

sible, and apply the refined graph to help decision

making. Experimental results show that our GCI
framework can induce reasonable causal graphs

and capture the nuance from plain text for legal

applications, especially with few training data.

We also explore the potential of GCI by inte-

grating the captured causal knowledge into neu-

ral network (NN) models. We propose two ap-

proaches: 1) imposing the causal strength con-

straints to the NN’s attention weights; 2) apply-

ing recurrent neural networks on the causal chains

extracted from our causal graphs. Experiments in-

dicate that our methods can successfully inject the

extracted causal knowledge and thus enhance the

NN models. We also show that integrating GCI
helps to mitigate the underlying bias in data to-

wards the final prediction.

Our main contributions are as follows: 1) We

propose a novel graph-based causal inference

(GCI) framework to apply causal inference to un-

structured text, without much human involvement.

2) We explore to equip popular neural network

models with our GCI, by encouraging neural mod-

els to learn from causal knowledge derived from

GCI. 3) We evaluate our methods on a legal text

analysis task, similar charge disambiguation, and

experimental results show that our GCI can capture

the nuance from plain fact descriptions, and further

help improve neural models with interpretability.

2 Background

Two types of questions are typically related to

causality. The first is whether there is causal re-

lationship between a set of variables, and the sec-

ond question is when two variables T and Y are

causally related, how much would Y change if we

change the value of T . Both of them are discussed

in our GCI framework, and we first briefly intro-

duce the key concepts.

2.1 Causal Discovery

Causal discovery corresponds to the first type of

questions. From the view of graph, causal discov-

ery requires models to infer causal graphs from ob-

servational data. In our GCI framework, we lever-

age Greedy Fast Causal Inference (GFCI) algo-

rithm (Ogarrio et al., 2016) to implement causal dis-

covery. GFCI combines score-based and constraint-

based algorithms. It merges the best of both worlds,

performing well like score-based methods, and not

making too unrealistic assumptions like constraint-

based ones. Specifically, GFCI does not rely on the

assumption of no latent confounders, thus is suit-

able in our situation. More details of GFCI algo-

rithm and its advantage is provided in Appendix A.

The output of GFCI is a graphical object called

Partial Ancestral Graph (PAG). PAG is a mixed

graph containing the features common to all Di-
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Edge Meaning

A → B A causes B.
A ↔ B There is an unobserved confounder of A and B.
A ◦→ B Either A causes B, or unobserved confounder.
A ◦−◦ B Either A causes B, or B causes A, or unobserved confounder.

Table 1: Summary of edge types in PAG.

rected Acyclic Graphs (DAGs) that represent the

same conditional independence relationship over

the measured variables. In other words, PAG entails

all the possibilities of valid DAGs concerning the

original data. In causal inference settings (Zhang,

2008), four types of edges are provided in PAG, as

listed in Table 1. With PAG, we are able to con-

sider unobserved confounders and the uncertainty

in causal inference.

2.2 Causal Strength Estimation

Causal strength estimation deals with the second

type of questions. It is the very task to quantify

the causal strength of each learned relation, i.e.,

whether the relation is strong or weak. To precisely

estimate causal strength, confounders need to be

kept the same. Confounder is a variable causally

influencing both treatment T and outcome Y . Take

the example of smoking, lung cancer and age in

Section 1. Here we study if there is causal relation-

ship between smoking (T ) and lung cancer (Y ),

and age is a confounder C. It is straightforward

to compare the proportion of lung cancer among

smokers and non-smokers. However, age influ-

ences both smoking and lung cancer. Older people

are more likely to smoke. They also have a much

higher risk of suffering from cancer. If we do not

consider the value of age, its influence to lung can-
cer will be regarded as smoking’s influence, thus

wrongly amplify the causal effect of smoking to

lung cancer.

In our GCI framework, we apply Average Treat-
ment Effect (ATE) (Holland, 1986) as a measure

of causal strength. All variables are binary in our

work. So given an edge T → Y , we quantify how

the outcome Y is expected to change if we modify

the treatment T from 0 to 1:

ψT,Y = E[Y | do(T = 1)]− E[Y | do(T = 0)],
(1)

where E means expectation, and the do-calculus

do(T = 1) indicates intervention on T , setting its

value to 1.

We utilize the Propensity Score Matching
(PSM) method to estimate ATE. PSM finds the

pairs of comparable samples with the most simi-

lar propensity scores, where each pair consists of

one sample in the treated group and one in the un-

treated. Given the great similarity between the

two samples, we could make a direct compari-

son between them. Specifically, propensity score

L(z) = P (T = 1 | Z = z) is the probability of

treatment being assigned to 1 given a set of ob-

served confounders z. As T is binary, we have

T ⊥⊥ Z | L (⊥⊥ means independence). So matching

on propensity scores equals matching on the full

set of confounders.

3 Graph-based Causal Inference
Framework

Our graph-based causal inference (GCI) frame-

work consists of three parts, constructing the causal

graph, estimating causal strength on it, and making

decisions. Figure 2 shows the overall architecture.

3.1 Task Definition
We first define the similar charge disambiguation
task. Given the fact descriptions of criminal cases

D = {d1, d2, . . . , dN}, a system is expected to

classify each case into one charge from the similar

charge set C = {c1, c2, . . . , cM}.

3.2 Causal Graph Construction
Extracting Factors. To prepare nodes for the

causal graph, we calculate the importance of word

wj for charge ci using YAKE (Campos et al., 2020).

We enhance YAKE with inverse document fre-

quency (Jones, 1972) to extract more discriminative

words of each charge.

To discriminate the similar charges, we select

p words with the highest importance scores for

each charge, cluster them into q classes to merge

similar keywords. The q classes together with the

M charges form the nodes of the causal graph. All

these factors are binary. When the graph is applied

to a case, each factor is of value 1 if it exists in

this case, and 0 if not. Unlike factors extracted by

experts, automatically extracted keywords may be

incomplete, resulting in unobserved confounders

in causal discovery.

Learning Causal Relationship. The next step is

to build edges for the graph, in other words, dis-

cover the causal relationship between different fac-

tors. To learn causal relations and tackle the unob-

served confounder problem, we use GFCI (Ogarrio

et al., 2016), which does not rely on the assumption
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Figure 2: Overall architecture of GCI. In the Extract Factors phase, solid circles indicate that these factors exist

in this case, while hollow circles mean the opposite. For the nodes of causal graphs, A, B, C, and D denote the

key points contributing to prediction, while Y1 and Y2 indicate the charges to discriminate. Four types of edges →,

↔, ◦→, and ◦−◦ exist in the PAG in the Learn Causal Relationship phase, and they are converted to → edges in

the sampled graphs. In the rightmost phase, shaded factors are matched between fact descriptions of cases and the

graph.

of no unobserved confounders. As mentioned in

Section 2, the output of GFCI is a PAG. Appendix

C gives an example of a generated PAG in detail.

We further introduce constraints to filter noisy

edges. First, as the judgement is made based on the

fact description, we do not allow edges from charge

nodes to other ones, e.g., an edge from fraud to

lie is prohibited. Second, given that causes usu-

ally appear before effects in time (Black, 1956),

and fact descriptions in legal text are often written

in the temporal order of events, we thus consider

the chronological order of descriptions as temporal

constraints to filter noisy edges. If factor A appears

after B in most cases, we will not allow the edge

from A to B. Note that this constraint does not im-

ply there is an edge from B to A, as chronological

order is not a sufficient condition of causality.

Sampling Causal Graphs. PAG contains uncer-

tain relations shown in Table 1, which leaves chal-

lenges for quantification and further application.

So we sample Q causal graphs from PAG. Among

the four edge types, → and ↔ are clear: in each

sampled graph, → edges are retained and ↔ edges

are removed (because they do not indicate causal re-

lations between the two nodes). For ◦→ edges, they

have two possible choices: being kept (cause) and

being removed (unobserved confounder). In the

absence of true possibility, we simply keep an edge

with 1/2 probability, and remove it with another

1/2. And for ◦−◦ edges, we give 1/3 probability for

→, ←, and no edge, respectively. The quality of

each sampled graph Gq is measured by its fitness

with data X, where we use the Bayesian informa-

tion criterion BIC(Gq,X) to estimate (Schwarz

et al., 1978).

3.3 Strength Estimation on Causal Graphs

As the resulting graphs are noisy in nature, we

estimate the strength of the learned causal relations

to refine a sampled causal graph. We assign high

strength to edges with strong causal effect, and

near-zero strength to edges that do not indicate

causal relations or with weak effect. We regard the

Average Treatment Effect ψG
T,Y (ATE, Section 2.2)

as the strength of T → Y in graph G, and utilize

the Propensity Score Matching (PSM, Section 2.2)

to measure it:

ψ̂G
T,Y = [

∑

i:ti=1

(yi− yj)+
∑

i:ti=0

(yj − yi)]/N, (2)

where j = argmin
k:tk �=ti

|L(zi)−L(zk)| means the most

similar instance in the opposite group of i, and

ti, yi, zi are the value of treatment, outcome and

confounders of instance i, respectively.

3.4 Making Decisions

When applying the sampled causal graphs to the

similar charge disambiguation task, we simply ex-

tract factors and map the case description with the

graph accordingly, and decide which charge in C

is more appropriate to this case. Firstly, we com-

pute the overall causal strength of each factor Tj to

Yi among the Q sampled causal graphs, where Yi
represents whether charge ci is committed:

ψ̃Tj ,Yi =

Q∑

q=1

BIC(Gq,X)× ψ̂
Gq

Tj ,Yi
, (3)
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where ψ̂
Gq

Tj ,Yi
is the measured causal strength in Gq,

and is 0 if edge Tj → Yi does not exist in Gq.

For each case, we then map the text with the

graphs, and calculate scores for each charge:

S(Yi) =
∑

Tj∈Tr(Yi)

ψ̃Tj ,Yi×τ(Tj), i ∈ {1, . . . ,M},

(4)

where τ(Tj) is a dummy variable indicating the

presence of Tj in this case, and Tr(Yi) is the set

of treatments of Yi (from the view of graph, the

nodes pointing to Yi). The calculated scores are fed

into a random forest classifier (Ho, 1995) to learn

thresholds between the charges. More advanced

classifiers can also be used.

4 Integration of Causal Analysis and
Neural Networks

Neural networks (NN) are considered to be good

at exploring large volumes of textual data. This

motivates us to integrate the causal framework with

NN, to benefit each other. Here we propose two

integration methods as shown in Figure 3.

4.1 Imposing Strength Constraint

First, we inject the estimated causal strength to

constrain the attention weights of a Bi-LSTM

with attention model (Zhou et al., 2016). A

Bi-LSTM layer is first applied to the fact de-

scriptions to obtain contextual embeddings H =
{h1,h2, . . . ,hn},hi ∈ R

b0 , where b0 is the di-

mension of embeddings. Then, an attention layer

assigns different weights {a1, a2, . . . , an} to each

word, and sums the words up according to the

weights to build a text embedding v:

ai =
exp(qT · hi)∑n

k=1 exp(q
T · hk)

,v =

n∑

i=1

ai × hi, (5)

where q ∈ R
b0 is a learnable query vector. Finally,

we apply two fully connected layers to the text

embedding v, and form the prediction vector rcons.

Besides a cross-entropy loss Lcross on rcons, we

introduce an auxiliary loss Lcons to guide the atten-

tion module with the causal strength learned from

GCI. Given the golden label cj , for each word wi

which belongs to the factor f , ψ̃Tf ,Yj is the corre-

sponding causal strength, and gi is the normalized

strength over the whole sequence. Lcons is set to

make the attention weights close to the normalized

LSTM

A. Impose Strength Constraints

Strength on YY

Weighted 
Sum

Find Causal 
Chains

B. Leverage Causal Chains

...
...

Chain 
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Labeled 
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Figure 3: Two ways of integrating causal analysis and

neural networks.

strength:

Lcons =
n∑

i=1

(ai − gi)
2,

L = Lcross + αLcons.

(6)

Note that in the validation and testing stages, the

inputs do not contain any strength constraint and

golden charge information. Therefore, we select

the epoch with the least cross-entropy loss in the

validation stage to evaluate on the test set.

4.2 Leveraging Causal Chains
Causal chains are another type of knowledge that

can be captured from causal graphs. In the le-

gal scenario, causal chains depict the process of

committing crimes. They can also be treated as

the summarization of cases or behavioural pat-

terns for each charge. Therefore, the second ap-

proach is to leverage the causal chains directly, as

the chains may contain valuable information for

judgement. For a given text, we extract factors

and traverse all causal chains composed by the fac-

tors from the sampled causal graphs, Chains =
{chain1, chain2, . . . , chainm}. In this task, we

only consider chains ending up with treatments of

charges, as they are more relevant with the judge-

ment. An LSTM layer is applied to each chain, and

all the chains are pooled to build case representa-

tion c ∈ R
b0 :

chi =

li∑

j=1

(LSTM(chaini)j),

c = MaxPooling(BIC(Gq,X)× chi),

1 ≤ i ≤ m, chaini ∈ Gq,

(7)

where li indicates the length of chaini. The case

representation c is then fed to two fully connected

layers to make the prediction rchain, and a cross-

entropy loss is used to optimize the model.
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Charge Sets Charges #Cases

Personal Injury
Intentional Injury & Murder & 6377 / 2282 /

Involuntary Manslaughter 1989

Violent Acquisition
Robbery & Seizure & 5020 / 2113 /

Kidnapping 622

F&E Fraud & Extortion 3536 / 2149

E&MPF
Embezzlement &

2391 / 1998
Misappropriation of Public Funds

AP&DD
Abuse of Power &

1950 / 1938
Dereliction of Duty

Table 2: Summary of the similar charge sets.

5 Experiments and Evaluation

5.1 Experimental Setup

Dataset. For the similar charge disambigua-

tion task, we pick five similar charge sets from

the Criminal Law of the People’s Republic of
China (Congress, 2017), which are hard to dis-

criminate in practice (Ouyang et al., 1999), and

select the corresponding fact descriptions from the

Chinese AI and Law Challenge (CAIL2018) (Xiao

et al., 2018). Detailed statistics of the charge sets

are given in Table 2. Note we filter out the cases

whose judgements include multiple charges from

one charge set. The fact descriptions in our dataset

are in Chinese.

Our Models. We evaluate our graph-based

causal inference (GCI) framework as described in

Section 3, and two models integrating GCI with

NN (Bi-LSTM+Att+Cons and CausalChain) as de-

scribed in Section 4.

Comparison Models. To study the effect of

causal relationship captured by GCI, we imple-

ment a variant called GCI-co, which is built upon a

correlation-based graph rather than our discovered

causal graph. In detail, we compute the Pearson

correlation coefficient φ for every two factors, and

draw an edge if φ > 0.5. The direction of the edge

is from the factor that appears earlier in the text

more often, to the other. Then we compare GCI
and two integration methods with NN baselines,

including LSTM, Bi-LSTM and Bi-LSTM+Att. Bi-
LSTM+Att is a common backbone of legal judge-

ment prediction models, while we do not add multi-

task learning (Luo et al., 2017) and expert knowl-

edge (Xu et al., 2020) for simplicity. Since the

prior knowledge learned from pre-trained models

may result in unfair comparison, we do not choose

the models such as BERT (Devlin et al., 2018) as

baselines and backbones to eliminate the influence.

Previous works integrating text into causal infer-

ence are not able to find causal relationships inside

text, so we do not take them into comparison.

We select a set of training ratios, 1%, 5%, 10%,

30%, and 50%, to study how the performance gap

changes along with different training data avail-

able. For each setting, we run the experiments on

three random seeds and report the average accuracy

(Acc) and macro-F1 (F1). More details about base-

lines, parameter selection, and training process are

in Appendix B.

5.2 Main Results

Table 3 reports the charge disambiguation perfor-

mance of our models and comparison models.

Causal Graph vs. Correlation-based Graph.
GCI outperforms GCI-co by 4.5% on average Acc,

and 9.8% on average F1, indicating the graph con-

structed by mining causal relations better captures

the relationship between charges and factors.

Causal Inference vs. Neural Networks. Com-

paring GCI with NN baselines LSTM, Bi-LSTM
and Bi-LSTM+Att, we observe in few-shot settings

(1%, 5%), GCI outperforms NNs by about 10% on

average, since NNs tend to underfit in few-shot set-

tings. However, with the increase of training data,

the performance gap becomes narrower and con-

sequently, NNs outperform GCI in several cases.

Compared with GCI, NNs have the advantage of

learning from large amounts of unstructured data.

Adding Strength Constraints. We can see that

Bi-LSTM+Att+Cons outperforms Bi-LSTM+Att by

around 1-5%. The performance gap is much larger

in few-shot settings. This suggests that our esti-

mated causal strength is helpful for attention-based

models to capture the key information in the text.

Causal Chains vs. Whole Text. Both

CausalChain and LSTM are a straightfor-

ward application of unidirectional LSTM, but

over different texts, one for our extracted causal

chains and the other for the whole fact description.

We find CausalChain outperforms LSTM by

8.2% on average Acc and 11.7% on average

F1. The difference shows that causal chains

contain condensed key information that contributes

to the judgement, while the whole description

may contain far more irrelevant information that

may disturb the prediction. We also conduct

experiments on combining causal chains and the
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Models Personal Violent F&E E&MPF AP&DD AverageInjury Acquisition

LSTM

1% 60.94 / 37.91 58.48 / 29.33 63.91 / 47.00 53.56 / 39.84 52.08 / 46.13 57.79 / 40.04
5% 61.97 / 44.88 67.09 / 35.86 71.60 / 68.68 59.89 / 56.88 54.12 / 48.53 62.93 / 50.97
10% 76.45 / 67.81 65.64 / 47.62 82.14 / 80.74 70.21 / 70.00 55.46 / 51.29 69.98 / 63.49
30% 85.37 / 81.27 74.43 / 66.05 88.10 / 87.33 71.60 / 70.82 65.61 / 65.19 77.02 / 74.13
50% 85.67 / 83.02 80.10 / 72.27 90.04 / 89.06 75.59 / 75.46 69.65 / 69.62 80.21 / 77.89

Bi-LSTM

1% 62.29 / 40.81 53.86 / 33.25 62.95 / 43.27 54.54 / 41.91 48.98 / 37.84 56.52 / 39.42
5% 74.00 / 69.52 65.18 / 38.99 60.34 / 56.96 61.88 / 61.63 51.77 / 46.23 62.63 / 54.66
10% 76.66 / 71.86 67.10 / 46.07 85.31 / 84.37 60.08 / 53.34 60.20 / 57.95 69.87 / 62.72
30% 85.46 / 82.53 75.30 / 64.12 87.57 / 86.58 70.45 / 69.64 65.45 / 65.12 76.85 / 73.60
50% 87.19 / 85.01 78.43 / 69.94 90.43 / 89.83 76.08 / 75.78 71.12 / 70.50 80.65 / 78.21

GCI

1% 69.54 / 49.77 57.08 / 42.55 82.81∗ / 82.56∗ 74.65∗ / 70.22∗ 62.47 / 61.72 69.31∗ / 61.36∗

5% 81.19 / 75.58 69.70 / 60.39† 88.25 / 87.24† 83.27† / 83.06† 78.09† / 77.95† 80.10† / 76.84†

10% 80.33 / 74.50 74.06 / 67.31§ 87.97 / 87.51 85.23§ / 84.62§ 78.36§ / 78.31§ 81.19§ / 78.45§

30% 84.83 / 80.10 75.99 / 70.64 89.31 / 88.39 88.55‡ / 88.21‡ 80.82 / 80.56‡ 83.90‡ / 81.58‡

50% 85.72 / 81.62 76.31 / 71.45 90.41 / 89.14 89.01� / 88.63� 81.01� / 80.90� 84.49 / 82.35

GCI-co

1% 67.49 / 44.43 63.70∗ / 34.64 75.72 / 67.60 69.08 / 67.20 64.93∗ / 64.41∗ 68.19 / 55.66
5% 76.70 / 63.94 67.65 / 34.35 86.63 / 85.81 82.23 / 81.86 73.94 / 73.77 77.43 / 67.95
10% 68.05 / 45.37 69.26 / 46.39 85.62 / 84.41 81.23 / 79.64 74.21 / 74.05 75.67 / 65.97
30% 77.31 / 63.45 70.42 / 50.94 81.44 / 80.54 85.71 / 85.20 74.43 / 74.28 77.86 / 70.88
50% 79.21 / 69.37 70.38 / 50.78 79.30 / 77.58 84.39 / 83.72 74.16 / 73.99 77.49 / 71.09

CausalChain

1% 73.20∗ / 60.31∗ 63.60 / 44.02∗ 68.01 / 52.93 66.97 / 56.66 63.13 / 62.30 66.98 / 55.24

5% 81.99† / 76.03† 70.57 / 59.85 88.64† / 87.21 75.13 / 74.74 71.75 / 70.38 77.62 / 73.64
10% 81.21 / 74.71 73.50 / 66.66 87.59 / 86.36 79.75 / 79.45 74.43 / 74.11 79.30 / 76.26

30% 85.61 / 81.00 74.93 / 67.30 89.10 / 88.19 81.63 / 81.25 80.90‡ / 80.50 82.43 / 79.65
50% 86.41 / 83.11 75.66 / 68.47 90.45 / 89.21 81.25 / 80.09 80.03 / 79.89 82.76 / 80.16

Bi-LSTM+Att

1% 62.16 / 41.70 58.21 / 32.97 67.99 / 62.80 57.90 / 50.67 53.20 / 41.78 59.89 / 45.99
5% 78.29 / 72.81 67.50 / 50.68 85.30 / 84.28 61.86 / 55.38 58.76 / 53.03 70.34 / 63.23
10% 81.51 / 78.36 67.97 / 58.26 88.07 / 87.33 75.38 / 74.86 58.82 / 55.82 74.35 / 70.93
30% 86.07 / 83.49 80.47 / 72.55 88.97 / 88.41 81.53 / 81.14 72.84 / 72.65 81.98 / 79.65
50% 87.25 / 85.38 82.27 / 74.15 91.56 / 91.05 82.29 / 82.11 73.70 / 73.65 83.41 / 81.27

Bi-LSTM+Att
+Cons

1% 70.12 / 59.46 54.29 / 40.34 78.25 / 76.80 61.03 / 60.62 53.84 / 44.93 63.51 / 56.43

5% 79.07 / 75.89 73.09† / 56.84 86.80 / 86.35 66.86 / 59.89 72.27 / 72.18 75.62 / 70.23

10% 83.33§ / 79.70§ 76.26§ / 64.62 88.76§ / 88.02§ 80.03 / 79.64 73.53 / 73.48 80.38 / 77.09

30% 86.55‡ / 83.85‡ 81.48‡ / 73.15‡ 89.80‡ / 89.35‡ 81.82 / 81.31 79.46 / 79.35 83.82 / 81.40

50% 88.31� / 86.18� 82.72� / 76.03� 92.05� / 91.55� 83.02 / 82.69 80.72 / 80.64 85.36� / 83.42�

Table 3: Performance on similar charge disambiguation. The first number is Acc and the second number is F1.

Highest results are in bold, and different symbols indicate different training ratios.

Figure 4: An example of sensitivity analysis for treat-

ments of extortion in the causal graph of F&E.

whole plain text, but simply concatenating them

does not work well since the whole text may

introduce noise, and better integration methods are

needed, which we leave for future work.

6 Analysis

6.1 Quality of Causal Graphs
To analyze the robustness of the causal discovery

process, we apply sensitivity analysis on the causal

graphs. In detail, we make disturbance to the orig-

inal causal relations, and examine the sensitivity

of causal effect towards the violations. Follow-

ing Kiciman and Sharma (2018), we use three re-

futers for examination: 1) Random Confounder,

a new confounder with random value is added to

the graph, and ideally, the causal strength should

remain the same as before. 2) Placebo Treatment,
the value of a treatment is replaced by a random

value, so the treatment becomes a placebo, and the

strength should be zero. 3) Subset of Data, we use

a subset of cases to recalculate the strength. Ideally,

the strength estimation will not vary significantly.

We take a sampled causal graph of F&E (Fraud

& Extortion) as an example, and exhibit the re-

futers on the treatments of charge extortion in

Figure 4. Causal strength is almost the same as be-

fore after Random Confounder and Subset of Data
refutation; and turns to nearly zero after Placebo
Treatment. The results show that our graph con-

struction method is robust against disturbance.

6.2 Causal Chains in Graph

Causal chains manifest how effective GCI is in

terms of inducing common patterns of suspect’s
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Figure 5: Causal chains in Personal Injury’s graph.

behaviours. It is helpful for people to better under-

stand the core part of legal cases. Here we select

the causal graph of Personal Injury (Intentional In-

jury & Murder & Involuntary Manslaughter) and

showcase several causal chains underlying the text.

As shown in Figure 5, the chains depict common

patterns of these charges, from the initial causes,

to the final criminal behaviour. More examples are

provided in Appendix D.

Now the question is how the graph structures

help to discriminate similar charges. Here we ana-

lyze the nuance between the causal chains of two

similar charges E&MPF (Embezzlement & Misap-

propriation of Public Funds). For both charges, the

cases often first give the background that someone

held a certain position of authority, thus had power.

Then both kinds of cases describe that the person

illegally obtained a large amount of money by uti-

lizing his power. While the cases in E&MPF share

very similar context, there exists nuance between

them: embezzlement emphasizes that someone pri-

vately and illegally possesses the bulk of money,

while misappropriation of public funds emphasizes

that someone would temporally use the money for

a certain purpose. By observing the causal chains

of two charges, GCI could capture the slight dif-

ference well: for embezzlement, the causal chains

tend to be work / take charge of → take advantage
of (position/power); for misappropriation of pub-

lic funds, the causal chains tend to be take charge
of → take advantage of (position/power) → mis-
appropriate → profit. The difference between the

former and latter chains is whether the person had

subsequent behaviour (e.g., using the money for

purposes like making profits). We could observe

that the difference in causal chains accords with

the definitions of the two charges.

6.3 Effect of Integrating Causal Strength
with Attention

Following Lei et al. (2017), we conduct human

evaluation on words accorded with high attention

Charge Sets Bi-LSTM+Att Bi-LSTM+Att+Cons

Personal Injury 3.03 3.17
Violent Acquisition 3.18 3.74
F&E 3.34 3.65
E&MPF 3.13 3.27
AP&DD 3.08 3.13

Table 4: Results of human evaluation. Better results are

in bold.

weights and compare the evaluation results of stan-

dard (Bi-LSTM+Att) and constraint-based attention

models (Bi-LSTM+Att+Cons).

For each set of charges, we train both models

with 10% data, and randomly select 30 cases that

both models predict correctly. For the total 150

cases, we showcase content, charge names, atten-

tion weights above 0.05, and corresponding words.

Each participant is asked to score from 1 to 5 for

the extent of how beneficial the extracted keywords

are to disambiguation. A higher score means that

the attention weights indeed capture the keywords.

Each case is assigned to at least four participants.

Results are shown in Table 4. We observe that the

constraint-based model is better at explanation than

normal attention-based models on all five charge

groups. Take Violent Acquisition as an example.

Although the cases are predicted correctly by Bi-
LSTM+Att, the model tends to attend to words bag,

RMB and value, which frequently occur but can-

not be treated as clues for judgement. Instead, Bi-
LSTM+Att+Cons values factors such as grab, rob
and hold, which are more helpful for judgement.

7 Related Works

Causal Inference with Text. Recently, a few

works try to take text into account when performing

causal inference. Landeiro and Culotta (2016) in-

troduce causal inference to text classification, and

manage to remove bias from certain out-of-text con-

founders. Wood-Doughty et al. (2018) use text as

a supplement of missing data and measurement er-

ror for the causal graphs constructed by structured

data. Egami et al. (2018) focus on mapping text to a

low-dimensional representation of the treatment or

outcome. Veitch et al. (2019) and Yao et al. (2019)

treat text as confounder and covariate, which help

to make causal estimation more accurate. These

works all build causal graphs manually, and regard

text as a whole to be one of the factors. In contrast,

we set our sights on text containing rich causal in-

formation in itself. Paul (2017) looks into text by

computing propensity score for each word, but only
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focuses on causal relationship between words and

sentiment. We instead take a causal graph perspec-

tive, discover and utilize causal relationship inside

text to perform reasoning.

Neural Networks for Causal Discovery. Re-

cently, researchers attempt to apply neural net-

works to causal discovery (Ponti and Korhonen,

2017; Alvarez-Melis and Jaakkola, 2017; Ning

et al., 2018; Gao et al., 2019; Weber et al.,

2020). However, Alvarez-Melis and Jaakkola

(2017) model causal relationship by correlation,

which may introduce bias into causal inference;

Ning et al. (2018) and Gao et al. (2019) merely

focus on capturing causality by explicit textual

features or supervision from labeled causal pairs.

There are also a line of works focusing on how

to use neural networks to summarize confounders

and estimate treatment effects (Louizos et al., 2017;

Yao et al., 2018; Künzel et al., 2018), which are

parts of the whole causal inference process. Weber

et al. (2020) show how to formalize causal relation-

ships in script learning, but it is limited to pairwise

learning of events and cannot be generalized to

sequential and compositional events.

Legal Judgement Prediction. Previous works

in legal text analysis focus on the task of legal

judgement prediction (LJP). Luo et al. (2017) and

Zhong et al. (2018) exploit neural networks to

solve LJP tasks. Zhong et al. (2020) provide in-

terpretable judgements by iteratively questioning

and answering. Another line pays attention to con-

fusing charges: Hu et al. (2018) manually design

discriminative attributes, and Xu et al. (2020) use

attention mechanisms to highlight differences be-

tween similar charges. Using knowledge derived

from causal graphs, GCI exhibits a different and

interpretable discrimination process.

8 Discussion

Although GCI is effective on its own and when

working with powerful neural network models,

there is still room for further improvement.

More Precise Causal Inference Models. The

causal estimation results of GCI is based on the

constructed causal graphs in former stages, and the

automated construction process may bring impre-

cise factors and even omissions. As clustering algo-

rithms try to summarize the general characteristics

of text, descriptions with subtle differences may be

clustered into one factor, but the differences mat-

ter in legal judgement. For example, in Personal

Injury’s graph, different ways of killing are sum-

marized as the factor kill, therefore lose valuable

information. Specifically, beaten to death might

occur in cases of involuntary manslaughter, while

shooting cases are more likely to be associated with

murder. Also, factors with low frequency may be

omitted in clustering, but are actually useful for

discrimination. Overall, under the circumstance

without much expert effort, it is worthwhile to ex-

plore how to construct a more reliable causal graph.

Deep understanding on legal documents. Al-

though GCI to some extent tackles the challenges

of incapability of causal inference methods on un-

structured text, it may make mistakes when facing

complex fact descriptions. Negation semantics is

a typical example. It is occasional to see nega-

tion word usage in fact descriptions, which usually

indicates that someone did not have a certain be-

haviour. However, GCI has not considered this

aspect, and may be awry in cases containing nega-

tion usage. Besides, pronoun resolution is also an

important aspect that may confuse models. For ex-

ample, certain behaviour is done by the victim and

the subject of the behaviour is a pronoun. If the

model was unaware of the subject of the behaviour,

it would be counted as criminal’s behaviour and

introduces noise to later inference stage. Moreover,

intent could be a decisive factor when discriminat-

ing charges, for example, murder and involuntary

manslaughter. But it may not be mentioned explic-

itly in the fact descriptions. It should be better to

recover the complete course of fact and recognize

the implicit intents between the lines with deep un-

derstanding of the context and relevant common

sense knowledge.

9 Conclusions

We propose GCI, a graph-based causal inference

framework to discover causal information in text,

and design approaches to integrate causal models

and neural networks. In the similar charge disam-

biguation task, we show our approaches capture im-

portant evidence for judgement and nuance among

charges. Further analysis demonstrates the qual-

ity of causal graphs, value of causal chains, and

interpretability of computed causal strength.
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10 Ethical Considerations

10.1 Intended Use

We aim to facilitate legal service with our proposed

GCI, providing valuable evidence instead of di-

rectly making judgements. We hope that legal AI

models could assist legal workers in underdevel-

oped areas, helping them to explore key points in

cases, discriminate from similar crimes, and make

better decisions. By treating like cases alike in dif-

ferent regions of the country, influences of judges’

intellectual flaws and arbitrariness are weakened,

and rights of people, both the defendants and the

victims, are protected.

Failure Mode. The model may give wrong evi-

dence in some cases, but this will not cause signifi-

cantly bad impact. The process of GCI is transpar-

ent. Extracted factors, the causal relations between

them, and causal chains that lead to the final de-

cision are all shown to users. By checking these

“rationales” of model reasoning, users can clearly

find where goes wrong, and not adopt the outputs,

or intervene and correct the model.

Misuse Potential. We emphasize that such a

model cannot be used individually, as the trial pro-

cess is seriously conducted and regulated by the

judicial system. In the actual judicial process, the

prosecutors, judges, and lawyers are under strict

supervision. We do not think there is a possibility

for them to misuse computer models.

10.2 Bias Analysis

Criminal behaviour is very unbalanced in gender.

Take the three charges in our Personal Injury charge

set as an example. Lin and Zou (2020) counted gen-

der ratio in criminal cases from 2013 to 2017 in

China, and the ratios of male defendant are 94.70%

(Intentional Injury), 87.72% (Murder), and 93.97%

(Involuntary Manslaughter). The disparity in defen-

dants of male and female leads to the small propor-

tion of female cases in training corpus. Therefore,

female cases may be inadequately trained. If this re-

sults in more incorrect predictions for female cases,

women’s rights are violated.

Following Dixon et al. (2018) and Park et al.

(2018), we use False Positive Equality Difference

(FPED) and False Negative Equality Difference

(FNED) to examine the performance difference in

Metrics Bi-LSTM+Att Bi-LSTM+Att+Cons

FPED 0.048 0.032
FNED 0.065 0.049

Table 5: Results of equality difference. Better results

are in bold.

two genders. They are defined as:

FPED =
∑

t∈T
|FPR − FPRt|,

FNED =
∑

t∈T
|FNR − FNRt|,

(8)

where FPR is false positive rate of classifica-

tion, FNR is false negative rate, and T =
{male, female}. The two metrics quantify the

extent of variation between the performances of

two genders.

Applying them to Bi-LSTM+Att and Bi-
LSTM+Att+Cons models in Personal Injury charge

set, the results are shown in Table 5. The model

with causal constraints achieves smaller variance

measured by both metrics, which reduce between

1/4 to 1/3 of the unfairness in performance of

Bi-LSTM+Att. This shows the superiority of our

model with causal knowledge. Compared with nor-

mal neural networks, our constraint-based model

utilizes causal relations, which are more stable to

the number of occurrences.

Though adding causal knowledge narrows

the equality difference, it still exists in Bi-
LSTM+Att+Cons (the metrics are greater than

zero). Other types of bias may also exist in our

model, given that the training corpora contain deci-

sions of humans and systemic bias of humans may

be preserved. Further debiasing method is needed

if the model is put into real use.

In general, we believe that adding causal knowl-

edge to decision making will help debiasing, and

the transparent exhibition of causal graphs and

chains will enable people to find biases in time

and correct them.
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A GFCI Algorithm

GFCI (Ogarrio et al., 2016) is a combination

of a constraint-based causal discovery algorithm

FCI (Spirtes et al., 2013) and a score-based algo-

rithm FGES (Ramsey et al., 2016). Based on the

skeleton of FCI, it uses initialization from FGES to

improve accuracy and efficiency.

FCI takes sample data and optional background

knowledge as input, and guarantees to represent the

Markov equivalence class of the true causal DAG.

It has two phases: adjacency and orientation. It

does not rely on no latent confounder assumption,

but it performs relatively poorly, especially on real

data.

On the other hand, FGES greedily searches over

potential DAGs, and outputs the highest scoring

graph it finds. It is fast and accurate when its as-

sumptions are satisfied, but it relies on the condition

that there are no latent confounders.

GFCI takes the output of FGES as an initial-

ized graph, and the graph is further augmented by

FCI’s adjacency phase, in which some adjacencies

are removed by conditional independence tests. A

similar process happens in the orientation phase.

Orientations of FGES are provided as initializa-

tion, and further orientations from FCI are applied.

Proof in Ogarrio et al. (2016) guarantees the GFCI

algorithm outputs a PAG that represents the true

causal DAG.

Figure 6 shows the advantage of GFCI. When

factor A is unobserved, score-based algorithms

like GES (Chickering, 2002) will wrongly discover

edge B → D, while GFCI correctly recognizes

the relation between factors B and D: there is an

unobserved confounder of B and D.

B Implementation Details

When the training set ratio is 1%, we select p = 15
keywords for each charge, and cluster the keywords

of both charges into q = 20 factors; for the training

set ratio 5% and 10%, p = 25 and q = 30; for

the training set ratio 30% and 50%, p = 40 and

q = 60. We use K-means (MacQueen et al., 1967)

for clustering. When learning causal relationship,

besides cases in the training set, we also use some

unlabeled cases of other charges to improve the

interpretability of the causal graph. Note that re-

moving these cases will not hurt the performance.

We sample Q = 5 causal graphs for each PAG.

For the neural network based models (both the

baselines and our proposed models), 10% of the
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(a) True causal graph (b) GES output (c) GFCI output

Figure 6: Comparison between the output of GES and

GFCI. A is a latent variable, which is also an unob-

served confounder of B and D. This implies that in fact

there is no causal relationship between B and D but

without the consideration of unobserved confounders,

GES tends to be awry in this situation.

training set is used as the validation set. The mod-

els are trained for 30 epochs, and the early stopping

mechanism takes effect when the validation loss

does not drop for more than 1000 batches. We use

Adam optimizer with learning rate 0.001, and the

dropout rate is 0.5. We use Tencent AILab Chinese

Word Embedding (Song et al., 2018) as word em-

beddings, and the dimension of each word is 200.

The hidden sizes are b0 = 128 and b1 = 64. The

batchsize is selected from {4, 8, 16, 32, 64, 128}
considering the dataset size and training set ra-

tio. For Bi-LSTM+Att+Cons, α is manually tuned

within {0.1, 0.25, 0.5, 1}, selecting the one with

best validation F1. All the hyperparameters are

empirically selected and kept the same for different

models in the same dataset and the same training

set ratio.

To reduce the impact of data imbalance between

charges, we apply data augmentation to smaller

charges whose cases are 3 times fewer than the

biggest charge in that set, regardless of the training

ratio. We did not keep them 1:1, in order to reflect

their distributions in the real world.

The models are trained on Intel Xeon CPU. It

takes about one hour to construct the causal graphs,

and a few minutes to perform inference.

C Example of Generated PAG

In this section, we further show part of a Partial An-

cestor Graph (PAG) generated by our GCI frame-

work. The example is shown in Figure 7.

For the edge between Hold People and Hostage,

the arrow is →, indicating there is a causal relation-

ship between the factors Hold People and Hostage
(the person who was held might become a hostage).

For the edge between Hold Knife and Hold Peo-
ple, the arrow is ◦→, which means there might be

an unobserved confounder which causes the two

factors, and there might exist causal relationship



1941

Charge Sets Chains

Personal Injury
trivia → dispute → beat → injury → intentional injury
emotion → disagreement → kill → death → murder
driving a truck → reverse → crush → death → involuntary manslaughter

Violent Acquisition
hold a knife → violence → cash → robbery
necklace → pull → seizure
hostage → threaten → ask for → ransom → kidnapping

F&E
approach → trust → lie → fraud
forge → defraud → fraud
relationship → nude photos → threaten → extortion

E&MPF

work → take advantage of (position/power) → embezzlement
falsely report → arbitrage → embezzlement
take charge of → take advantage of (position/power)→ misappropriate → profit
→ misappropriation of public funds

AP&DD
(use) position → (provide) convenience → abuse of power
complete understand → violate → abuse of power
ignore → result in (bad things) → dereliction of duty

Table 6: Exhibition of causal chains for each charge set.

between the two factors. In the first possible situa-

tion, the confounder could be Latent1, the intent to

commit a crime. A person who intends to commit

a crime may hold a knife and hold people. And in

the second possible situation, the person who holds

a knife is likely to hold people. Therefore, there is

uncertainty in predicting the causal relationship.

For the edge between Hostage and Family, the

arrow is ←→, which means there is an unobserved

confounder which causes the two factors, and there

does not exist causal relationship between them.

For example, the confounder could be Latent2, the

intent to obtain properties from the hostage. The

intent could not only make the suspect grab the

hostage’s money, but also contact families to ask

for ransom.

D Exhibition of More Causal Chains

Table 6 showcases three chains for each charge

set. They depict common patterns of behaviours of

defendants that are charged with the crime at the

tail of the chains. Note that each chain merely

describes one possibility and one aspect of the

criminal behaviour, and the chain itself may not

be sufficient to initiate such a lawsuit. For exam-

ple, the chain complete understand → violate →
abuse of power of charge set AP&DD shows

that the litigant deliberately violated the rules, but

he/she will be charged with abuse of power only

when his/her action results in major loss of public

property.

Hold 
Knife

Hold 
People Hostage

Latent
1

Kidnapping

Latent
2

Family

Figure 7: An example of part of the generated PAG

of charge kidnapping in charge set Violent Acquisi-

tion. Latent1 and Latent2 are unobserved variables that

do not exist in the generated PAG. Detailedly, Latent1
may denote the suspect’s intent to commit a crime; and

Latent2 may denote the suspect’s intent to obtain prop-

erties from the hostage.


